summaryrefslogtreecommitdiff
path: root/common.glsl
blob: 13dd0c2cf45e45da5cdc6def2191508093cffe17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/**
 * Precomputed Atmospheric Scattering
 * Copyright (c) 2008 INRIA
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the copyright holders nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/**
 * Author: Eric Bruneton
 */

// ----------------------------------------------------------------------------
// PHYSICAL MODEL PARAMETERS
// ----------------------------------------------------------------------------

const float AVERAGE_GROUND_REFLECTANCE = 0.1;

// Rayleigh
const float HR = 8.0;
const vec3 betaR = vec3(5.8e-3, 1.35e-2, 3.31e-2);

// Mie
// DEFAULT
const float HM = 1.2;
const vec3 betaMSca = vec3(4e-3);
const vec3 betaMEx = betaMSca / 0.9;
const float mieG = 0.8;
// CLEAR SKY
/*const float HM = 1.2;
const vec3 betaMSca = vec3(20e-3);
const vec3 betaMEx = betaMSca / 0.9;
const float mieG = 0.76;*/
// PARTLY CLOUDY
/*const float HM = 3.0;
const vec3 betaMSca = vec3(3e-3);
const vec3 betaMEx = betaMSca / 0.9;
const float mieG = 0.65;*/

// ----------------------------------------------------------------------------
// NUMERICAL INTEGRATION PARAMETERS
// ----------------------------------------------------------------------------

const int TRANSMITTANCE_INTEGRAL_SAMPLES = 500;
const int INSCATTER_INTEGRAL_SAMPLES = 50;
const int IRRADIANCE_INTEGRAL_SAMPLES = 32;
const int INSCATTER_SPHERICAL_INTEGRAL_SAMPLES = 16;

const float M_PI = 3.141592657;

// ----------------------------------------------------------------------------
// PARAMETERIZATION OPTIONS
// ----------------------------------------------------------------------------

#define TRANSMITTANCE_NON_LINEAR
#define INSCATTER_NON_LINEAR

// ----------------------------------------------------------------------------
// PARAMETERIZATION FUNCTIONS
// ----------------------------------------------------------------------------

uniform sampler2D transmittanceSampler;

float ieeesqrt(float v)
{
  float ret;
  if (v < 0.0) {
    ret = 0.0/0.0;
  } else {
    ret = sqrt(v);
  }
  return ret;
}

vec2 ieeesqrt(vec2 v)
{
  return vec2(ieeesqrt(v.x), ieeesqrt(v.y));
}

float ieeepow(float b, float e)
{
  float ret;
  if (b < 0.0 && floor(e) != e) {
    ret = 0.0/0.0;
  } else {
    ret = pow(b, e);
  }
  return ret;
}

vec2 getTransmittanceUV(float r, float mu) {
    float uR, uMu;
#ifdef TRANSMITTANCE_NON_LINEAR
	uR = ieeesqrt((r - Rg) / (Rt - Rg));
	uMu = atan((mu + 0.15) / (1.0 + 0.15) * tan(1.5)) / 1.5;
#else
	uR = (r - Rg) / (Rt - Rg);
	uMu = (mu + 0.15) / (1.0 + 0.15);
#endif
    return vec2(uMu, uR);
}

vec2 getIrradianceUV(float r, float muS) {
    float uR = (r - Rg) / (Rt - Rg);
    float uMuS = (muS + 0.2) / (1.0 + 0.2);
    return vec2(uMuS, uR);
}

void getIrradianceRMuS(out float r, out float muS) {
#ifdef _FRAGMENT_
    r = Rg + (gl_FragCoord.y - 0.5) / (float(SKY_H) - 1.0) * (Rt - Rg);
    muS = -0.2 + (gl_FragCoord.x - 0.5) / (float(SKY_W) - 1.0) * (1.0 + 0.2);
#endif
}

vec4 texture4D(sampler3D table, float r, float mu, float muS, float nu)
{
    float H = ieeesqrt(Rt * Rt - Rg * Rg);
    float rho = ieeesqrt(r * r - Rg * Rg);
#ifdef INSCATTER_NON_LINEAR
    float rmu = r * mu;
    float delta = rmu * rmu - r * r + Rg * Rg;
    vec4 cst = rmu < 0.0 && delta > 0.0 ? vec4(1.0, 0.0, 0.0, 0.5 - 0.5 / float(RES_MU)) : vec4(-1.0, H * H, H, 0.5 + 0.5 / float(RES_MU));
	float uR = 0.5 / float(RES_R) + rho / H * (1.0 - 1.0 / float(RES_R));
    float uMu = cst.w + (rmu * cst.x + ieeesqrt(delta + cst.y)) / (rho + cst.z) * (0.5 - 1.0 / float(RES_MU));
    // paper formula
    //float uMuS = 0.5 / float(RES_MU_S) + max((1.0 - exp(-3.0 * muS - 0.6)) / (1.0 - exp(-3.6)), 0.0) * (1.0 - 1.0 / float(RES_MU_S));
    // better formula
    float uMuS = 0.5 / float(RES_MU_S) + (atan(max(muS, -0.1975) * tan(1.26 * 1.1)) / 1.1 + (1.0 - 0.26)) * 0.5 * (1.0 - 1.0 / float(RES_MU_S));
#else
	float uR = 0.5 / float(RES_R) + rho / H * (1.0 - 1.0 / float(RES_R));
    float uMu = 0.5 / float(RES_MU) + (mu + 1.0) / 2.0 * (1.0 - 1.0 / float(RES_MU));
    float uMuS = 0.5 / float(RES_MU_S) + max(muS + 0.2, 0.0) / 1.2 * (1.0 - 1.0 / float(RES_MU_S));
#endif
    float lerp = (nu + 1.0) / 2.0 * (float(RES_NU) - 1.0);
    float uNu = floor(lerp);
    lerp = lerp - uNu;
    return texture3D(table, vec3((uNu + uMuS) / float(RES_NU), uMu, uR)) * (1.0 - lerp) +
           texture3D(table, vec3((uNu + uMuS + 1.0) / float(RES_NU), uMu, uR)) * lerp;
}

void getMuMuSNu(float r, vec4 dhdH, out float mu, out float muS, out float nu) {
#ifdef _FRAGMENT_
    float x = gl_FragCoord.x - 0.5;
    float y = gl_FragCoord.y - 0.5;
#else
    float x = 0.5;
    float y = 0.5;
#endif
#ifdef INSCATTER_NON_LINEAR
    if (y < float(RES_MU) / 2.0) {
        float d = 1.0 - y / (float(RES_MU) / 2.0 - 1.0);
        d = min(max(dhdH.z, d * dhdH.w), dhdH.w * 0.999);
        mu = (Rg * Rg - r * r - d * d) / (2.0 * r * d);
        mu = min(mu, -ieeesqrt(1.0 - (Rg / r) * (Rg / r)) - 0.001);
    } else {
        float d = (y - float(RES_MU) / 2.0) / (float(RES_MU) / 2.0 - 1.0);
        d = min(max(dhdH.x, d * dhdH.y), dhdH.y * 0.999);
        mu = (Rt * Rt - r * r - d * d) / (2.0 * r * d);
    }
    muS = mod(x, float(RES_MU_S)) / (float(RES_MU_S) - 1.0);
    // paper formula
    //muS = -(0.6 + log(1.0 - muS * (1.0 -  exp(-3.6)))) / 3.0;
    // better formula
    muS = tan((2.0 * muS - 1.0 + 0.26) * 1.1) / tan(1.26 * 1.1);
    nu = -1.0 + floor(x / float(RES_MU_S)) / (float(RES_NU) - 1.0) * 2.0;
#else
    mu = -1.0 + 2.0 * y / (float(RES_MU) - 1.0);
    muS = mod(x, float(RES_MU_S)) / (float(RES_MU_S) - 1.0);
    muS = -0.2 + muS * 1.2;
    nu = -1.0 + floor(x / float(RES_MU_S)) / (float(RES_NU) - 1.0) * 2.0;
#endif
}

// ----------------------------------------------------------------------------
// UTILITY FUNCTIONS
// ----------------------------------------------------------------------------

// nearest intersection of ray r,mu with ground or top atmosphere boundary
// mu=cos(ray zenith angle at ray origin)
float limit(float r, float mu) {
    float dout = -r * mu + ieeesqrt(r * r * (mu * mu - 1.0) + RL * RL);
    float delta2 = r * r * (mu * mu - 1.0) + Rg * Rg;
    if (delta2 >= 0.0) {
        float din = -r * mu - ieeesqrt(delta2);
        if (din >= 0.0) {
            dout = min(dout, din);
        }
    }
    return dout;
}

// transmittance(=transparency) of atmosphere for infinite ray (r,mu)
// (mu=cos(view zenith angle)), intersections with ground ignored
vec3 transmittance(float r, float mu) {
	vec2 uv = getTransmittanceUV(r, mu);
    return texture2D(transmittanceSampler, uv).rgb;
}

// transmittance(=transparency) of atmosphere for infinite ray (r,mu)
// (mu=cos(view zenith angle)), or zero if ray intersects ground
vec3 transmittanceWithShadow(float r, float mu) {
    return mu < -ieeesqrt(1.0 - (Rg / r) * (Rg / r)) ? vec3(0.0) : transmittance(r, mu);
}

// transmittance(=transparency) of atmosphere between x and x0
// assume segment x,x0 not intersecting ground
// r=||x||, mu=cos(zenith angle of [x,x0) ray at x), v=unit direction vector of [x,x0) ray
vec3 transmittance(float r, float mu, vec3 v, vec3 x0) {
    vec3 result;
    float r1 = length(x0);
    float mu1 = dot(x0, v) / r;
    if (mu > 0.0) {
        result = min(transmittance(r, mu) / transmittance(r1, mu1), 1.0);
    } else {
        result = min(transmittance(r1, -mu1) / transmittance(r, -mu), 1.0);
    }
    return result;
}

// optical depth for ray (r,mu) of length d, using analytic formula
// (mu=cos(view zenith angle)), intersections with ground ignored
// H=height scale of exponential density function
float opticalDepth(float H, float r, float mu, float d) {
    float a = ieeesqrt((0.5/H)*r);
    vec2 a01 = a*vec2(mu, mu + d / r);
    vec2 a01s = sign(a01);
    vec2 a01sq = a01*a01;
    float x = a01s.y > a01s.x ? exp(a01sq.x) : 0.0;
    vec2 y = a01s / (2.3193*abs(a01) + ieeesqrt(1.52*a01sq + 4.0)) * vec2(1.0, exp(-d/H*(d/(2.0*r)+mu)));
    return ieeesqrt((6.2831*H)*r) * exp((Rg-r)/H) * (x + dot(y, vec2(1.0, -1.0)));
}

// transmittance(=transparency) of atmosphere for ray (r,mu) of length d
// (mu=cos(view zenith angle)), intersections with ground ignored
// uses analytic formula instead of transmittance texture
vec3 analyticTransmittance(float r, float mu, float d) {
    return exp(- betaR * opticalDepth(HR, r, mu, d) - betaMEx * opticalDepth(HM, r, mu, d));
}

// transmittance(=transparency) of atmosphere between x and x0
// assume segment x,x0 not intersecting ground
// d = distance between x and x0, mu=cos(zenith angle of [x,x0) ray at x)
vec3 transmittance(float r, float mu, float d) {
    vec3 result;
    float r1 = ieeesqrt(r * r + d * d + 2.0 * r * mu * d);
    float mu1 = (r * mu + d) / r1;
    if (mu > 0.0) {
        result = min(transmittance(r, mu) / transmittance(r1, mu1), 1.0);
    } else {
        result = min(transmittance(r1, -mu1) / transmittance(r, -mu), 1.0);
    }
    return result;
}

vec3 irradiance(sampler2D sampler, float r, float muS) {
    vec2 uv = getIrradianceUV(r, muS);
    return texture2D(sampler, uv).rgb;
}

// Rayleigh phase function
float phaseFunctionR(float mu) {
    return (3.0 / (16.0 * M_PI)) * (1.0 + mu * mu);
}

// Mie phase function
float phaseFunctionM(float mu) {
	return 1.5 * 1.0 / (4.0 * M_PI) * (1.0 - mieG*mieG) * ieeepow(1.0 + (mieG*mieG) - 2.0*mieG*mu, -3.0/2.0) * (1.0 + mu * mu) / (2.0 + mieG*mieG);
}

// approximated single Mie scattering (cf. approximate Cm in paragraph "Angular precision")
vec3 getMie(vec4 rayMie) { // rayMie.rgb=C*, rayMie.w=Cm,r
	return rayMie.rgb * rayMie.w / max(rayMie.r, 1e-4) * (betaR.r / betaR);
}