/* cairo - a vector graphics library with display and print output * * Copyright © 2004 Red Hat, Inc. * Copyright © 2005 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is Red Hat, Inc. * * Contributor(s): * Keith Packard * Graydon Hoare * Carl Worth */ #include "cairoint.h" /* * An entry can be in one of three states: * * FREE: Entry has never been used, terminates all searches. * Appears in the table as a NULL pointer. * * DEAD: Entry had been live in the past. A dead entry can be reused * but does not terminate a search for an exact entry. * Appears in the table as a pointer to DEAD_ENTRY. * * LIVE: Entry is currently being used. * Appears in the table as any non-NULL, non-DEAD_ENTRY pointer. */ static cairo_hash_entry_t dead_entry = { 0 }; #define DEAD_ENTRY (&dead_entry) #define ENTRY_IS_FREE(entry) ((entry) == NULL) #define ENTRY_IS_DEAD(entry) ((entry) == DEAD_ENTRY) #define ENTRY_IS_LIVE(entry) ((entry) && ! ENTRY_IS_DEAD(entry)) /* We expect keys will not be destroyed frequently, so our table does not * contain any explicit shrinking code nor any chain-coalescing code for * entries randomly deleted by memory pressure (except during rehashing, of * course). These assumptions are potentially bad, but they make the * implementation straightforward. * * Revisit later if evidence appears that we're using excessive memory from * a mostly-dead table. * * This table is open-addressed with double hashing. Each table size is a * prime chosen to be a little more than double the high water mark for a * given arrangement, so the tables should remain < 50% full. The table * size makes for the "first" hash modulus; a second prime (2 less than the * first prime) serves as the "second" hash modulus, which is co-prime and * thus guarantees a complete permutation of table indices. * * This structure, and accompanying table, is borrowed/modified from the * file xserver/render/glyph.c in the freedesktop.org x server, with * permission (and suggested modification of doubling sizes) by Keith * Packard. */ typedef struct _cairo_hash_table_arrangement { unsigned long high_water_mark; unsigned long size; unsigned long rehash; } cairo_hash_table_arrangement_t; static const cairo_hash_table_arrangement_t hash_table_arrangements [] = { { 16, 43, 41 }, { 32, 73, 71 }, { 64, 151, 149 }, { 128, 283, 281 }, { 256, 571, 569 }, { 512, 1153, 1151 }, { 1024, 2269, 2267 }, { 2048, 4519, 4517 }, { 4096, 9013, 9011 }, { 8192, 18043, 18041 }, { 16384, 36109, 36107 }, { 32768, 72091, 72089 }, { 65536, 144409, 144407 }, { 131072, 288361, 288359 }, { 262144, 576883, 576881 }, { 524288, 1153459, 1153457 }, { 1048576, 2307163, 2307161 }, { 2097152, 4613893, 4613891 }, { 4194304, 9227641, 9227639 }, { 8388608, 18455029, 18455027 }, { 16777216, 36911011, 36911009 }, { 33554432, 73819861, 73819859 }, { 67108864, 147639589, 147639587 }, { 134217728, 295279081, 295279079 }, { 268435456, 590559793, 590559791 } }; #define NUM_HASH_TABLE_ARRANGEMENTS (sizeof(hash_table_arrangements)/sizeof(hash_table_arrangements[0])) struct _cairo_hash_table { cairo_hash_keys_equal_func_t keys_equal; const cairo_hash_table_arrangement_t *arrangement; cairo_hash_entry_t **entries; unsigned long live_entries; }; /** * _cairo_hash_table_create: * @keys_equal: a function to return TRUE if two keys are equal * * Creates a new hash table which will use the keys_equal() function * to compare hash keys. Data is provided to the hash table in the * form of user-derived versions of cairo_hash_entry_t. A hash entry * must be able to hold both a key (including a hash code) and a * value. Sometimes only the key will be necessary, (as in * _cairo_hash_table_remove), and other times both a key and a value * will be necessary, (as in _cairo_hash_table_insert). * * See #cairo_hash_entry_t for more details. * * Return value: the new hash table or NULL if out of memory. **/ cairo_hash_table_t * _cairo_hash_table_create (cairo_hash_keys_equal_func_t keys_equal) { cairo_hash_table_t *hash_table; hash_table = malloc (sizeof (cairo_hash_table_t)); if (hash_table == NULL) return NULL; hash_table->keys_equal = keys_equal; hash_table->arrangement = &hash_table_arrangements[0]; hash_table->entries = calloc (hash_table->arrangement->size, sizeof(cairo_hash_entry_t *)); if (hash_table->entries == NULL) { free (hash_table); return NULL; } hash_table->live_entries = 0; return hash_table; } /** * _cairo_hash_table_destroy: * @hash_table: an empty hash table to destroy * * Immediately destroys the given hash table, freeing all resources * associated with it. * * WARNING: The hash_table must have no live entries in it before * _cairo_hash_table_destroy is called. It is a fatal error otherwise, * and this function will halt. The rationale for this behavior is to * avoid memory leaks and to avoid needless complication of the API * with destroy notifiy callbacks. **/ void _cairo_hash_table_destroy (cairo_hash_table_t *hash_table) { if (hash_table == NULL) return; /* The hash table must be empty. Otherwise, halt. */ assert (hash_table->live_entries == 0); free (hash_table->entries); hash_table->entries = NULL; free (hash_table); } /** * _cairo_hash_table_lookup_internal: * * @hash_table: a #cairo_hash_table_t to search * @key: the key to search on * @hash_code: the hash_code for @key * @key_unique: If TRUE, then caller asserts that no key already * exists that will compare equal to #key, so search can be * optimized. If unsure, set to FALSE and the code will always work. * * Search the hashtable for a live entry for which * hash_table->keys_equal returns true. If no such entry exists then * return the first available (free or dead entry). * * If the key_unique flag is set, then the search will never call * hash_table->keys_equal and will act as if it always returned * false. This is useful as a performance optimization in special * circumstances where the caller knows that there is no existing * entry in the hash table with a matching key. * * Return value: The matching entry in the hash table (if * any). Otherwise, the first available entry. The caller should check * entry->state to check whether a match was found or not. **/ static cairo_hash_entry_t ** _cairo_hash_table_lookup_internal (cairo_hash_table_t *hash_table, cairo_hash_entry_t *key, cairo_bool_t key_is_unique) { cairo_hash_entry_t **entry, **first_available = NULL; unsigned long table_size, i, idx, step; table_size = hash_table->arrangement->size; idx = key->hash % table_size; step = 0; for (i = 0; i < table_size; ++i) { entry = &hash_table->entries[idx]; if (ENTRY_IS_FREE(*entry)) { return entry; } else if (ENTRY_IS_DEAD(*entry)) { if (key_is_unique) { return entry; } else { if (! first_available) first_available = entry; } } else /* ENTRY_IS_LIVE(*entry) */ { if (! key_is_unique) if (hash_table->keys_equal (key, *entry)) return entry; } if (step == 0) { step = key->hash % hash_table->arrangement->rehash; if (step == 0) step = 1; } idx += step; if (idx >= table_size) idx -= table_size; } /* * The table should not have permitted you to get here if you were just * looking for a free slot: there should have been room. */ assert (key_is_unique == 0); return first_available; } /** * _cairo_hash_table_resize: * @hash_table: a hash table * * Resize the hash table if the number of entries has gotten much * bigger or smaller than the ideal number of entries for the current * size. * * Return value: CAIRO_STATUS_SUCCESS if successful or * CAIRO_STATUS_NO_MEMORY if out of memory. **/ static cairo_status_t _cairo_hash_table_resize (cairo_hash_table_t *hash_table) { cairo_hash_table_t tmp; cairo_hash_entry_t **entry; unsigned long new_size, i; /* This keeps the hash table between 25% and 50% full. */ unsigned long high = hash_table->arrangement->high_water_mark; unsigned long low = high >> 2; if (hash_table->live_entries >= low && hash_table->live_entries <= high) return CAIRO_STATUS_SUCCESS; tmp = *hash_table; if (hash_table->live_entries > high) { tmp.arrangement = hash_table->arrangement + 1; /* This code is being abused if we can't make a table big enough. */ assert (tmp.arrangement - hash_table_arrangements < NUM_HASH_TABLE_ARRANGEMENTS); } else /* hash_table->live_entries < low */ { /* Can't shrink if we're at the smallest size */ if (hash_table->arrangement == &hash_table_arrangements[0]) return CAIRO_STATUS_SUCCESS; tmp.arrangement = hash_table->arrangement - 1; } new_size = tmp.arrangement->size; tmp.entries = calloc (new_size, sizeof (cairo_hash_entry_t*)); if (tmp.entries == NULL) return CAIRO_STATUS_NO_MEMORY; for (i = 0; i < hash_table->arrangement->size; ++i) { if (ENTRY_IS_LIVE (hash_table->entries[i])) { entry = _cairo_hash_table_lookup_internal (&tmp, hash_table->entries[i], TRUE); assert (ENTRY_IS_FREE(*entry)); *entry = hash_table->entries[i]; } } free (hash_table->entries); hash_table->entries = tmp.entries; hash_table->arrangement = tmp.arrangement; return CAIRO_STATUS_SUCCESS; } /** * _cairo_hash_table_lookup: * @hash_table: a hash table * @key: the key of interest * @entry_return: pointer for return value. * * Performs a lookup in @hash_table looking for an entry which has a * key that matches @key, (as determined by the keys_equal() function * passed to _cairo_hash_table_create). * * Return value: TRUE if there is an entry in the hash table that * matches the given key, (which will now be in *entry_return). FALSE * otherwise, (in which case *entry_return will be NULL). **/ cairo_bool_t _cairo_hash_table_lookup (cairo_hash_table_t *hash_table, cairo_hash_entry_t *key, cairo_hash_entry_t **entry_return) { cairo_hash_entry_t **entry; /* See if we have an entry in the table already. */ entry = _cairo_hash_table_lookup_internal (hash_table, key, FALSE); if (ENTRY_IS_LIVE(*entry)) { *entry_return = *entry; return TRUE; } *entry_return = NULL; return FALSE; } /** * _cairo_hash_table_random_entry: * @hash_table: a hash table * @predicate: a predicate function, or NULL for any entry. * * Find a random entry in the hash table satisfying the given * @predicate. A NULL @predicate is taken as equivalent to a function * which always returns TRUE, (eg. any entry in the table will do). * * We use the same algorithm as the lookup algorithm to walk over the * entries in the hash table in a pseudo-random order. Walking * linearly would favor entries following gaps in the hash table. We * could also call rand() repeatedly, which works well for almost-full * tables, but degrades when the table is almost empty, or predicate * returns TRUE for most entries. * * Return value: a random live entry or NULL if there are no entries * that match the given predicate. In particular, if predicate is * NULL, a NULL return value indicates that the table is empty. **/ void * _cairo_hash_table_random_entry (cairo_hash_table_t *hash_table, cairo_hash_predicate_func_t predicate) { cairo_hash_entry_t **entry; unsigned long hash; unsigned long table_size, i, idx, step; table_size = hash_table->arrangement->size; hash = rand (); idx = hash % table_size; step = 0; for (i = 0; i < table_size; ++i) { entry = &hash_table->entries[idx]; if (ENTRY_IS_LIVE (*entry) && (predicate == NULL || predicate (*entry))) { return *entry; } if (step == 0) { step = hash % hash_table->arrangement->rehash; if (step == 0) step = 1; } idx += step; if (idx >= table_size) idx -= table_size; } return NULL; } /** * _cairo_hash_table_insert: * @hash_table: a hash table * @key_and_value: an entry to be inserted * * Insert the entry #key_and_value into the hash table. * * WARNING: It is a fatal error if an entry exists in the hash table * with a matching key, (this function will halt). * * Instead of using insert to replace an entry, consider just editing * the entry obtained with _cairo_hash_table_lookup. Or if absolutely * necessary, use _cairo_hash_table_remove first. * * Return value: CAIRO_STATUS_SUCCESS if successful or * CAIRO_STATUS_NO_MEMORY if insufficient memory is available. **/ cairo_status_t _cairo_hash_table_insert (cairo_hash_table_t *hash_table, cairo_hash_entry_t *key_and_value) { cairo_status_t status; cairo_hash_entry_t **entry; entry = _cairo_hash_table_lookup_internal (hash_table, key_and_value, FALSE); if (ENTRY_IS_LIVE(*entry)) { /* User is being bad, let's crash. */ ASSERT_NOT_REACHED; } *entry = key_and_value; hash_table->live_entries++; status = _cairo_hash_table_resize (hash_table); if (status) return status; return CAIRO_STATUS_SUCCESS; } /** * _cairo_hash_table_remove: * @hash_table: a hash table * @key: key of entry to be removed * * Remove an entry from the hash table which has a key that matches * @key, if any (as determined by the keys_equal() function passed to * _cairo_hash_table_create). * * Return value: CAIRO_STATUS_SUCCESS if successful or * CAIRO_STATUS_NO_MEMORY if out of memory. **/ void _cairo_hash_table_remove (cairo_hash_table_t *hash_table, cairo_hash_entry_t *key) { cairo_hash_entry_t **entry; entry = _cairo_hash_table_lookup_internal (hash_table, key, FALSE); if (! ENTRY_IS_LIVE(*entry)) return; *entry = DEAD_ENTRY; hash_table->live_entries--; /* This call _can_ fail, but only in failing to allocate new * memory to shrink the hash table. It does leave the table in a * consistent state, and we've already succeeded in removing the * entry, so we don't examine the failure status of this call. */ _cairo_hash_table_resize (hash_table); } /** * _cairo_hash_table_foreach: * @hash_table: a hash table * @hash_callback: function to be called for each live entry * @closure: additional argument to be passed to @hash_callback * * Call @hash_callback for each live entry in the hash table, in a * non-specified order. **/ void _cairo_hash_table_foreach (cairo_hash_table_t *hash_table, cairo_hash_callback_func_t hash_callback, void *closure) { unsigned long i; cairo_hash_entry_t *entry; if (hash_table == NULL) return; for (i = 0; i < hash_table->arrangement->size; i++) { entry = hash_table->entries[i]; if (ENTRY_IS_LIVE(entry)) hash_callback (entry, closure); } }