Age | Commit message (Collapse) | Author | Files | Lines |
|
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
We create two subvolumes (meego_root and meego_home) in
btrfs root directory. And set meego_root as default mount
subvolume. After we remount btrfs, meego_root is mounted
to top directory by default. Then when we try to mount
meego_home (subvol=meego_home) to a subdirectory, it failed.
The problem is when default mount subvolume is set to
meego_root, we search meego_home in meego_root but can not find
it. So the solution is to add a new mount option (subvolrootid)
to specify subvol id of root and search subvol name in it. For
our case, now we can use "-o subvolrootid=0,subvol=meego_home)
to mount meego_home.
Detail information can be found in meego bugzilla:
https://bugs.meego.com/show_bug.cgi?id=15055
Signed-off-by: Zhong, Xin <xin.zhong@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Some mount options are not displayed by /proc/mounts.
This patch displays the option such as compress_type by /proc/mounts.
Ex.
[before]
$ mount | grep sdc2
/dev/sdc2 on /test12 type btrfs (rw,space_cache,compress=lzo)
$ cat /proc/mounts | grep sdc2
/dev/sdc2 /test12 btrfs rw,relatime,compress 0 0
[after]
$ mount | grep sdc2
/dev/sdc2 on /test12 type btrfs (rw,space_cache,compress=lzo)
$ cat /proc/mounts | grep sdc2
/dev/sdc2 /test12 btrfs rw,relatime,compress=lzo,space_cache 0 0
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Tracepoints can provide insight into why btrfs hits bugs and be greatly
helpful for debugging, e.g
dd-7822 [000] 2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0
dd-7822 [000] 2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0
btrfs-transacti-7804 [001] 2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0)
btrfs-transacti-7804 [001] 2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0)
btrfs-transacti-7804 [001] 2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8
flush-btrfs-2-7821 [001] 2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA
flush-btrfs-2-7821 [001] 2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0)
flush-btrfs-2-7821 [001] 2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0)
flush-btrfs-2-7821 [000] 2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0)
btrfs-endio-wri-7800 [001] 2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0)
btrfs-endio-wri-7800 [001] 2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0)
Here is what I have added:
1) ordere_extent:
btrfs_ordered_extent_add
btrfs_ordered_extent_remove
btrfs_ordered_extent_start
btrfs_ordered_extent_put
These provide critical information to understand how ordered_extents are
updated.
2) extent_map:
btrfs_get_extent
extent_map is used in both read and write cases, and it is useful for tracking
how btrfs specific IO is running.
3) writepage:
__extent_writepage
btrfs_writepage_end_io_hook
Pages are cirtical resourses and produce a lot of corner cases during writeback,
so it is valuable to know how page is written to disk.
4) inode:
btrfs_inode_new
btrfs_inode_request
btrfs_inode_evict
These can show where and when a inode is created, when a inode is evicted.
5) sync:
btrfs_sync_file
btrfs_sync_fs
These show sync arguments.
6) transaction:
btrfs_transaction_commit
In transaction based filesystem, it will be useful to know the generation and
who does commit.
7) back reference and cow:
btrfs_delayed_tree_ref
btrfs_delayed_data_ref
btrfs_delayed_ref_head
btrfs_cow_block
Btrfs natively supports back references, these tracepoints are helpful on
understanding btrfs's COW mechanism.
8) chunk:
btrfs_chunk_alloc
btrfs_chunk_free
Chunk is a link between physical offset and logical offset, and stands for space
infomation in btrfs, and these are helpful on tracing space things.
9) reserved_extent:
btrfs_reserved_extent_alloc
btrfs_reserved_extent_free
These can show how btrfs uses its space.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: fix fiemap bugs with delalloc
Btrfs: set FMODE_EXCL in btrfs_device->mode
Btrfs: make btrfs_rm_device() fail gracefully
Btrfs: Avoid accessing unmapped kernel address
Btrfs: Fix BTRFS_IOC_SUBVOL_SETFLAGS ioctl
Btrfs: allow balance to explicitly allocate chunks as it relocates
Btrfs: put ENOSPC debugging under a mount option
|
|
ENOSPC in btrfs is getting to the point where the extra debugging isn't
required. I've put it under mount -o enospc_debug just in case someone
is having difficult problems.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (33 commits)
Btrfs: Fix page count calculation
btrfs: Drop __exit attribute on btrfs_exit_compress
btrfs: cleanup error handling in btrfs_unlink_inode()
Btrfs: exclude super blocks when we read in block groups
Btrfs: make sure search_bitmap finds something in remove_from_bitmap
btrfs: fix return value check of btrfs_start_transaction()
btrfs: checking NULL or not in some functions
Btrfs: avoid uninit variable warnings in ordered-data.c
Btrfs: catch errors from btrfs_sync_log
Btrfs: make shrink_delalloc a little friendlier
Btrfs: handle no memory properly in prepare_pages
Btrfs: do error checking in btrfs_del_csums
Btrfs: use the global block reserve if we cannot reserve space
Btrfs: do not release more reserved bytes to the global_block_rsv than we need
Btrfs: fix check_path_shared so it returns the right value
btrfs: check return value of btrfs_start_ioctl_transaction() properly
btrfs: fix return value check of btrfs_join_transaction()
fs/btrfs/inode.c: Add missing IS_ERR test
btrfs: fix missing break in switch phrase
btrfs: fix several uncheck memory allocations
...
|
|
The error check of btrfs_start_transaction() is added, and the mistake
of the error check on several places is corrected.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
We must save and free the original kstrdup()'ed pointer
because strsep() modifies its first argument.
Signed-off-by: Tero Roponen <tero.roponen@gmail.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
|
|
We missed a memory deallocation in commit 450ba0ea.
If an existing super block is found at mount and there is no
error condition then the pre-allocated tree_root and fs_info
are no not used and are not freeded.
Signed-off-by: Ian Kent <raven@themaw.net>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (25 commits)
Btrfs: forced readonly mounts on errors
btrfs: Require CAP_SYS_ADMIN for filesystem rebalance
Btrfs: don't warn if we get ENOSPC in btrfs_block_rsv_check
btrfs: Fix memory leak in btrfs_read_fs_root_no_radix()
btrfs: check NULL or not
btrfs: Don't pass NULL ptr to func that may deref it.
btrfs: mount failure return value fix
btrfs: Mem leak in btrfs_get_acl()
btrfs: fix wrong free space information of btrfs
btrfs: make the chunk allocator utilize the devices better
btrfs: restructure find_free_dev_extent()
btrfs: fix wrong calculation of stripe size
btrfs: try to reclaim some space when chunk allocation fails
btrfs: fix wrong data space statistics
fs/btrfs: Fix build of ctree
Btrfs: fix off by one while setting block groups readonly
Btrfs: Add BTRFS_IOC_SUBVOL_GETFLAGS/SETFLAGS ioctls
Btrfs: Add readonly snapshots support
Btrfs: Refactor btrfs_ioctl_snap_create()
btrfs: Extract duplicate decompress code
...
|
|
This patch comes from "Forced readonly mounts on errors" ideas.
As we know, this is the first step in being more fault tolerant of disk
corruptions instead of just using BUG() statements.
The major content:
- add a framework for generating errors that should result in filesystems
going readonly.
- keep FS state in disk super block.
- make sure that all of resource will be freed and released at umount time.
- make sure that fter FS is forced readonly on error, there will be no more
disk change before FS is corrected. For this, we should stop write operation.
After this patch is applied, the conversion from BUG() to such a framework can
happen incrementally.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When we store data by raid profile in btrfs with two or more different size
disks, df command shows there is some free space in the filesystem, but the
user can not write any data in fact, df command shows the wrong free space
information of btrfs.
# mkfs.btrfs -d raid1 /dev/sda9 /dev/sda10
# btrfs-show
Label: none uuid: a95cd49e-6e33-45b8-8741-a36153ce4b64
Total devices 2 FS bytes used 28.00KB
devid 1 size 5.01GB used 2.03GB path /dev/sda9
devid 2 size 10.00GB used 2.01GB path /dev/sda10
# btrfs device scan /dev/sda9 /dev/sda10
# mount /dev/sda9 /mnt
# dd if=/dev/zero of=tmpfile0 bs=4K count=9999999999
(fill the filesystem)
# sync
# df -TH
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda9 btrfs 17G 8.6G 5.4G 62% /mnt
# btrfs-show
Label: none uuid: a95cd49e-6e33-45b8-8741-a36153ce4b64
Total devices 2 FS bytes used 3.99GB
devid 1 size 5.01GB used 5.01GB path /dev/sda9
devid 2 size 10.00GB used 4.99GB path /dev/sda10
It is because btrfs cannot allocate chunks when one of the pairing disks has
no space, the free space on the other disks can not be used for ever, and should
be subtracted from the total space, but btrfs doesn't subtract this space from
the total. It is strange to the user.
This patch fixes it by calcing the free space that can be used to allocate
chunks.
Implementation:
1. get all the devices free space, and align them by stripe length.
2. sort the devices by the free space.
3. check the free space of the devices,
3.1. if it is not zero, and then check the number of the devices that has
more free space than this device,
if the number of the devices is beyond the min stripe number, the free
space can be used, and add into total free space.
if the number of the devices is below the min stripe number, we can not
use the free space, the check ends.
3.2. if the free space is zero, check the next devices, goto 3.1
This implementation is just likely fake chunk allocation.
After appling this patch, df can show correct space information:
# df -TH
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda9 btrfs 17G 8.6G 0 100% /mnt
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Josef has implemented mixed data/metadata chunks, we must add those chunks'
space just like data chunks.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Lzo is a much faster compression algorithm than gzib, so would allow
more users to enable transparent compression, and some users can
choose from compression ratio and speed for different applications
Usage:
# mount -t btrfs -o compress[=<zlib,lzo>] dev /mnt
or
# mount -t btrfs -o compress-force[=<zlib,lzo>] dev /mnt
"-o compress" without argument is still allowed for compatability.
Compatibility:
If we mount a filesystem with lzo compression, it will not be able be
mounted in old kernels. One reason is, otherwise btrfs will directly
dump compressed data, which sits in inline extent, to user.
Performance:
The test copied a linux source tarball (~400M) from an ext4 partition
to the btrfs partition, and then extracted it.
(time in second)
lzo zlib nocompress
copy: 10.6 21.7 14.9
extract: 70.1 94.4 66.6
(data size in MB)
lzo zlib nocompress
copy: 185.87 108.69 394.49
extract: 193.80 132.36 381.21
Changelog:
v1 -> v2:
- Select LZO_COMPRESS and LZO_DECOMPRESS in btrfs Kconfig.
- Add incompability flag.
- Fix error handling in compress code.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
|
|
Make the code aware of compression type, instead of always assuming
zlib compression.
Also make the zlib workspace function as common code for all
compression types.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: prevent RAID level downgrades when space is low
Btrfs: account for missing devices in RAID allocation profiles
Btrfs: EIO when we fail to read tree roots
Btrfs: fix compiler warnings
Btrfs: Make async snapshot ioctl more generic
Btrfs: pwrite blocked when writing from the mmaped buffer of the same page
Btrfs: Fix a crash when mounting a subvolume
Btrfs: fix sync subvol/snapshot creation
Btrfs: Fix page leak in compressed writeback path
Btrfs: do not BUG if we fail to remove the orphan item for dead snapshots
Btrfs: fixup return code for btrfs_del_orphan_item
Btrfs: do not do fast caching if we are allocating blocks for tree_root
Btrfs: deal with space cache errors better
Btrfs: fix use after free in O_DIRECT
|
|
We should drop dentry before deactivating the superblock, otherwise
we can hit this bug:
BUG: Dentry f349a690{i=100,n=/} still in use (1) [unmount of btrfs loop1]
...
Steps to reproduce the bug:
# mount /dev/loop1 /mnt
# mkdir save
# btrfs subvolume snapshot /mnt save/snap1
# umount /mnt
# mount -o subvol=save/snap1 /dev/loop1 /mnt
(crash)
Reported-by: Michael Niederle <mniederle@gmx.at>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (24 commits)
Btrfs: don't use migrate page without CONFIG_MIGRATION
Btrfs: deal with DIO bios that span more than one ordered extent
Btrfs: setup blank root and fs_info for mount time
Btrfs: fix fiemap
Btrfs - fix race between btrfs_get_sb() and umount
Btrfs: update inode ctime when using links
Btrfs: make sure new inode size is ok in fallocate
Btrfs: fix typo in fallocate to make it honor actual size
Btrfs: avoid NULL pointer deref in try_release_extent_buffer
Btrfs: make btrfs_add_nondir take parent inode as an argument
Btrfs: hold i_mutex when calling btrfs_log_dentry_safe
Btrfs: use dget_parent where we can UPDATED
Btrfs: fix more ESTALE problems with NFS
Btrfs: handle NFS lookups properly
btrfs: make 1-bit signed fileds unsigned
btrfs: Show device attr correctly for symlinks
btrfs: Set file size correctly in file clone
btrfs: Check if dest_offset is block-size aligned before cloning file
Btrfs: handle the space_cache option properly
btrfs: Fix early enospc because 'unused' calculated with wrong sign.
...
|
|
There is a problem with how we use sget, it searches through the list of supers
attached to the fs_type looking for a super with the same fs_devices as what
we're trying to mount. This depends on sb->s_fs_info being filled, but we don't
fill that in until we get to btrfs_fill_super, so we could hit supers on the
fs_type super list that have a null s_fs_info. In order to fix that we need to
go ahead and setup a blank root with a blank fs_info to hold fs_devices, that
way our test will work out right and then we can set s_fs_info in
btrfs_set_super, and then open_ctree will simply use our pre-allocated root and
fs_info when setting everything up. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When mounting a btrfs file system btrfs_test_super() may attempt to
use sb->s_fs_info, the btrfs root, of a super block that is going away
and that has had the btrfs root set to NULL in its ->put_super(). But
if the super block is going away it cannot be an existing super block
so we can return false in this case.
Signed-off-by: Ian Kent <raven@themaw.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When I added the clear_cache option I screwed up and took the break out of
the space_cache case statement, so whenever you mount with space_cache you also
get clear_cache, which does you no good if you say set space_cache in fstab so
it always gets set. This patch adds the break back in properly.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (39 commits)
Btrfs: deal with errors from updating the tree log
Btrfs: allow subvol deletion by unprivileged user with -o user_subvol_rm_allowed
Btrfs: make SNAP_DESTROY async
Btrfs: add SNAP_CREATE_ASYNC ioctl
Btrfs: add START_SYNC, WAIT_SYNC ioctls
Btrfs: async transaction commit
Btrfs: fix deadlock in btrfs_commit_transaction
Btrfs: fix lockdep warning on clone ioctl
Btrfs: fix clone ioctl where range is adjacent to extent
Btrfs: fix delalloc checks in clone ioctl
Btrfs: drop unused variable in block_alloc_rsv
Btrfs: cleanup warnings from gcc 4.6 (nonbugs)
Btrfs: Fix variables set but not read (bugs found by gcc 4.6)
Btrfs: Use ERR_CAST helpers
Btrfs: use memdup_user helpers
Btrfs: fix raid code for removing missing drives
Btrfs: Switch the extent buffer rbtree into a radix tree
Btrfs: restructure try_release_extent_buffer()
Btrfs: use the flusher threads for delalloc throttling
Btrfs: tune the chunk allocation to 5% of the FS as metadata
...
Fix up trivial conflicts in fs/btrfs/super.c and fs/fs-writeback.c, and
remove use of INIT_RCU_HEAD in fs/btrfs/extent_io.c (that init macro was
useless and removed in commit 5e8067adfdba: "rcu head remove init")
|
|
Add a mount option user_subvol_rm_allowed that allows users to delete a
(potentially non-empty!) subvol when they would otherwise we allowed to do
an rmdir(2). We duplicate the may_delete() checks from the core VFS code
to implement identical security checks (minus the directory size check).
We additionally require that the user has write+exec permission on the
subvol root inode.
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
These are all the cases where a variable is set, but not read which are
not bugs as far as I can see, but simply leftovers.
Still needs more review.
Found by gcc 4.6's new warnings
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Use ERR_CAST(x) rather than ERR_PTR(PTR_ERR(x)). The former makes more
clear what is the purpose of the operation, which otherwise looks like a
no-op.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
type T;
T x;
identifier f;
@@
T f (...) { <+...
- ERR_PTR(PTR_ERR(x))
+ x
...+> }
@@
expression x;
@@
- ERR_PTR(PTR_ERR(x))
+ ERR_CAST(x)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/josef/btrfs-work
Conflicts:
fs/btrfs/extent-tree.c
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
If something goes wrong with the free space cache we need a way to make sure
it's not loaded on mount and that it's cleared for everybody. When you pass the
clear_cache option it will make it so all block groups are setup to be cleared,
which keeps them from being loaded and then they will be truncated when the
transaction is committed. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
In order to save free space cache, we need an inode to hold the data, and we
need a special item to point at the right inode for the right block group. So
first, create a special item that will point to the right inode, and the number
of extent entries we will have and the number of bitmaps we will have. We
truncate and pre-allocate space everytime to make sure it's uptodate.
This feature will be turned on as soon as you mount with -o space_cache, however
it is safe to boot into old kernels, they will just generate the cache the old
fashion way. When you boot back into a newer kernel we will notice that we
modified and not the cache and automatically discard the cache.
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
If we failed to find the root subvol id, or the subvol=<name>, we would
deactivate the locked super and close the devices. The problem is at this point
we have gotten the SB all setup, which includes setting super_operations, so
when we'd deactiveate the super, we'd do a close_ctree() which closes the
devices, so we'd end up closing the devices twice. So if you do something like
this
mount /dev/sda1 /mnt/test1
mount /dev/sda1 /mnt/test2 -o subvol=xxx
umount /mnt/test1
it would blow up (if subvol xxx doesn't exist). This patch fixes that problem.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
The new ENOSPC stuff breaks out the raid types which breaks the way we were
reporting df to the system. This fixes it back so that Available is the total
space available to data and used is the actual bytes used by the filesystem.
This means that Available is Total - data used - all of the metadata space.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
|
|
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
|
|
NB: do we want btrfs_wait_ordered_range() on eviction of
inodes with positive i_nlink on subvolume with zero root_refs?
If not, btrfs_evict_inode() can be simplified by unconditionally
bailing out in case of i_nlink > 0 in the very beginning...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: The file argument for fsync() is never null
Btrfs: handle ERR_PTR from posix_acl_from_xattr()
Btrfs: avoid BUG when dropping root and reference in same transaction
Btrfs: prohibit a operation of changing acl's mask when noacl mount option used
Btrfs: should add a permission check for setfacl
Btrfs: btrfs_lookup_dir_item() can return ERR_PTR
Btrfs: btrfs_read_fs_root_no_name() returns ERR_PTRs
Btrfs: unwind after btrfs_start_transaction() errors
Btrfs: btrfs_iget() returns ERR_PTR
Btrfs: handle kzalloc() failure in open_ctree()
Btrfs: handle error returns from btrfs_lookup_dir_item()
Btrfs: Fix BUG_ON for fs converted from extN
Btrfs: Fix null dereference in relocation.c
Btrfs: fix remap_file_pages error
Btrfs: uninitialized data is check_path_shared()
Btrfs: fix fallocate regression
Btrfs: fix loop device on top of btrfs
|
|
btrfs_iget() returns an ERR_PTR() on failure and not null.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
If btrfs_lookup_dir_item() fails, we should can just let the mount fail
with an error.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (27 commits)
Btrfs: add more error checking to btrfs_dirty_inode
Btrfs: allow unaligned DIO
Btrfs: drop verbose enospc printk
Btrfs: Fix block generation verification race
Btrfs: fix preallocation and nodatacow checks in O_DIRECT
Btrfs: avoid ENOSPC errors in btrfs_dirty_inode
Btrfs: move O_DIRECT space reservation to btrfs_direct_IO
Btrfs: rework O_DIRECT enospc handling
Btrfs: use async helpers for DIO write checksumming
Btrfs: don't walk around with task->state != TASK_RUNNING
Btrfs: do aio_write instead of write
Btrfs: add basic DIO read/write support
direct-io: do not merge logically non-contiguous requests
direct-io: add a hook for the fs to provide its own submit_bio function
fs: allow short direct-io reads to be completed via buffered IO
Btrfs: Metadata ENOSPC handling for balance
Btrfs: Pre-allocate space for data relocation
Btrfs: Metadata ENOSPC handling for tree log
Btrfs: Metadata reservation for orphan inodes
Btrfs: Introduce global metadata reservation
...
|
|
This adds:
alias: devname:<name>
to some common kernel modules, which will allow the on-demand loading
of the kernel module when the device node is accessed.
Ideally all these modules would be compiled-in, but distros seems too
much in love with their modularization that we need to cover the common
cases with this new facility. It will allow us to remove a bunch of pretty
useless init scripts and modprobes from init scripts.
The static device node aliases will be carried in the module itself. The
program depmod will extract this information to a file in the module directory:
$ cat /lib/modules/2.6.34-00650-g537b60d-dirty/modules.devname
# Device nodes to trigger on-demand module loading.
microcode cpu/microcode c10:184
fuse fuse c10:229
ppp_generic ppp c108:0
tun net/tun c10:200
dm_mod mapper/control c10:235
Udev will pick up the depmod created file on startup and create all the
static device nodes which the kernel modules specify, so that these modules
get automatically loaded when the device node is accessed:
$ /sbin/udevd --debug
...
static_dev_create_from_modules: mknod '/dev/cpu/microcode' c10:184
static_dev_create_from_modules: mknod '/dev/fuse' c10:229
static_dev_create_from_modules: mknod '/dev/ppp' c108:0
static_dev_create_from_modules: mknod '/dev/net/tun' c10:200
static_dev_create_from_modules: mknod '/dev/mapper/control' c10:235
udev_rules_apply_static_dev_perms: chmod '/dev/net/tun' 0666
udev_rules_apply_static_dev_perms: chmod '/dev/fuse' 0666
A few device nodes are switched to statically allocated numbers, to allow
the static nodes to work. This might also useful for systems which still run
a plain static /dev, which is completely unsafe to use with any dynamic minor
numbers.
Note:
The devname aliases must be limited to the *common* and *single*instance*
device nodes, like the misc devices, and never be used for conceptually limited
systems like the loop devices, which should rather get fixed properly and get a
control node for losetup to talk to, instead of creating a random number of
device nodes in advance, regardless if they are ever used.
This facility is to hide the mess distros are creating with too modualized
kernels, and just to hide that these modules are not compiled-in, and not to
paper-over broken concepts. Thanks! :)
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: David S. Miller <davem@davemloft.net>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Alasdair G Kergon <agk@redhat.com>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Cc: Ian Kent <raven@themaw.net>
Signed-Off-By: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
reserve metadata space for handling orphan inodes
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Besides simplify the code, this change makes sure all metadata
reservation for normal metadata operations are released after
committing transaction.
Changes since V1:
Add code that check if unlink and rmdir will free space.
Add ENOSPC handling for clone ioctl.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The size of reserved space is stored in space_info. If block groups
of different raid types are linked to separate space_info, changing
allocation profile will corrupt reserved space accounting.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: add check for changed leaves in setup_leaf_for_split
Btrfs: create snapshot references in same commit as snapshot
Btrfs: fix small race with delalloc flushing waitqueue's
Btrfs: use add_to_page_cache_lru, use __page_cache_alloc
Btrfs: fix chunk allocate size calculation
Btrfs: kill max_extent mount option
Btrfs: fail to mount if we have problems reading the block groups
Btrfs: check btrfs_get_extent return for IS_ERR()
Btrfs: handle kmalloc() failure in inode lookup ioctl
Btrfs: dereferencing freed memory
Btrfs: Simplify num_stripes's calculation logical for __btrfs_alloc_chunk()
Btrfs: Add error handle for btrfs_search_slot() in btrfs_read_chunk_tree()
Btrfs: Remove unnecessary finish_wait() in wait_current_trans()
Btrfs: add NULL check for do_walk_down()
Btrfs: remove duplicate include in ioctl.c
Fix trivial conflict in fs/btrfs/compression.c due to slab.h include
cleanups.
|
|
As Yan pointed out, theres not much reason for all this complicated math to
account for file extents being split up into max_extent chunks, since they are
likely to all end up in the same leaf anyway. Since there isn't much reason to
use max_extent, just remove the option altogether so we have one less thing we
need to test.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
Use memparse() instead of its own private implementation.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The way we report df usage is way confusing for everybody, including some other
utilities (bacula for one). So this patch makes df a little bit more
understandable. First we make used actually count the total amount of used
space in all space info's. This will give us a real view of how much disk space
is in use. Second, for blocks available, only count data space. This makes
things like bacula work because it says 0 when you can no longer write anymore
data to the disk. I think this is a nice compromise, since you will end up with
something like the following
[root@alpha ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup-lv_root
148G 30G 111G 21% /
/dev/sda1 194M 116M 68M 64% /boot
tmpfs 985M 12K 985M 1% /dev/shm
/dev/mapper/VolGroup-LogVol02
145G 140G 0 100% /mnt/btrfs-test
Compare this with btrfsctl -i output
[root@alpha btrfs-progs-unstable]# ./btrfsctl -i /mnt/btrfs-test/
Metadata, DUP: total=4.62GB, used=2.46GB
System, DUP: total=8.00MB, used=24.00KB
Data: total=134.80GB, used=134.80GB
Metadata: total=8.00MB, used=0.00
System: total=4.00MB, used=0.00
operation complete
This way we show that there is no more data space to be used, but we have
another 5GB of space left for metadata. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Since theres not a good way to make sure the user sees the original default root
tree id, and not to mention it's 5 so is way different than any other volume,
just make subvol=0 mount the original default root. This makes it a bit easier
for users to handle in the long run. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|