[require] GLSL >= 1.10 [vertex shader] #version 130 #extension GL_ARB_draw_instanced : enable #define QF_GLSL_VERSION 130 #define VERTEX_SHADER #if !defined(myhalf) //#if !defined(__GLSL_CG_DATA_TYPES) #define myhalf float #define myhalf2 vec2 #define myhalf3 vec3 #define myhalf4 vec4 //#else //#define myhalf half //#define myhalf2 half2 //#define myhalf3 half3 //#define myhalf4 half4 //#endif #endif #if QF_GLSL_VERSION >= 130 precision highp float; # ifdef VERTEX_SHADER out myhalf4 qf_FrontColor; # define qf_varying out # define qf_attribute in # endif # ifdef FRAGMENT_SHADER in myhalf4 qf_FrontColor; out myhalf4 qf_FragColor; # define qf_varying in # define qf_attribute in # endif # define qf_texture texture # define qf_textureCube texture # define qf_textureLod textureLod # define qf_textureOffset(a,b,c,d) textureOffset(a,b,ivec2(c,d)) # define qf_shadow texture #else # ifdef VERTEX_SHADER # define qf_FrontColor gl_FrontColor # define qf_varying varying # define qf_attribute attribute # endif # ifdef FRAGMENT_SHADER # define qf_FrontColor gl_Color # define qf_FragColor gl_FragColor # define qf_varying varying # define qf_attribute attribute # endif # define qf_texture texture2D # define qf_textureLod texture2DLod # define qf_textureCube textureCube # define qf_textureOffset(a,b,c,d) texture2DOffset(a,b,ivec2(c,d)) # define qf_shadow shadow2D #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_TWOPI #define M_TWOPI 6.28318530717958647692 #endif #ifndef MAX_UNIFORM_BONES #define MAX_UNIFORM_BONES 100 #endif #ifndef MAX_UNIFORM_INSTANCES #define MAX_UNIFORM_INSTANCES 40 #endif uniform vec3 u_QF_ViewOrigin; uniform mat3 u_QF_ViewAxis; uniform float u_QF_MirrorSide; uniform vec3 u_QF_EntityOrigin; uniform float u_QF_ShaderTime; #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_TWOPI #define M_TWOPI 6.28318530717958647692 #endif #ifndef WAVE_SIN float QF_WaveFunc_Sin(float x) { x -= floor(x); return sin(x * M_TWOPI); } float QF_WaveFunc_Triangle(float x) { x -= floor(x); return step(x, 0.25) * x * 4.0 + (2.0 - 4.0 * step(0.25, x) * step(x, 0.75) * x) + ((step(0.75, x) * x - 0.75) * 4.0 - 1.0); } float QF_WaveFunc_Square(float x) { x -= floor(x); return step(x, 0.5) * 2.0 - 1.0; } float QF_WaveFunc_Sawtooth(float x) { x -= floor(x); return x; } float QF_QF_WaveFunc_InverseSawtooth(float x) { x -= floor(x); return 1.0 - x; } #define WAVE_SIN(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Sin((phase)+(time)*(freq)))) #define WAVE_TRIANGLE(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Triangle((phase)+(time)*(freq)))) #define WAVE_SQUARE(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Square((phase)+(time)*(freq)))) #define WAVE_SAWTOOTH(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Sawtooth((phase)+(time)*(freq)))) #define WAVE_INVERSESAWTOOTH(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_QF_WaveFunc_InverseSawtooth((phase)+(time)*(freq)))) #endif #ifdef VERTEX_SHADER attribute vec4 a_BonesIndices; attribute vec4 a_BonesWeights; uniform vec4 u_QF_DualQuats[MAX_UNIFORM_BONES*2]; #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } // use defines to overload the transform function #define DUAL_QUAT_TRANSFORM_NORMALS #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } #define DUAL_QUAT_TRANSFORM_TANGENT #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } #endif #ifdef VERTEX_SHADER #ifdef APPLY_INSTANCED_ATTRIB_TRASNFORMS attribute vec4 a_InstanceQuat; attribute vec4 a_InstancePosAndScale; #elif defined(GL_ARB_draw_instanced) uniform vec4 u_QF_InstancePoints[MAX_UNIFORM_INSTANCES*2]; #define a_InstanceQuat u_QF_InstancePoints[gl_InstanceID*2] #define a_InstancePosAndScale u_QF_InstancePoints[gl_InstanceID*2+1] #else uniform vec4 u_QF_InstancePoints[2]; #define a_InstanceQuat u_QF_InstancePoints[0] #define a_InstancePosAndScale u_QF_InstancePoints[1] #endif void QF_InstancedTransform(inout vec4 Position, inout vec3 Normal) { Position.xyz = (cross(a_InstanceQuat.xyz, cross(a_InstanceQuat.xyz, Position.xyz) + Position.xyz*a_InstanceQuat.w)*2.0 + Position.xyz) * a_InstancePosAndScale.w + a_InstancePosAndScale.xyz; Normal = cross(a_InstanceQuat.xyz, cross(a_InstanceQuat.xyz, Normal) + Normal*a_InstanceQuat.w)*2.0 + Normal; } #endif #define QF_LatLong2Norm(ll) vec3(cos((ll).y) * sin((ll).x), sin((ll).y) * sin((ll).x), cos((ll).x)) #define APPLY_RGB_CONST #define APPLY_ALPHA_CONST #define APPLY_DUDV #define APPLY_DISTORTION_ALPHA #define APPLY_REFRACTION #define DRAWFLAT_NORMAL_STEP 0.5 // floor or ceiling if < abs(normal.z) uniform mat4 u_ModelViewMatrix; uniform mat4 u_ModelViewProjectionMatrix; uniform float u_ShaderTime; uniform vec3 u_ViewOrigin; uniform mat3 u_ViewAxis; uniform vec3 u_EntityDist; uniform vec3 u_EntityOrigin; uniform myhalf4 u_EntityColor; uniform myhalf4 u_ConstColor; uniform myhalf4 u_RGBGenFuncArgs, u_AlphaGenFuncArgs; uniform myhalf3 u_LightstyleColor[4]; // lightstyle colors uniform myhalf3 u_LightAmbient; uniform myhalf3 u_LightDiffuse; uniform vec3 u_LightDir; uniform myhalf2 u_BlendMix; uniform vec2 u_TextureMatrix[3]; #define TextureMatrix2x3Mul(m2x3,tc) vec2(dot((m2x3)[0],(tc)) + (m2x3)[2][0], dot((m2x3)[1],(tc)) + (m2x3)[2][1]) uniform float u_MirrorSide; uniform float u_ZNear, u_ZFar; uniform ivec4 u_Viewport; // x, y, width, height uniform vec4 u_TextureParams; uniform myhalf u_SoftParticlesScale; myhalf3 Greyscale(myhalf3 color) { return myhalf3(dot(color, myhalf3(0.299, 0.587, 0.114))); } qf_varying vec4 v_TexCoord; qf_varying vec4 v_ProjVector; #ifdef APPLY_EYEDOT qf_varying vec3 v_EyeVector; #endif #ifdef VERTEX_SHADER #ifdef VERTEX_SHADER qf_attribute vec4 a_Position; qf_attribute vec4 a_SVector; qf_attribute vec4 a_Normal; qf_attribute vec4 a_Color; qf_attribute vec2 a_TexCoord; qf_attribute vec2 a_LightmapCoord0, a_LightmapCoord1, a_LightmapCoord2, a_LightmapCoord3; #endif void TransformVerts(inout vec4 Position, inout vec3 Normal, inout vec2 TexCoord) { #ifdef NUM_BONE_INFLUENCES QF_VertexDualQuatsTransform(NUM_BONE_INFLUENCES, Position, Normal); #endif #ifdef APPLY_DEFORMVERTS QF_DeformVerts(Position, Normal, TexCoord); #endif #ifdef APPLY_INSTANCED_TRANSFORMS QF_InstancedTransform(Position, Normal); #endif } void TransformVerts(inout vec4 Position, inout vec3 Normal, inout vec3 Tangent, inout vec2 TexCoord) { #ifdef NUM_BONE_INFLUENCES QF_VertexDualQuatsTransform(NUM_BONE_INFLUENCES, Position, Normal, Tangent); #endif #ifdef APPLY_DEFORMVERTS QF_DeformVerts(Position, Normal, TexCoord); #endif #ifdef APPLY_INSTANCED_TRANSFORMS QF_InstancedTransform(Position, Normal); #endif } myhalf4 VertexRGBGen(in vec4 Position, in vec3 Normal, in myhalf4 VertexColor) { #if defined(APPLY_RGB_DISTANCERAMP) || defined(APPLY_ALPHA_DISTANCERAMP) #define DISTANCERAMP(x1,x2,y1,y2) ((y2 - y1) / (x2 - x1) * (clamp(myhalf(dot(u_EntityDist - Position.xyz, Normal)),0.0,x2) - x1) + y1) #endif #if defined(APPLY_RGB_CONST) && defined(APPLY_ALPHA_CONST) myhalf4 Color = u_ConstColor; #else myhalf4 Color = myhalf4(1.0); #if defined(APPLY_RGB_CONST) Color.rgb = u_ConstColor.rgb; #elif defined(APPLY_RGB_VERTEX) Color.rgb = VertexColor.rgb; #elif defined(APPLY_RGB_ONE_MINUS_VERTEX) Color.rgb = myhalf3(1.0) - VertexColor.rgb; #elif defined(APPLY_RGB_GEN_DIFFUSELIGHT) Color.rgb = myhalf3(u_LightAmbient + max(dot(u_LightDir, Normal), 0.0) * u_LightDiffuse); #endif #if defined(APPLY_ALPHA_CONST) Color.a = u_ConstColor.a; #elif defined(APPLY_ALPHA_VERTEX) Color.a = VertexColor.a; #elif defined(APPLY_ALPHA_ONE_MINUS_VERTEX) Color.a = 1.0 - VertexColor.a; #endif #endif #ifdef APPLY_RGB_DISTANCERAMP Color.rgb *= DISTANCERAMP(u_RGBGenFuncArgs[2], u_RGBGenFuncArgs[3], u_RGBGenFuncArgs[0], u_RGBGenFuncArgs[1]); #endif #ifdef APPLY_ALPHA_DISTANCERAMP Color.a *= DISTANCERAMP(u_AlphaGenFuncArgs[2], u_AlphaGenFuncArgs[3], u_AlphaGenFuncArgs[0], u_AlphaGenFuncArgs[1]); #endif return Color; #if defined(APPLY_RGB_DISTANCERAMP) || defined(APPLY_ALPHA_DISTANCERAMP) #undef DISTANCERAMP #endif } #ifdef APPLY_EYEDOT uniform float u_FrontPlane; #endif void main(void) { vec4 Position = a_Position; vec3 Normal = a_Normal.xyz; vec2 TexCoord = a_TexCoord; vec3 Tangent = a_SVector.xyz; float TangentDir = a_SVector.w; myhalf4 inColor = myhalf4(a_Color); TransformVerts(Position, Normal, TexCoord); qf_FrontColor = vec4(VertexRGBGen(Position, Normal, inColor)); v_TexCoord.st = TextureMatrix2x3Mul(u_TextureMatrix, TexCoord); vec2 textureMatrix3_[3]; textureMatrix3_[0] = u_TextureMatrix[0]; textureMatrix3_[1] = u_TextureMatrix[1]; textureMatrix3_[2] = -u_TextureMatrix[2]; v_TexCoord.pq = TextureMatrix2x3Mul(textureMatrix3_, TexCoord); #ifdef APPLY_EYEDOT mat3 v_StrMatrix; v_StrMatrix[0] = Tangent; v_StrMatrix[2] = Normal; v_StrMatrix[1] = TangentDir * cross(Normal, Tangent); vec3 EyeVectorWorld = (u_ViewOrigin - Position.xyz) * u_FrontPlane; v_EyeVector = EyeVectorWorld * v_StrMatrix; #endif gl_Position = u_ModelViewProjectionMatrix * Position; v_ProjVector = gl_Position; } #endif // VERTEX_SHADER #ifdef FRAGMENT_SHADER // Fragment shader #ifdef APPLY_DUDV uniform sampler2D u_DuDvMapTexture; #endif #ifdef APPLY_EYEDOT uniform sampler2D u_NormalmapTexture; #endif uniform sampler2D u_ReflectionTexture; uniform sampler2D u_RefractionTexture; void main(void) { myhalf3 color; #ifdef APPLY_DUDV vec3 displacement = vec3(qf_texture(u_DuDvMapTexture, vec2(v_TexCoord.pq) * vec2(0.25))); vec2 coord = vec2(v_TexCoord.st) + vec2(displacement) * vec2 (0.2); vec3 fdist = vec3 (normalize(vec3(qf_texture(u_DuDvMapTexture, coord)) - vec3 (0.5))) * vec3(0.005); #else vec3 fdist = vec3(0.0); #endif // get projective texcoords float scale = float(1.0 / float(v_ProjVector.w)); float inv2NW = u_TextureParams.z * 0.5; // .z - inverse width float inv2NH = u_TextureParams.w * 0.5; // .w - inverse height vec2 projCoord = (vec2(v_ProjVector.xy) * scale + vec2 (1.0)) * vec2 (0.5) + vec2(fdist.xy); projCoord.s = float (clamp (float(projCoord.s), inv2NW, 1.0 - inv2NW)); projCoord.t = float (clamp (float(projCoord.t), inv2NH, 1.0 - inv2NH)); myhalf3 refr = myhalf3(0.0); myhalf3 refl = myhalf3(0.0); #ifdef APPLY_EYEDOT // calculate dot product between the surface normal and eye vector // great for simulating qf_varying water translucency based on the view angle myhalf3 surfaceNormal = normalize(myhalf3(qf_texture(u_NormalmapTexture, coord)) - myhalf3 (0.5)); vec3 eyeNormal = normalize(myhalf3(v_EyeVector)); float refrdot = float(dot(surfaceNormal, eyeNormal)); //refrdot = float (clamp (refrdot, 0.0, 1.0)); float refldot = 1.0 - refrdot; // get refraction and reflection #ifdef APPLY_REFRACTION refr = (myhalf3(qf_texture(u_RefractionTexture, projCoord))) * refrdot; #endif #ifdef APPLY_REFLECTION refl = (myhalf3(qf_texture(u_ReflectionTexture, projCoord))) * refldot; #endif #else #ifdef APPLY_REFRACTION refr = (myhalf3(qf_texture(u_RefractionTexture, projCoord))); #endif #ifdef APPLY_REFLECTION refl = (myhalf3(qf_texture(u_ReflectionTexture, projCoord))); #endif #endif // APPLY_EYEDOT // add reflection and refraction #ifdef APPLY_DISTORTION_ALPHA color = myhalf3(qf_FrontColor.rgb) + myhalf3(mix (refr, refl, myhalf(qf_FrontColor.a))); #else color = myhalf3(qf_FrontColor.rgb) + refr + refl; #endif #ifdef APPLY_GREYSCALE qf_FragColor = vec4(vec3(Greyscale(color)),1.0); #else qf_FragColor = vec4(vec3(color),1.0); #endif } #endif // FRAGMENT_SHADER [fragment shader] #version 130 #define QF_GLSL_VERSION 130 #define FRAGMENT_SHADER #if !defined(myhalf) //#if !defined(__GLSL_CG_DATA_TYPES) #define myhalf float #define myhalf2 vec2 #define myhalf3 vec3 #define myhalf4 vec4 //#else //#define myhalf half //#define myhalf2 half2 //#define myhalf3 half3 //#define myhalf4 half4 //#endif #endif #if QF_GLSL_VERSION >= 130 precision highp float; # ifdef VERTEX_SHADER out myhalf4 qf_FrontColor; # define qf_varying out # define qf_attribute in # endif # ifdef FRAGMENT_SHADER in myhalf4 qf_FrontColor; out myhalf4 qf_FragColor; # define qf_varying in # define qf_attribute in # endif # define qf_texture texture # define qf_textureCube texture # define qf_textureLod textureLod # define qf_textureOffset(a,b,c,d) textureOffset(a,b,ivec2(c,d)) # define qf_shadow texture #else # ifdef VERTEX_SHADER # define qf_FrontColor gl_FrontColor # define qf_varying varying # define qf_attribute attribute # endif # ifdef FRAGMENT_SHADER # define qf_FrontColor gl_Color # define qf_FragColor gl_FragColor # define qf_varying varying # define qf_attribute attribute # endif # define qf_texture texture2D # define qf_textureLod texture2DLod # define qf_textureCube textureCube # define qf_textureOffset(a,b,c,d) texture2DOffset(a,b,ivec2(c,d)) # define qf_shadow shadow2D #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_TWOPI #define M_TWOPI 6.28318530717958647692 #endif #ifndef MAX_UNIFORM_BONES #define MAX_UNIFORM_BONES 100 #endif #ifndef MAX_UNIFORM_INSTANCES #define MAX_UNIFORM_INSTANCES 40 #endif uniform vec3 u_QF_ViewOrigin; uniform mat3 u_QF_ViewAxis; uniform float u_QF_MirrorSide; uniform vec3 u_QF_EntityOrigin; uniform float u_QF_ShaderTime; #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_TWOPI #define M_TWOPI 6.28318530717958647692 #endif #ifndef WAVE_SIN float QF_WaveFunc_Sin(float x) { x -= floor(x); return sin(x * M_TWOPI); } float QF_WaveFunc_Triangle(float x) { x -= floor(x); return step(x, 0.25) * x * 4.0 + (2.0 - 4.0 * step(0.25, x) * step(x, 0.75) * x) + ((step(0.75, x) * x - 0.75) * 4.0 - 1.0); } float QF_WaveFunc_Square(float x) { x -= floor(x); return step(x, 0.5) * 2.0 - 1.0; } float QF_WaveFunc_Sawtooth(float x) { x -= floor(x); return x; } float QF_QF_WaveFunc_InverseSawtooth(float x) { x -= floor(x); return 1.0 - x; } #define WAVE_SIN(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Sin((phase)+(time)*(freq)))) #define WAVE_TRIANGLE(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Triangle((phase)+(time)*(freq)))) #define WAVE_SQUARE(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Square((phase)+(time)*(freq)))) #define WAVE_SAWTOOTH(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Sawtooth((phase)+(time)*(freq)))) #define WAVE_INVERSESAWTOOTH(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_QF_WaveFunc_InverseSawtooth((phase)+(time)*(freq)))) #endif #ifdef VERTEX_SHADER attribute vec4 a_BonesIndices; attribute vec4 a_BonesWeights; uniform vec4 u_QF_DualQuats[MAX_UNIFORM_BONES*2]; #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } // use defines to overload the transform function #define DUAL_QUAT_TRANSFORM_NORMALS #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } #define DUAL_QUAT_TRANSFORM_TANGENT #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } #endif #ifdef VERTEX_SHADER #ifdef APPLY_INSTANCED_ATTRIB_TRASNFORMS attribute vec4 a_InstanceQuat; attribute vec4 a_InstancePosAndScale; #elif defined(GL_ARB_draw_instanced) uniform vec4 u_QF_InstancePoints[MAX_UNIFORM_INSTANCES*2]; #define a_InstanceQuat u_QF_InstancePoints[gl_InstanceID*2] #define a_InstancePosAndScale u_QF_InstancePoints[gl_InstanceID*2+1] #else uniform vec4 u_QF_InstancePoints[2]; #define a_InstanceQuat u_QF_InstancePoints[0] #define a_InstancePosAndScale u_QF_InstancePoints[1] #endif void QF_InstancedTransform(inout vec4 Position, inout vec3 Normal) { Position.xyz = (cross(a_InstanceQuat.xyz, cross(a_InstanceQuat.xyz, Position.xyz) + Position.xyz*a_InstanceQuat.w)*2.0 + Position.xyz) * a_InstancePosAndScale.w + a_InstancePosAndScale.xyz; Normal = cross(a_InstanceQuat.xyz, cross(a_InstanceQuat.xyz, Normal) + Normal*a_InstanceQuat.w)*2.0 + Normal; } #endif #define QF_LatLong2Norm(ll) vec3(cos((ll).y) * sin((ll).x), sin((ll).y) * sin((ll).x), cos((ll).x)) #define APPLY_RGB_CONST #define APPLY_ALPHA_CONST #define APPLY_DUDV #define APPLY_DISTORTION_ALPHA #define APPLY_REFRACTION #define DRAWFLAT_NORMAL_STEP 0.5 // floor or ceiling if < abs(normal.z) uniform mat4 u_ModelViewMatrix; uniform mat4 u_ModelViewProjectionMatrix; uniform float u_ShaderTime; uniform vec3 u_ViewOrigin; uniform mat3 u_ViewAxis; uniform vec3 u_EntityDist; uniform vec3 u_EntityOrigin; uniform myhalf4 u_EntityColor; uniform myhalf4 u_ConstColor; uniform myhalf4 u_RGBGenFuncArgs, u_AlphaGenFuncArgs; uniform myhalf3 u_LightstyleColor[4]; // lightstyle colors uniform myhalf3 u_LightAmbient; uniform myhalf3 u_LightDiffuse; uniform vec3 u_LightDir; uniform myhalf2 u_BlendMix; uniform vec2 u_TextureMatrix[3]; #define TextureMatrix2x3Mul(m2x3,tc) vec2(dot((m2x3)[0],(tc)) + (m2x3)[2][0], dot((m2x3)[1],(tc)) + (m2x3)[2][1]) uniform float u_MirrorSide; uniform float u_ZNear, u_ZFar; uniform ivec4 u_Viewport; // x, y, width, height uniform vec4 u_TextureParams; uniform myhalf u_SoftParticlesScale; myhalf3 Greyscale(myhalf3 color) { return myhalf3(dot(color, myhalf3(0.299, 0.587, 0.114))); } qf_varying vec4 v_TexCoord; qf_varying vec4 v_ProjVector; #ifdef APPLY_EYEDOT qf_varying vec3 v_EyeVector; #endif #ifdef VERTEX_SHADER #ifdef VERTEX_SHADER qf_attribute vec4 a_Position; qf_attribute vec4 a_SVector; qf_attribute vec4 a_Normal; qf_attribute vec4 a_Color; qf_attribute vec2 a_TexCoord; qf_attribute vec2 a_LightmapCoord0, a_LightmapCoord1, a_LightmapCoord2, a_LightmapCoord3; #endif void TransformVerts(inout vec4 Position, inout vec3 Normal, inout vec2 TexCoord) { #ifdef NUM_BONE_INFLUENCES QF_VertexDualQuatsTransform(NUM_BONE_INFLUENCES, Position, Normal); #endif #ifdef APPLY_DEFORMVERTS QF_DeformVerts(Position, Normal, TexCoord); #endif #ifdef APPLY_INSTANCED_TRANSFORMS QF_InstancedTransform(Position, Normal); #endif } void TransformVerts(inout vec4 Position, inout vec3 Normal, inout vec3 Tangent, inout vec2 TexCoord) { #ifdef NUM_BONE_INFLUENCES QF_VertexDualQuatsTransform(NUM_BONE_INFLUENCES, Position, Normal, Tangent); #endif #ifdef APPLY_DEFORMVERTS QF_DeformVerts(Position, Normal, TexCoord); #endif #ifdef APPLY_INSTANCED_TRANSFORMS QF_InstancedTransform(Position, Normal); #endif } myhalf4 VertexRGBGen(in vec4 Position, in vec3 Normal, in myhalf4 VertexColor) { #if defined(APPLY_RGB_DISTANCERAMP) || defined(APPLY_ALPHA_DISTANCERAMP) #define DISTANCERAMP(x1,x2,y1,y2) ((y2 - y1) / (x2 - x1) * (clamp(myhalf(dot(u_EntityDist - Position.xyz, Normal)),0.0,x2) - x1) + y1) #endif #if defined(APPLY_RGB_CONST) && defined(APPLY_ALPHA_CONST) myhalf4 Color = u_ConstColor; #else myhalf4 Color = myhalf4(1.0); #if defined(APPLY_RGB_CONST) Color.rgb = u_ConstColor.rgb; #elif defined(APPLY_RGB_VERTEX) Color.rgb = VertexColor.rgb; #elif defined(APPLY_RGB_ONE_MINUS_VERTEX) Color.rgb = myhalf3(1.0) - VertexColor.rgb; #elif defined(APPLY_RGB_GEN_DIFFUSELIGHT) Color.rgb = myhalf3(u_LightAmbient + max(dot(u_LightDir, Normal), 0.0) * u_LightDiffuse); #endif #if defined(APPLY_ALPHA_CONST) Color.a = u_ConstColor.a; #elif defined(APPLY_ALPHA_VERTEX) Color.a = VertexColor.a; #elif defined(APPLY_ALPHA_ONE_MINUS_VERTEX) Color.a = 1.0 - VertexColor.a; #endif #endif #ifdef APPLY_RGB_DISTANCERAMP Color.rgb *= DISTANCERAMP(u_RGBGenFuncArgs[2], u_RGBGenFuncArgs[3], u_RGBGenFuncArgs[0], u_RGBGenFuncArgs[1]); #endif #ifdef APPLY_ALPHA_DISTANCERAMP Color.a *= DISTANCERAMP(u_AlphaGenFuncArgs[2], u_AlphaGenFuncArgs[3], u_AlphaGenFuncArgs[0], u_AlphaGenFuncArgs[1]); #endif return Color; #if defined(APPLY_RGB_DISTANCERAMP) || defined(APPLY_ALPHA_DISTANCERAMP) #undef DISTANCERAMP #endif } #ifdef APPLY_EYEDOT uniform float u_FrontPlane; #endif void main(void) { vec4 Position = a_Position; vec3 Normal = a_Normal.xyz; vec2 TexCoord = a_TexCoord; vec3 Tangent = a_SVector.xyz; float TangentDir = a_SVector.w; myhalf4 inColor = myhalf4(a_Color); TransformVerts(Position, Normal, TexCoord); qf_FrontColor = vec4(VertexRGBGen(Position, Normal, inColor)); v_TexCoord.st = TextureMatrix2x3Mul(u_TextureMatrix, TexCoord); vec2 textureMatrix3_[3]; textureMatrix3_[0] = u_TextureMatrix[0]; textureMatrix3_[1] = u_TextureMatrix[1]; textureMatrix3_[2] = -u_TextureMatrix[2]; v_TexCoord.pq = TextureMatrix2x3Mul(textureMatrix3_, TexCoord); #ifdef APPLY_EYEDOT mat3 v_StrMatrix; v_StrMatrix[0] = Tangent; v_StrMatrix[2] = Normal; v_StrMatrix[1] = TangentDir * cross(Normal, Tangent); vec3 EyeVectorWorld = (u_ViewOrigin - Position.xyz) * u_FrontPlane; v_EyeVector = EyeVectorWorld * v_StrMatrix; #endif gl_Position = u_ModelViewProjectionMatrix * Position; v_ProjVector = gl_Position; } #endif // VERTEX_SHADER #ifdef FRAGMENT_SHADER // Fragment shader #ifdef APPLY_DUDV uniform sampler2D u_DuDvMapTexture; #endif #ifdef APPLY_EYEDOT uniform sampler2D u_NormalmapTexture; #endif uniform sampler2D u_ReflectionTexture; uniform sampler2D u_RefractionTexture; void main(void) { myhalf3 color; #ifdef APPLY_DUDV vec3 displacement = vec3(qf_texture(u_DuDvMapTexture, vec2(v_TexCoord.pq) * vec2(0.25))); vec2 coord = vec2(v_TexCoord.st) + vec2(displacement) * vec2 (0.2); vec3 fdist = vec3 (normalize(vec3(qf_texture(u_DuDvMapTexture, coord)) - vec3 (0.5))) * vec3(0.005); #else vec3 fdist = vec3(0.0); #endif // get projective texcoords float scale = float(1.0 / float(v_ProjVector.w)); float inv2NW = u_TextureParams.z * 0.5; // .z - inverse width float inv2NH = u_TextureParams.w * 0.5; // .w - inverse height vec2 projCoord = (vec2(v_ProjVector.xy) * scale + vec2 (1.0)) * vec2 (0.5) + vec2(fdist.xy); projCoord.s = float (clamp (float(projCoord.s), inv2NW, 1.0 - inv2NW)); projCoord.t = float (clamp (float(projCoord.t), inv2NH, 1.0 - inv2NH)); myhalf3 refr = myhalf3(0.0); myhalf3 refl = myhalf3(0.0); #ifdef APPLY_EYEDOT // calculate dot product between the surface normal and eye vector // great for simulating qf_varying water translucency based on the view angle myhalf3 surfaceNormal = normalize(myhalf3(qf_texture(u_NormalmapTexture, coord)) - myhalf3 (0.5)); vec3 eyeNormal = normalize(myhalf3(v_EyeVector)); float refrdot = float(dot(surfaceNormal, eyeNormal)); //refrdot = float (clamp (refrdot, 0.0, 1.0)); float refldot = 1.0 - refrdot; // get refraction and reflection #ifdef APPLY_REFRACTION refr = (myhalf3(qf_texture(u_RefractionTexture, projCoord))) * refrdot; #endif #ifdef APPLY_REFLECTION refl = (myhalf3(qf_texture(u_ReflectionTexture, projCoord))) * refldot; #endif #else #ifdef APPLY_REFRACTION refr = (myhalf3(qf_texture(u_RefractionTexture, projCoord))); #endif #ifdef APPLY_REFLECTION refl = (myhalf3(qf_texture(u_ReflectionTexture, projCoord))); #endif #endif // APPLY_EYEDOT // add reflection and refraction #ifdef APPLY_DISTORTION_ALPHA color = myhalf3(qf_FrontColor.rgb) + myhalf3(mix (refr, refl, myhalf(qf_FrontColor.a))); #else color = myhalf3(qf_FrontColor.rgb) + refr + refl; #endif #ifdef APPLY_GREYSCALE qf_FragColor = vec4(vec3(Greyscale(color)),1.0); #else qf_FragColor = vec4(vec3(color),1.0); #endif } #endif // FRAGMENT_SHADER