/* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) */ /* * This file contains miscelanious TNC-related functions shared betweend * different files. This file does not form any logically separate TNC * sub-system. The file was created because there is a lot of TNC code and * putting it all in one file would make that file too big and unreadable. */ #include "ubifs.h" /** * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal. * @zr: root of the subtree to traverse * @znode: previous znode * * This function implements levelorder TNC traversal. The LNC is ignored. * Returns the next element or %NULL if @znode is already the last one. */ struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr, struct ubifs_znode *znode) { int level, iip, level_search = 0; struct ubifs_znode *zn; ubifs_assert(zr); if (unlikely(!znode)) return zr; if (unlikely(znode == zr)) { if (znode->level == 0) return NULL; return ubifs_tnc_find_child(zr, 0); } level = znode->level; iip = znode->iip; while (1) { ubifs_assert(znode->level <= zr->level); /* * First walk up until there is a znode with next branch to * look at. */ while (znode->parent != zr && iip >= znode->parent->child_cnt) { znode = znode->parent; iip = znode->iip; } if (unlikely(znode->parent == zr && iip >= znode->parent->child_cnt)) { /* This level is done, switch to the lower one */ level -= 1; if (level_search || level < 0) /* * We were already looking for znode at lower * level ('level_search'). As we are here * again, it just does not exist. Or all levels * were finished ('level < 0'). */ return NULL; level_search = 1; iip = -1; znode = ubifs_tnc_find_child(zr, 0); ubifs_assert(znode); } /* Switch to the next index */ zn = ubifs_tnc_find_child(znode->parent, iip + 1); if (!zn) { /* No more children to look at, we have walk up */ iip = znode->parent->child_cnt; continue; } /* Walk back down to the level we came from ('level') */ while (zn->level != level) { znode = zn; zn = ubifs_tnc_find_child(zn, 0); if (!zn) { /* * This path is not too deep so it does not * reach 'level'. Try next path. */ iip = znode->iip; break; } } if (zn) { ubifs_assert(zn->level >= 0); return zn; } } } /** * ubifs_search_zbranch - search znode branch. * @c: UBIFS file-system description object * @znode: znode to search in * @key: key to search for * @n: znode branch slot number is returned here * * This is a helper function which search branch with key @key in @znode using * binary search. The result of the search may be: * o exact match, then %1 is returned, and the slot number of the branch is * stored in @n; * o no exact match, then %0 is returned and the slot number of the left * closest branch is returned in @n; the slot if all keys in this znode are * greater than @key, then %-1 is returned in @n. */ int ubifs_search_zbranch(const struct ubifs_info *c, const struct ubifs_znode *znode, const union ubifs_key *key, int *n) { int beg = 0, end = znode->child_cnt, uninitialized_var(mid); int uninitialized_var(cmp); const struct ubifs_zbranch *zbr = &znode->zbranch[0]; ubifs_assert(end > beg); while (end > beg) { mid = (beg + end) >> 1; cmp = keys_cmp(c, key, &zbr[mid].key); if (cmp > 0) beg = mid + 1; else if (cmp < 0) end = mid; else { *n = mid; return 1; } } *n = end - 1; /* The insert point is after *n */ ubifs_assert(*n >= -1 && *n < znode->child_cnt); if (*n == -1) ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0); else ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0); if (*n + 1 < znode->child_cnt) ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0); return 0; } /** * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal. * @znode: znode to start at (root of the sub-tree to traverse) * * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is * ignored. */ struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode) { if (unlikely(!znode)) return NULL; while (znode->level > 0) { struct ubifs_znode *child; child = ubifs_tnc_find_child(znode, 0); if (!child) return znode; znode = child; } return znode; } /** * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal. * @znode: previous znode * * This function implements postorder TNC traversal. The LNC is ignored. * Returns the next element or %NULL if @znode is already the last one. */ struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode) { struct ubifs_znode *zn; ubifs_assert(znode); if (unlikely(!znode->parent)) return NULL; /* Switch to the next index in the parent */ zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1); if (!zn) /* This is in fact the last child, return parent */ return znode->parent; /* Go to the first znode in this new subtree */ return ubifs_tnc_postorder_first(zn); } /** * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree. * @znode: znode defining subtree to destroy * * This function destroys subtree of the TNC tree. Returns number of clean * znodes in the subtree. */ long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode) { struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode); long clean_freed = 0; int n; ubifs_assert(zn); while (1) { for (n = 0; n < zn->child_cnt; n++) { if (!zn->zbranch[n].znode) continue; if (zn->level > 0 && !ubifs_zn_dirty(zn->zbranch[n].znode)) clean_freed += 1; cond_resched(); kfree(zn->zbranch[n].znode); } if (zn == znode) { if (!ubifs_zn_dirty(zn)) clean_freed += 1; kfree(zn); return clean_freed; } zn = ubifs_tnc_postorder_next(zn); } } /** * read_znode - read an indexing node from flash and fill znode. * @c: UBIFS file-system description object * @lnum: LEB of the indexing node to read * @offs: node offset * @len: node length * @znode: znode to read to * * This function reads an indexing node from the flash media and fills znode * with the read data. Returns zero in case of success and a negative error * code in case of failure. The read indexing node is validated and if anything * is wrong with it, this function prints complaint messages and returns * %-EINVAL. */ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len, struct ubifs_znode *znode) { int i, err, type, cmp; struct ubifs_idx_node *idx; idx = kmalloc(c->max_idx_node_sz, GFP_NOFS); if (!idx) return -ENOMEM; err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); if (err < 0) { kfree(idx); return err; } znode->child_cnt = le16_to_cpu(idx->child_cnt); znode->level = le16_to_cpu(idx->level); dbg_tnc("LEB %d:%d, level %d, %d branch", lnum, offs, znode->level, znode->child_cnt); if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) { dbg_err("current fanout %d, branch count %d", c->fanout, znode->child_cnt); dbg_err("max levels %d, znode level %d", UBIFS_MAX_LEVELS, znode->level); err = 1; goto out_dump; } for (i = 0; i < znode->child_cnt; i++) { const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); struct ubifs_zbranch *zbr = &znode->zbranch[i]; key_read(c, &br->key, &zbr->key); zbr->lnum = le32_to_cpu(br->lnum); zbr->offs = le32_to_cpu(br->offs); zbr->len = le32_to_cpu(br->len); zbr->znode = NULL; /* Validate branch */ if (zbr->lnum < c->main_first || zbr->lnum >= c->leb_cnt || zbr->offs < 0 || zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) { dbg_err("bad branch %d", i); err = 2; goto out_dump; } switch (key_type(c, &zbr->key)) { case UBIFS_INO_KEY: case UBIFS_DATA_KEY: case UBIFS_DENT_KEY: case UBIFS_XENT_KEY: break; default: dbg_msg("bad key type at slot %d: %d", i, key_type(c, &zbr->key)); err = 3; goto out_dump; } if (znode->level) continue; type = key_type(c, &zbr->key); if (c->ranges[type].max_len == 0) { if (zbr->len != c->ranges[type].len) { dbg_err("bad target node (type %d) length (%d)", type, zbr->len); dbg_err("have to be %d", c->ranges[type].len); err = 4; goto out_dump; } } else if (zbr->len < c->ranges[type].min_len || zbr->len > c->ranges[type].max_len) { dbg_err("bad target node (type %d) length (%d)", type, zbr->len); dbg_err("have to be in range of %d-%d", c->ranges[type].min_len, c->ranges[type].max_len); err = 5; goto out_dump; } } /* * Ensure that the next key is greater or equivalent to the * previous one. */ for (i = 0; i < znode->child_cnt - 1; i++) { const union ubifs_key *key1, *key2; key1 = &znode->zbranch[i].key; key2 = &znode->zbranch[i + 1].key; cmp = keys_cmp(c, key1, key2); if (cmp > 0) { dbg_err("bad key order (keys %d and %d)", i, i + 1); err = 6; goto out_dump; } else if (cmp == 0 && !is_hash_key(c, key1)) { /* These can only be keys with colliding hash */ dbg_err("keys %d and %d are not hashed but equivalent", i, i + 1); err = 7; goto out_dump; } } kfree(idx); return 0; out_dump: ubifs_err("bad indexing node at LEB %d:%d, error %d", lnum, offs, err); ubifs_dump_node(c, idx); kfree(idx); return -EINVAL; } /** * ubifs_load_znode - load znode to TNC cache. * @c: UBIFS file-system description object * @zbr: znode branch * @parent: znode's parent * @iip: index in parent * * This function loads znode pointed to by @zbr into the TNC cache and * returns pointer to it in case of success and a negative error code in case * of failure. */ struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr, struct ubifs_znode *parent, int iip) { int err; struct ubifs_znode *znode; ubifs_assert(!zbr->znode); /* * A slab cache is not presently used for znodes because the znode size * depends on the fanout which is stored in the superblock. */ znode = kzalloc(c->max_znode_sz, GFP_NOFS); if (!znode) return ERR_PTR(-ENOMEM); err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode); if (err) goto out; atomic_long_inc(&c->clean_zn_cnt); /* * Increment the global clean znode counter as well. It is OK that * global and per-FS clean znode counters may be inconsistent for some * short time (because we might be preempted at this point), the global * one is only used in shrinker. */ atomic_long_inc(&ubifs_clean_zn_cnt); zbr->znode = znode; znode->parent = parent; znode->time = get_seconds(); znode->iip = iip; return znode; out: kfree(znode); return ERR_PTR(err); } /** * ubifs_tnc_read_node - read a leaf node from the flash media. * @c: UBIFS file-system description object * @zbr: key and position of the node * @node: node is returned here * * This function reads a node defined by @zbr from the flash media. Returns * zero in case of success or a negative negative error code in case of * failure. */ int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, void *node) { union ubifs_key key1, *key = &zbr->key; int err, type = key_type(c, key); struct ubifs_wbuf *wbuf; /* * 'zbr' has to point to on-flash node. The node may sit in a bud and * may even be in a write buffer, so we have to take care about this. */ wbuf = ubifs_get_wbuf(c, zbr->lnum); if (wbuf) err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len, zbr->lnum, zbr->offs); else err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum, zbr->offs); if (err) { dbg_tnck(key, "key "); return err; } /* Make sure the key of the read node is correct */ key_read(c, node + UBIFS_KEY_OFFSET, &key1); if (!keys_eq(c, key, &key1)) { ubifs_err("bad key in node at LEB %d:%d", zbr->lnum, zbr->offs); dbg_tnck(key, "looked for key "); dbg_tnck(&key1, "but found node's key "); ubifs_dump_node(c, node); return -EINVAL; } return 0; }