/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Chris Wilson * */ #define _GNU_SOURCE #include "igt.h" #include #include #include #include #include #include #include #include #include #include #include "drm.h" #define OBJECT_SIZE 1024*1024 #define CHUNK_SIZE 32 #define COPY_BLT_CMD (2<<29|0x53<<22|0x6) #define BLT_WRITE_ALPHA (1<<21) #define BLT_WRITE_RGB (1<<20) #define BLT_WRITE_ARGB (BLT_WRITE_ALPHA | BLT_WRITE_RGB) #define LOCAL_I915_EXEC_HANDLE_LUT (1<<12) IGT_TEST_DESCRIPTION("Test of streaming writes into active GPU sources"); static bool __gem_execbuf(int fd, struct drm_i915_gem_execbuffer2 *eb) { return drmIoctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, eb) == 0; } #define SRC 0 #define DST 1 #define BATCH 2 #define src exec[SRC].handle #define src_offset exec[SRC].offset #define dst exec[DST].handle #define dst_offset exec[DST].offset static void test_streaming(int fd, int mode, int sync) { const int has_64bit_reloc = intel_gen(intel_get_drm_devid(fd)) >= 8; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 exec[3]; struct drm_i915_gem_relocation_entry reloc[128]; uint32_t tmp[] = { MI_BATCH_BUFFER_END }; uint64_t __src_offset, __dst_offset; uint32_t *s, *d; uint32_t offset; struct { uint32_t handle; uint64_t offset; } *batch; int i, n; memset(exec, 0, sizeof(exec)); exec[SRC].handle = gem_create(fd, OBJECT_SIZE); exec[DST].handle = gem_create(fd, OBJECT_SIZE); switch (mode) { case 0: /* cpu/snoop */ gem_set_caching(fd, src, I915_CACHING_CACHED); s = __gem_mmap__cpu(fd, src, 0, OBJECT_SIZE, PROT_READ | PROT_WRITE); igt_assert(s); break; case 1: /* gtt */ s = __gem_mmap__gtt(fd, src, OBJECT_SIZE, PROT_READ | PROT_WRITE); igt_assert(s); break; case 2: /* wc */ s = __gem_mmap__wc(fd, src, 0, OBJECT_SIZE, PROT_READ | PROT_WRITE); igt_assert(s); break; } *s = 0; /* fault the object into the mappable range first (for GTT) */ d = __gem_mmap__cpu(fd, dst, 0, OBJECT_SIZE, PROT_READ); igt_assert(d); gem_write(fd, dst, 0, tmp, sizeof(tmp)); memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = (uintptr_t)exec; execbuf.buffer_count = 2; execbuf.flags = LOCAL_I915_EXEC_HANDLE_LUT; if (!__gem_execbuf(fd, &execbuf)) { execbuf.flags = 0; igt_require(__gem_execbuf(fd, &execbuf)); } /* We assume that the active objects are fixed to avoid relocations */ __src_offset = src_offset; __dst_offset = dst_offset; memset(reloc, 0, sizeof(reloc)); for (i = 0; i < 64; i++) { reloc[2*i+0].offset = 64*i + 4 * sizeof(uint32_t); reloc[2*i+0].delta = 0; reloc[2*i+0].target_handle = execbuf.flags & LOCAL_I915_EXEC_HANDLE_LUT ? DST : dst; reloc[2*i+0].presumed_offset = dst_offset; reloc[2*i+0].read_domains = I915_GEM_DOMAIN_RENDER; reloc[2*i+0].write_domain = I915_GEM_DOMAIN_RENDER; reloc[2*i+1].offset = 64*i + 7 * sizeof(uint32_t); if (has_64bit_reloc) reloc[2*i+1].offset += sizeof(uint32_t); reloc[2*i+1].delta = 0; reloc[2*i+1].target_handle = execbuf.flags & LOCAL_I915_EXEC_HANDLE_LUT ? SRC : src; reloc[2*i+1].presumed_offset = src_offset; reloc[2*i+1].read_domains = I915_GEM_DOMAIN_RENDER; reloc[2*i+1].write_domain = 0; } igt_assert(__gem_execbuf(fd, &execbuf)); igt_assert_eq_u64(__src_offset, src_offset); igt_assert_eq_u64(__dst_offset, dst_offset); exec[DST].flags = EXEC_OBJECT_WRITE; exec[BATCH].relocation_count = 2; execbuf.buffer_count = 3; execbuf.flags |= I915_EXEC_NO_RELOC; if (gem_has_blt(fd)) execbuf.flags |= I915_EXEC_BLT; batch = malloc(sizeof(*batch) * (OBJECT_SIZE / CHUNK_SIZE / 64)); for (i = n = 0; i < OBJECT_SIZE / CHUNK_SIZE / 64; i++) { uint32_t *base; batch[i].handle = gem_create(fd, 4096); batch[i].offset = 0; base = __gem_mmap__cpu(fd, batch[i].handle, 0, 4096, PROT_WRITE); igt_assert(base); for (int j = 0; j < 64; j++) { unsigned x = (n * CHUNK_SIZE) % 4096 >> 2; unsigned y = (n * CHUNK_SIZE) / 4096; uint32_t *b = base + 16 * j; int k = 0; b[k] = COPY_BLT_CMD | BLT_WRITE_ARGB; if (has_64bit_reloc) b[k] += 2; k++; b[k++] = 0xcc << 16 | 1 << 25 | 1 << 24 | 4096; b[k++] = (y << 16) | x; b[k++] = ((y+1) << 16) | (x + (CHUNK_SIZE >> 2)); b[k++] = dst_offset; if (has_64bit_reloc) b[k++] = dst_offset >> 32; b[k++] = (y << 16) | x; b[k++] = 4096; b[k++] = src_offset; if (has_64bit_reloc) b[k++] = src_offset >> 32; b[k++] = MI_BATCH_BUFFER_END; n++; } munmap(base, 4096); } for (int pass = 0; pass < 256; pass++) { int domain = mode ? I915_GEM_DOMAIN_GTT : I915_GEM_DOMAIN_CPU; gem_set_domain(fd, src, domain, domain); if (pass == 0) { for (i = 0; i < OBJECT_SIZE/4; i++) s[i] = i; } /* Now copy from the src to the dst in 32byte chunks */ for (offset = 0; offset < OBJECT_SIZE; offset += CHUNK_SIZE) { int b; if (pass) { if (sync) gem_set_domain(fd, src, domain, domain); for (i = 0; i < CHUNK_SIZE/4; i++) s[offset/4 + i] = (OBJECT_SIZE*pass + offset)/4 + i; } igt_assert(exec[DST].flags & EXEC_OBJECT_WRITE); b = offset / CHUNK_SIZE / 64; n = offset / CHUNK_SIZE % 64; exec[BATCH].relocs_ptr = (uintptr_t)(reloc + 2*n); exec[BATCH].handle = batch[b].handle; exec[BATCH].offset = batch[b].offset; execbuf.batch_start_offset = 64*n; gem_execbuf(fd, &execbuf); igt_assert_eq_u64(__src_offset, src_offset); igt_assert_eq_u64(__dst_offset, dst_offset); batch[b].offset = exec[BATCH].offset; } gem_set_domain(fd, dst, I915_GEM_DOMAIN_CPU, 0); for (offset = 0; offset < OBJECT_SIZE/4; offset++) igt_assert_eq(pass*OBJECT_SIZE/4 + offset, d[offset]); } for (i = 0; i < OBJECT_SIZE / CHUNK_SIZE / 64; i++) gem_close(fd, batch[i].handle); free(batch); munmap(s, OBJECT_SIZE); gem_close(fd, src); munmap(d, OBJECT_SIZE); gem_close(fd, dst); } static void test_batch(int fd, int mode, int reverse) { const int has_64bit_reloc = intel_gen(intel_get_drm_devid(fd)) >= 8; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 exec[3]; struct drm_i915_gem_relocation_entry reloc[2]; uint32_t tmp[] = { MI_BATCH_BUFFER_END }; uint64_t __src_offset, __dst_offset; uint64_t batch_size; uint32_t *s, *d; uint32_t *base; uint32_t offset; memset(exec, 0, sizeof(exec)); exec[DST].handle = gem_create(fd, OBJECT_SIZE); exec[SRC].handle = gem_create(fd, OBJECT_SIZE); s = __gem_mmap__wc(fd, src, 0, OBJECT_SIZE, PROT_READ | PROT_WRITE); igt_assert(s); d = __gem_mmap__cpu(fd, dst, 0, OBJECT_SIZE, PROT_READ); igt_assert(d); memset(reloc, 0, sizeof(reloc)); reloc[0].offset = 4 * sizeof(uint32_t); reloc[0].delta = 0; reloc[0].target_handle = execbuf.flags & LOCAL_I915_EXEC_HANDLE_LUT ? DST : dst; reloc[0].presumed_offset = dst_offset; reloc[0].read_domains = I915_GEM_DOMAIN_RENDER; reloc[0].write_domain = I915_GEM_DOMAIN_RENDER; reloc[1].offset = 7 * sizeof(uint32_t); if (has_64bit_reloc) reloc[1].offset += sizeof(uint32_t); reloc[1].delta = 0; reloc[1].target_handle = execbuf.flags & LOCAL_I915_EXEC_HANDLE_LUT ? SRC : src; reloc[1].presumed_offset = src_offset; reloc[1].read_domains = I915_GEM_DOMAIN_RENDER; reloc[1].write_domain = 0; batch_size = ALIGN(OBJECT_SIZE / CHUNK_SIZE * 128, 4096); exec[BATCH].relocs_ptr = (uintptr_t)reloc; exec[BATCH].relocation_count = 2; exec[BATCH].handle = gem_create(fd, batch_size); switch (mode) { case 0: /* cpu/snoop */ igt_require(gem_has_llc(fd)); base = __gem_mmap__cpu(fd, exec[BATCH].handle, 0, batch_size, PROT_READ | PROT_WRITE); igt_assert(base); break; case 1: /* gtt */ base = __gem_mmap__gtt(fd, exec[BATCH].handle, batch_size, PROT_READ | PROT_WRITE); igt_assert(base); break; case 2: /* wc */ base = __gem_mmap__wc(fd, exec[BATCH].handle, 0, batch_size, PROT_READ | PROT_WRITE); igt_assert(base); break; } *base = 0; /* fault the object into the mappable range first */ gem_write(fd, exec[BATCH].handle, 0, tmp, sizeof(tmp)); memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = (uintptr_t)exec; execbuf.buffer_count = 3; execbuf.flags = LOCAL_I915_EXEC_HANDLE_LUT; if (gem_has_blt(fd)) execbuf.flags |= I915_EXEC_BLT; if (!__gem_execbuf(fd, &execbuf)) { execbuf.flags &= ~LOCAL_I915_EXEC_HANDLE_LUT; gem_execbuf(fd, &execbuf); } execbuf.flags |= I915_EXEC_NO_RELOC; exec[DST].flags = EXEC_OBJECT_WRITE; /* We assume that the active objects are fixed to avoid relocations */ exec[BATCH].relocation_count = 0; __src_offset = src_offset; __dst_offset = dst_offset; offset = mode ? I915_GEM_DOMAIN_GTT : I915_GEM_DOMAIN_CPU; gem_set_domain(fd, exec[BATCH].handle, offset, offset); for (int pass = 0; pass < 256; pass++) { gem_set_domain(fd, src, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); for (offset = 0; offset < OBJECT_SIZE/4; offset++) s[offset] = OBJECT_SIZE*pass/4 + offset; /* Now copy from the src to the dst in 32byte chunks */ for (offset = 0; offset < OBJECT_SIZE / CHUNK_SIZE; offset++) { unsigned x = (offset * CHUNK_SIZE) % 4096 >> 2; unsigned y = (offset * CHUNK_SIZE) / 4096; int k; execbuf.batch_start_offset = 128 * offset; execbuf.batch_start_offset += 8 * (pass & 7); igt_assert(execbuf.batch_start_offset <= batch_size - 64); if (reverse) execbuf.batch_start_offset = batch_size - execbuf.batch_start_offset - 64; igt_assert(execbuf.batch_start_offset <= batch_size - 64); k = execbuf.batch_start_offset / 4; base[k] = COPY_BLT_CMD | BLT_WRITE_ARGB; if (has_64bit_reloc) base[k] += 2; k++; base[k++] = 0xcc << 16 | 1 << 25 | 1 << 24 | 4096; base[k++] = (y << 16) | x; base[k++] = ((y+1) << 16) | (x + (CHUNK_SIZE >> 2)); base[k++] = dst_offset; if (has_64bit_reloc) base[k++] = dst_offset >> 32; base[k++] = (y << 16) | x; base[k++] = 4096; base[k++] = src_offset; if (has_64bit_reloc) base[k++] = src_offset >> 32; base[k++] = MI_BATCH_BUFFER_END; igt_assert(exec[DST].flags & EXEC_OBJECT_WRITE); gem_execbuf(fd, &execbuf); igt_assert_eq_u64(__src_offset, src_offset); igt_assert_eq_u64(__dst_offset, dst_offset); } gem_set_domain(fd, dst, I915_GEM_DOMAIN_CPU, 0); for (offset = 0; offset < OBJECT_SIZE/4; offset++) igt_assert_eq(pass*OBJECT_SIZE/4 + offset, d[offset]); } munmap(base, OBJECT_SIZE / CHUNK_SIZE * 128); gem_close(fd, exec[BATCH].handle); munmap(s, OBJECT_SIZE); gem_close(fd, src); munmap(d, OBJECT_SIZE); gem_close(fd, dst); } igt_main { int fd, sync; igt_fixture fd = drm_open_driver(DRIVER_INTEL); for (sync = 2; sync--; ) { igt_subtest_f("cpu%s", sync ? "-sync":"") test_streaming(fd, 0, sync); igt_subtest_f("gtt%s", sync ? "-sync":"") test_streaming(fd, 1, sync); igt_subtest_f("wc%s", sync ? "-sync":"") test_streaming(fd, 2, sync); } igt_subtest("batch-cpu") test_batch(fd, 0, 0); igt_subtest("batch-gtt") test_batch(fd, 1, 0); igt_subtest("batch-wc") test_batch(fd, 2, 0); igt_subtest("batch-reverse-cpu") test_batch(fd, 0, 1); igt_subtest("batch-reverse-gtt") test_batch(fd, 1, 1); igt_subtest("batch-reverse-wc") test_batch(fd, 2, 1); igt_fixture close(fd); }