[require] GLSL >= 1.10 [vertex shader] #version 130 #extension GL_ARB_draw_instanced : enable #define QF_GLSL_VERSION 130 #define VERTEX_SHADER #if !defined(myhalf) //#if !defined(__GLSL_CG_DATA_TYPES) #define myhalf float #define myhalf2 vec2 #define myhalf3 vec3 #define myhalf4 vec4 //#else //#define myhalf half //#define myhalf2 half2 //#define myhalf3 half3 //#define myhalf4 half4 //#endif #endif #if QF_GLSL_VERSION >= 130 precision highp float; # ifdef VERTEX_SHADER out myhalf4 qf_FrontColor; # define qf_varying out # define qf_attribute in # endif # ifdef FRAGMENT_SHADER in myhalf4 qf_FrontColor; out myhalf4 qf_FragColor; # define qf_varying in # define qf_attribute in # endif # define qf_texture texture # define qf_textureCube texture # define qf_textureLod textureLod # define qf_textureOffset(a,b,c,d) textureOffset(a,b,ivec2(c,d)) # define qf_shadow texture #else # ifdef VERTEX_SHADER # define qf_FrontColor gl_FrontColor # define qf_varying varying # define qf_attribute attribute # endif # ifdef FRAGMENT_SHADER # define qf_FrontColor gl_Color # define qf_FragColor gl_FragColor # define qf_varying varying # define qf_attribute attribute # endif # define qf_texture texture2D # define qf_textureLod texture2DLod # define qf_textureCube textureCube # define qf_textureOffset(a,b,c,d) texture2DOffset(a,b,ivec2(c,d)) # define qf_shadow shadow2D #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_TWOPI #define M_TWOPI 6.28318530717958647692 #endif #ifndef MAX_UNIFORM_BONES #define MAX_UNIFORM_BONES 100 #endif #ifndef MAX_UNIFORM_INSTANCES #define MAX_UNIFORM_INSTANCES 40 #endif uniform vec3 u_QF_ViewOrigin; uniform mat3 u_QF_ViewAxis; uniform float u_QF_MirrorSide; uniform vec3 u_QF_EntityOrigin; uniform float u_QF_ShaderTime; #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_TWOPI #define M_TWOPI 6.28318530717958647692 #endif #ifndef WAVE_SIN float QF_WaveFunc_Sin(float x) { x -= floor(x); return sin(x * M_TWOPI); } float QF_WaveFunc_Triangle(float x) { x -= floor(x); return step(x, 0.25) * x * 4.0 + (2.0 - 4.0 * step(0.25, x) * step(x, 0.75) * x) + ((step(0.75, x) * x - 0.75) * 4.0 - 1.0); } float QF_WaveFunc_Square(float x) { x -= floor(x); return step(x, 0.5) * 2.0 - 1.0; } float QF_WaveFunc_Sawtooth(float x) { x -= floor(x); return x; } float QF_QF_WaveFunc_InverseSawtooth(float x) { x -= floor(x); return 1.0 - x; } #define WAVE_SIN(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Sin((phase)+(time)*(freq)))) #define WAVE_TRIANGLE(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Triangle((phase)+(time)*(freq)))) #define WAVE_SQUARE(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Square((phase)+(time)*(freq)))) #define WAVE_SAWTOOTH(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Sawtooth((phase)+(time)*(freq)))) #define WAVE_INVERSESAWTOOTH(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_QF_WaveFunc_InverseSawtooth((phase)+(time)*(freq)))) #endif #ifdef VERTEX_SHADER attribute vec4 a_BonesIndices; attribute vec4 a_BonesWeights; uniform vec4 u_QF_DualQuats[MAX_UNIFORM_BONES*2]; #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } // use defines to overload the transform function #define DUAL_QUAT_TRANSFORM_NORMALS #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } #define DUAL_QUAT_TRANSFORM_TANGENT #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } #endif #ifdef VERTEX_SHADER #ifdef APPLY_INSTANCED_ATTRIB_TRASNFORMS attribute vec4 a_InstanceQuat; attribute vec4 a_InstancePosAndScale; #elif defined(GL_ARB_draw_instanced) uniform vec4 u_QF_InstancePoints[MAX_UNIFORM_INSTANCES*2]; #define a_InstanceQuat u_QF_InstancePoints[gl_InstanceID*2] #define a_InstancePosAndScale u_QF_InstancePoints[gl_InstanceID*2+1] #else uniform vec4 u_QF_InstancePoints[2]; #define a_InstanceQuat u_QF_InstancePoints[0] #define a_InstancePosAndScale u_QF_InstancePoints[1] #endif void QF_InstancedTransform(inout vec4 Position, inout vec3 Normal) { Position.xyz = (cross(a_InstanceQuat.xyz, cross(a_InstanceQuat.xyz, Position.xyz) + Position.xyz*a_InstanceQuat.w)*2.0 + Position.xyz) * a_InstancePosAndScale.w + a_InstancePosAndScale.xyz; Normal = cross(a_InstanceQuat.xyz, cross(a_InstanceQuat.xyz, Normal) + Normal*a_InstanceQuat.w)*2.0 + Normal; } #endif #define QF_LatLong2Norm(ll) vec3(cos((ll).y) * sin((ll).x), sin((ll).y) * sin((ll).x), cos((ll).x)) #define APPLY_RGB_CONST #define APPLY_ALPHA_VERTEX #define DRAWFLAT_NORMAL_STEP 0.5 // floor or ceiling if < abs(normal.z) uniform mat4 u_ModelViewMatrix; uniform mat4 u_ModelViewProjectionMatrix; uniform float u_ShaderTime; uniform vec3 u_ViewOrigin; uniform mat3 u_ViewAxis; uniform vec3 u_EntityDist; uniform vec3 u_EntityOrigin; uniform myhalf4 u_EntityColor; uniform myhalf4 u_ConstColor; uniform myhalf4 u_RGBGenFuncArgs, u_AlphaGenFuncArgs; uniform myhalf3 u_LightstyleColor[4]; // lightstyle colors uniform myhalf3 u_LightAmbient; uniform myhalf3 u_LightDiffuse; uniform vec3 u_LightDir; uniform myhalf2 u_BlendMix; uniform vec2 u_TextureMatrix[3]; #define TextureMatrix2x3Mul(m2x3,tc) vec2(dot((m2x3)[0],(tc)) + (m2x3)[2][0], dot((m2x3)[1],(tc)) + (m2x3)[2][1]) uniform float u_MirrorSide; uniform float u_ZNear, u_ZFar; uniform ivec4 u_Viewport; // x, y, width, height uniform vec4 u_TextureParams; uniform myhalf u_SoftParticlesScale; #if defined(NUM_DLIGHTS) #if defined(FRAGMENT_SHADER) #if defined(NUM_DLIGHTS) struct DynamicLight { myhalf Radius; vec3 Position; myhalf3 Diffuse; }; uniform DynamicLight u_DynamicLights[NUM_DLIGHTS]; uniform int u_NumDynamicLights; #ifdef DLIGHTS_SURFACE_NORMAL_IN myhalf3 DynamicLightsSummaryColor(in vec3 Position, in myhalf3 surfaceNormalModelspace) #else myhalf3 DynamicLightsSummaryColor(in vec3 Position) #endif { myhalf3 Color = myhalf3(0.0); #if QF_GLSL_VERSION >= 330 for (int i = 0; i < u_NumDynamicLights; i++) #else for (int i = 0; i < NUM_DLIGHTS; i++) #endif { myhalf3 STR = myhalf3(u_DynamicLights[i].Position - Position); myhalf distance = length(STR); myhalf falloff = clamp(1.0 - distance / u_DynamicLights[i].Radius, 0.0, 1.0); falloff *= falloff; #ifdef DLIGHTS_SURFACE_NORMAL_IN falloff *= myhalf(max(dot(normalize(STR), surfaceNormalModelspace), 0.0)); #endif Color += falloff * u_DynamicLights[i].Diffuse; } return Color; } #define DLIGHTS_SURFACE_NORMAL_IN #ifdef DLIGHTS_SURFACE_NORMAL_IN myhalf3 DynamicLightsSummaryColor(in vec3 Position, in myhalf3 surfaceNormalModelspace) #else myhalf3 DynamicLightsSummaryColor(in vec3 Position) #endif { myhalf3 Color = myhalf3(0.0); #if QF_GLSL_VERSION >= 330 for (int i = 0; i < u_NumDynamicLights; i++) #else for (int i = 0; i < NUM_DLIGHTS; i++) #endif { myhalf3 STR = myhalf3(u_DynamicLights[i].Position - Position); myhalf distance = length(STR); myhalf falloff = clamp(1.0 - distance / u_DynamicLights[i].Radius, 0.0, 1.0); falloff *= falloff; #ifdef DLIGHTS_SURFACE_NORMAL_IN falloff *= myhalf(max(dot(normalize(STR), surfaceNormalModelspace), 0.0)); #endif Color += falloff * u_DynamicLights[i].Diffuse; } return Color; } #endif #endif #endif #ifdef APPLY_FOG struct Fog { float EyeDist; vec4 EyePlane, Plane; myhalf3 Color; float Scale; }; uniform Fog u_Fog; #define FOG_TEXCOORD_STEP 1.0/256.0 #define FogDensity(coord) sqrt(clamp((coord)[0],0.0,1.0))*step(FOG_TEXCOORD_STEP,(coord)[1]) #define FOG_GEN_OUTPUT_COLOR #if defined(FOG_GEN_OUTPUT_COLOR) void FogGen(in vec4 Position, inout myhalf4 outColor, in myhalf2 blendMix) #elif defined(FOG_GEN_OUTPUT_TEXCOORDS) void FogGen(in vec4 Position, inout vec2 outTexCoord) #endif { // side = vec2(inside, outside) myhalf2 side = myhalf2(step(u_Fog.EyeDist, 0.0), step(0.0, u_Fog.EyeDist)); myhalf FDist = dot(Position.xyz, u_Fog.EyePlane.xyz) - u_Fog.EyePlane.w; myhalf FVdist = dot(Position.xyz, u_Fog.Plane.xyz) - u_Fog.Plane.w; myhalf FogDistScale = FVdist / (FVdist - u_Fog.EyeDist); #if defined(FOG_GEN_OUTPUT_COLOR) myhalf FogDist = FDist * dot(side, myhalf2(1.0, FogDistScale)); myhalf FogScale = myhalf(clamp(1.0 - FogDist * u_Fog.Scale, 0.0, 1.0)); outColor *= mix(myhalf4(1.0), myhalf4(FogScale), blendMix.xxxy); #endif #if defined(FOG_GEN_OUTPUT_TEXCOORDS) myhalf FogS = FDist * dot(side, myhalf2(1.0, step(FVdist, 0.0) * FogDistScale)); myhalf FogT = -FVdist; outTexCoord = vec2(FogS * u_Fog.Scale, FogT * u_Fog.Scale + 1.5*FOG_TEXCOORD_STEP); #endif } #undef FOG_GEN_OUTPUT_COLOR #define FOG_GEN_OUTPUT_TEXCOORDS #if defined(FOG_GEN_OUTPUT_COLOR) void FogGen(in vec4 Position, inout myhalf4 outColor, in myhalf2 blendMix) #elif defined(FOG_GEN_OUTPUT_TEXCOORDS) void FogGen(in vec4 Position, inout vec2 outTexCoord) #endif { // side = vec2(inside, outside) myhalf2 side = myhalf2(step(u_Fog.EyeDist, 0.0), step(0.0, u_Fog.EyeDist)); myhalf FDist = dot(Position.xyz, u_Fog.EyePlane.xyz) - u_Fog.EyePlane.w; myhalf FVdist = dot(Position.xyz, u_Fog.Plane.xyz) - u_Fog.Plane.w; myhalf FogDistScale = FVdist / (FVdist - u_Fog.EyeDist); #if defined(FOG_GEN_OUTPUT_COLOR) myhalf FogDist = FDist * dot(side, myhalf2(1.0, FogDistScale)); myhalf FogScale = myhalf(clamp(1.0 - FogDist * u_Fog.Scale, 0.0, 1.0)); outColor *= mix(myhalf4(1.0), myhalf4(FogScale), blendMix.xxxy); #endif #if defined(FOG_GEN_OUTPUT_TEXCOORDS) myhalf FogS = FDist * dot(side, myhalf2(1.0, step(FVdist, 0.0) * FogDistScale)); myhalf FogT = -FVdist; outTexCoord = vec2(FogS * u_Fog.Scale, FogT * u_Fog.Scale + 1.5*FOG_TEXCOORD_STEP); #endif } #endif #ifdef APPLY_GREYSCALE myhalf3 Greyscale(myhalf3 color) { return myhalf3(dot(color, myhalf3(0.299, 0.587, 0.114))); } #endif qf_varying vec3 v_Position; #ifdef APPLY_DRAWFLAT qf_varying myhalf v_NormalZ; #endif #ifdef APPLY_TC_GEN_REFLECTION #define APPLY_CUBEMAP #endif #ifdef APPLY_CUBEMAP qf_varying vec3 v_TexCoord; #else qf_varying vec2 v_TexCoord; #endif #ifdef NUM_LIGHTMAPS qf_varying vec2 v_LightmapTexCoord[NUM_LIGHTMAPS]; #endif #if defined(APPLY_FOG) && !defined(APPLY_FOG_COLOR) qf_varying vec2 v_FogCoord; #endif #if defined(APPLY_SOFT_PARTICLE) qf_varying float v_Depth; #endif #ifdef VERTEX_SHADER #ifdef VERTEX_SHADER qf_attribute vec4 a_Position; qf_attribute vec4 a_SVector; qf_attribute vec4 a_Normal; qf_attribute vec4 a_Color; qf_attribute vec2 a_TexCoord; qf_attribute vec2 a_LightmapCoord0, a_LightmapCoord1, a_LightmapCoord2, a_LightmapCoord3; #endif void TransformVerts(inout vec4 Position, inout vec3 Normal, inout vec2 TexCoord) { #ifdef NUM_BONE_INFLUENCES QF_VertexDualQuatsTransform(NUM_BONE_INFLUENCES, Position, Normal); #endif #ifdef APPLY_DEFORMVERTS QF_DeformVerts(Position, Normal, TexCoord); #endif #ifdef APPLY_INSTANCED_TRANSFORMS QF_InstancedTransform(Position, Normal); #endif } void TransformVerts(inout vec4 Position, inout vec3 Normal, inout vec3 Tangent, inout vec2 TexCoord) { #ifdef NUM_BONE_INFLUENCES QF_VertexDualQuatsTransform(NUM_BONE_INFLUENCES, Position, Normal, Tangent); #endif #ifdef APPLY_DEFORMVERTS QF_DeformVerts(Position, Normal, TexCoord); #endif #ifdef APPLY_INSTANCED_TRANSFORMS QF_InstancedTransform(Position, Normal); #endif } myhalf4 VertexRGBGen(in vec4 Position, in vec3 Normal, in myhalf4 VertexColor) { #if defined(APPLY_RGB_DISTANCERAMP) || defined(APPLY_ALPHA_DISTANCERAMP) #define DISTANCERAMP(x1,x2,y1,y2) ((y2 - y1) / (x2 - x1) * (clamp(myhalf(dot(u_EntityDist - Position.xyz, Normal)),0.0,x2) - x1) + y1) #endif #if defined(APPLY_RGB_CONST) && defined(APPLY_ALPHA_CONST) myhalf4 Color = u_ConstColor; #else myhalf4 Color = myhalf4(1.0); #if defined(APPLY_RGB_CONST) Color.rgb = u_ConstColor.rgb; #elif defined(APPLY_RGB_VERTEX) Color.rgb = VertexColor.rgb; #elif defined(APPLY_RGB_ONE_MINUS_VERTEX) Color.rgb = myhalf3(1.0) - VertexColor.rgb; #elif defined(APPLY_RGB_GEN_DIFFUSELIGHT) Color.rgb = myhalf3(u_LightAmbient + max(dot(u_LightDir, Normal), 0.0) * u_LightDiffuse); #endif #if defined(APPLY_ALPHA_CONST) Color.a = u_ConstColor.a; #elif defined(APPLY_ALPHA_VERTEX) Color.a = VertexColor.a; #elif defined(APPLY_ALPHA_ONE_MINUS_VERTEX) Color.a = 1.0 - VertexColor.a; #endif #endif #ifdef APPLY_RGB_DISTANCERAMP Color.rgb *= DISTANCERAMP(u_RGBGenFuncArgs[2], u_RGBGenFuncArgs[3], u_RGBGenFuncArgs[0], u_RGBGenFuncArgs[1]); #endif #ifdef APPLY_ALPHA_DISTANCERAMP Color.a *= DISTANCERAMP(u_AlphaGenFuncArgs[2], u_AlphaGenFuncArgs[3], u_AlphaGenFuncArgs[0], u_AlphaGenFuncArgs[1]); #endif return Color; #if defined(APPLY_RGB_DISTANCERAMP) || defined(APPLY_ALPHA_DISTANCERAMP) #undef DISTANCERAMP #endif } #if defined(APPLY_TC_GEN_REFLECTION) uniform mat4 u_ReflectionTexMatrix; #elif defined(APPLY_TC_GEN_VECTOR) uniform mat4 u_VectorTexMatrix; #endif void main(void) { vec4 Position = a_Position; vec3 Normal = a_Normal.xyz; vec2 TexCoord = a_TexCoord; myhalf4 inColor = myhalf4(a_Color); TransformVerts(Position, Normal, TexCoord); myhalf4 outColor = VertexRGBGen(Position, Normal, inColor); #ifdef APPLY_FOG #if defined(APPLY_FOG_COLOR) FogGen(Position, outColor, u_BlendMix); #else FogGen(Position, v_FogCoord); #endif #endif // APPLY_FOG qf_FrontColor = vec4(outColor); #if defined(APPLY_TC_GEN_ENV) vec3 Projection; Projection = u_EntityDist - Position.xyz; Projection = normalize(Projection); float Depth = dot(Normal.xyz, Projection) * 2.0; v_TexCoord = vec2(0.5 + (Normal.y * Depth - Projection.y) * 0.5, 0.5 - (Normal.z * Depth - Projection.z) * 0.5); #elif defined(APPLY_TC_GEN_VECTOR) v_TexCoord = vec2(u_VectorTexMatrix * Position); #elif defined(APPLY_TC_GEN_REFLECTION) v_TexCoord = vec3(u_ReflectionTexMatrix * vec4(reflect(normalize(Position.xyz - u_EntityDist), Normal.xyz), 0.0)); #elif defined(APPLY_TC_GEN_PROJECTION) v_TexCoord = vec2(normalize(u_ModelViewProjectionMatrix * Position) * 0.5 + vec4(0.5)); #else v_TexCoord = TextureMatrix2x3Mul(u_TextureMatrix, TexCoord); #endif // defined(APPLY_TC_GEN_ENV) v_Position = Position.xyz; #ifdef APPLY_DRAWFLAT v_NormalZ = Normal.z; #endif #ifdef NUM_LIGHTMAPS v_LightmapTexCoord[0] = a_LightmapCoord0; #if NUM_LIGHTMAPS >= 2 v_LightmapTexCoord[1] = a_LightmapCoord1; #if NUM_LIGHTMAPS >= 3 v_LightmapTexCoord[2] = a_LightmapCoord2; #if NUM_LIGHTMAPS >= 4 v_LightmapTexCoord[3] = a_LightmapCoord3; #endif // NUM_LIGHTMAPS >= 4 #endif // NUM_LIGHTMAPS >= 3 #endif // NUM_LIGHTMAPS >= 2 #endif // NUM_LIGHTMAPS gl_Position = u_ModelViewProjectionMatrix * Position; #if defined(APPLY_SOFT_PARTICLE) vec4 modelPos = u_ModelViewMatrix * Position; v_Depth = -modelPos.z; #endif } #endif // VERTEX_SHADER #ifdef FRAGMENT_SHADER // Fragment shader #ifdef APPLY_CUBEMAP uniform samplerCube u_BaseTexture; #else uniform sampler2D u_BaseTexture; #endif #ifdef APPLY_DRAWFLAT uniform myhalf3 u_WallColor; uniform myhalf3 u_FloorColor; #endif #ifdef NUM_LIGHTMAPS uniform sampler2D u_LightmapTexture[NUM_LIGHTMAPS]; #endif #if defined(APPLY_SOFT_PARTICLE) #ifdef FRAGMENT_SHADER myhalf FragmentSoftness(float Depth, sampler2D DepthTexture, in vec2 ScreenCoord, in ivec4 Viewport, in float ZNear, in float ZFar, myhalf Scale) { vec2 tc = ScreenCoord * u_TextureParams.zw; myhalf fragdepth = ZNear*ZFar/(ZFar - qf_texture(DepthTexture, tc).r*(ZFar-ZNear)); myhalf partdepth = Depth; myhalf d = max((fragdepth - partdepth) * Scale, 0.0); myhalf softness = 1.0 - min(1.0, d); softness *= softness; softness = 1.0 - softness * softness; return softness; } #endif uniform sampler2D u_DepthTexture; #endif void main(void) { myhalf4 color; #ifdef NUM_LIGHTMAPS color = myhalf4(0.0, 0.0, 0.0, qf_FrontColor.a); color.rgb += myhalf3(qf_texture(u_LightmapTexture[0], v_LightmapTexCoord[0])) * u_LightstyleColor[0]; #if NUM_LIGHTMAPS >= 2 color.rgb += myhalf3(qf_texture(u_LightmapTexture[1], v_LightmapTexCoord[1])) * u_LightstyleColor[1]; #if NUM_LIGHTMAPS >= 3 color.rgb += myhalf3(qf_texture(u_LightmapTexture[2], v_LightmapTexCoord[2])) * u_LightstyleColor[2]; #if NUM_LIGHTMAPS >= 4 color.rgb += myhalf3(qf_texture(u_LightmapTexture[3], v_LightmapTexCoord[3])) * u_LightstyleColor[3]; #endif // NUM_LIGHTMAPS >= 4 #endif // NUM_LIGHTMAPS >= 3 #endif // NUM_LIGHTMAPS >= 2 #else color = myhalf4(qf_FrontColor); #endif // NUM_LIGHTMAPS #if defined(APPLY_FOG) && !defined(APPLY_FOG_COLOR) myhalf fogDensity = FogDensity(v_FogCoord); #endif #if defined(NUM_DLIGHTS) color.rgb += DynamicLightsSummaryColor(v_Position); #endif myhalf4 diffuse; #ifdef APPLY_CUBEMAP diffuse = myhalf4(qf_textureCube(u_BaseTexture, v_TexCoord)); #else diffuse = myhalf4(qf_texture(u_BaseTexture, v_TexCoord)); #endif #ifdef APPLY_DRAWFLAT myhalf n = myhalf(step(DRAWFLAT_NORMAL_STEP, abs(v_NormalZ))); diffuse.rgb = myhalf3(mix(u_WallColor, u_FloorColor, n)); #endif color *= diffuse; #ifdef NUM_LIGHTMAPS // so that team-colored shaders work color *= myhalf4(qf_FrontColor); #endif #ifdef APPLY_GREYSCALE color.rgb = Greyscale(color.rgb); #endif #if defined(APPLY_FOG) && !defined(APPLY_FOG_COLOR) color.rgb = mix(color.rgb, u_Fog.Color, fogDensity); #endif #if defined(APPLY_SOFT_PARTICLE) myhalf softness = FragmentSoftness(v_Depth, u_DepthTexture, gl_FragCoord.xy, u_Viewport, u_ZNear, u_ZFar, u_SoftParticlesScale); color *= mix(myhalf4(1.0), myhalf4(softness), u_BlendMix.xxxy); #endif qf_FragColor = vec4(color); } #endif // FRAGMENT_SHADER [fragment shader] #version 130 #define QF_GLSL_VERSION 130 #define FRAGMENT_SHADER #if !defined(myhalf) //#if !defined(__GLSL_CG_DATA_TYPES) #define myhalf float #define myhalf2 vec2 #define myhalf3 vec3 #define myhalf4 vec4 //#else //#define myhalf half //#define myhalf2 half2 //#define myhalf3 half3 //#define myhalf4 half4 //#endif #endif #if QF_GLSL_VERSION >= 130 precision highp float; # ifdef VERTEX_SHADER out myhalf4 qf_FrontColor; # define qf_varying out # define qf_attribute in # endif # ifdef FRAGMENT_SHADER in myhalf4 qf_FrontColor; out myhalf4 qf_FragColor; # define qf_varying in # define qf_attribute in # endif # define qf_texture texture # define qf_textureCube texture # define qf_textureLod textureLod # define qf_textureOffset(a,b,c,d) textureOffset(a,b,ivec2(c,d)) # define qf_shadow texture #else # ifdef VERTEX_SHADER # define qf_FrontColor gl_FrontColor # define qf_varying varying # define qf_attribute attribute # endif # ifdef FRAGMENT_SHADER # define qf_FrontColor gl_Color # define qf_FragColor gl_FragColor # define qf_varying varying # define qf_attribute attribute # endif # define qf_texture texture2D # define qf_textureLod texture2DLod # define qf_textureCube textureCube # define qf_textureOffset(a,b,c,d) texture2DOffset(a,b,ivec2(c,d)) # define qf_shadow shadow2D #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_TWOPI #define M_TWOPI 6.28318530717958647692 #endif #ifndef MAX_UNIFORM_BONES #define MAX_UNIFORM_BONES 100 #endif #ifndef MAX_UNIFORM_INSTANCES #define MAX_UNIFORM_INSTANCES 40 #endif uniform vec3 u_QF_ViewOrigin; uniform mat3 u_QF_ViewAxis; uniform float u_QF_MirrorSide; uniform vec3 u_QF_EntityOrigin; uniform float u_QF_ShaderTime; #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_TWOPI #define M_TWOPI 6.28318530717958647692 #endif #ifndef WAVE_SIN float QF_WaveFunc_Sin(float x) { x -= floor(x); return sin(x * M_TWOPI); } float QF_WaveFunc_Triangle(float x) { x -= floor(x); return step(x, 0.25) * x * 4.0 + (2.0 - 4.0 * step(0.25, x) * step(x, 0.75) * x) + ((step(0.75, x) * x - 0.75) * 4.0 - 1.0); } float QF_WaveFunc_Square(float x) { x -= floor(x); return step(x, 0.5) * 2.0 - 1.0; } float QF_WaveFunc_Sawtooth(float x) { x -= floor(x); return x; } float QF_QF_WaveFunc_InverseSawtooth(float x) { x -= floor(x); return 1.0 - x; } #define WAVE_SIN(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Sin((phase)+(time)*(freq)))) #define WAVE_TRIANGLE(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Triangle((phase)+(time)*(freq)))) #define WAVE_SQUARE(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Square((phase)+(time)*(freq)))) #define WAVE_SAWTOOTH(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_WaveFunc_Sawtooth((phase)+(time)*(freq)))) #define WAVE_INVERSESAWTOOTH(time,base,amplitude,phase,freq) (((base)+(amplitude)*QF_QF_WaveFunc_InverseSawtooth((phase)+(time)*(freq)))) #endif #ifdef VERTEX_SHADER attribute vec4 a_BonesIndices; attribute vec4 a_BonesWeights; uniform vec4 u_QF_DualQuats[MAX_UNIFORM_BONES*2]; #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } // use defines to overload the transform function #define DUAL_QUAT_TRANSFORM_NORMALS #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } #define DUAL_QUAT_TRANSFORM_TANGENT #if defined(DUAL_QUAT_TRANSFORM_NORMALS) #if defined(DUAL_QUAT_TRANSFORM_TANGENT) void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal, inout vec3 Tangent) #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position, inout vec3 Normal) #endif #else void QF_VertexDualQuatsTransform(const int numWeights, inout vec4 Position) #endif { int index; vec4 Indices = a_BonesIndices; vec4 Weights = a_BonesWeights; vec4 Indices_2 = Indices * 2.0; vec4 DQReal, DQDual; index = int(Indices_2.x); DQReal = u_QF_DualQuats[index+0]; DQDual = u_QF_DualQuats[index+1]; if (numWeights > 1) { DQReal *= Weights.x; DQDual *= Weights.x; vec4 DQReal1, DQDual1; float scale; index = int(Indices_2.y); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.y; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 2) { index = int(Indices_2.z); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.z; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; if (numWeights > 3) { index = int(Indices_2.w); DQReal1 = u_QF_DualQuats[index+0]; DQDual1 = u_QF_DualQuats[index+1]; // antipodality handling scale = (dot(DQReal1, DQReal) < 0.0 ? -1.0 : 1.0) * Weights.w; DQReal += DQReal1 * scale; DQDual += DQDual1 * scale; } } } float len = length(DQReal); DQReal /= len; DQDual /= len; Position.xyz = (cross(DQReal.xyz, cross(DQReal.xyz, Position.xyz) + Position.xyz*DQReal.w + DQDual.xyz) + DQDual.xyz*DQReal.w - DQReal.xyz*DQDual.w)*2.0 + Position.xyz; #ifdef DUAL_QUAT_TRANSFORM_NORMALS Normal = cross(DQReal.xyz, cross(DQReal.xyz, Normal) + Normal*DQReal.w)*2.0 + Normal; #endif #ifdef DUAL_QUAT_TRANSFORM_TANGENT Tangent = cross(DQReal.xyz, cross(DQReal.xyz, Tangent) + Tangent*DQReal.w)*2.0 + Tangent; #endif } #endif #ifdef VERTEX_SHADER #ifdef APPLY_INSTANCED_ATTRIB_TRASNFORMS attribute vec4 a_InstanceQuat; attribute vec4 a_InstancePosAndScale; #elif defined(GL_ARB_draw_instanced) uniform vec4 u_QF_InstancePoints[MAX_UNIFORM_INSTANCES*2]; #define a_InstanceQuat u_QF_InstancePoints[gl_InstanceID*2] #define a_InstancePosAndScale u_QF_InstancePoints[gl_InstanceID*2+1] #else uniform vec4 u_QF_InstancePoints[2]; #define a_InstanceQuat u_QF_InstancePoints[0] #define a_InstancePosAndScale u_QF_InstancePoints[1] #endif void QF_InstancedTransform(inout vec4 Position, inout vec3 Normal) { Position.xyz = (cross(a_InstanceQuat.xyz, cross(a_InstanceQuat.xyz, Position.xyz) + Position.xyz*a_InstanceQuat.w)*2.0 + Position.xyz) * a_InstancePosAndScale.w + a_InstancePosAndScale.xyz; Normal = cross(a_InstanceQuat.xyz, cross(a_InstanceQuat.xyz, Normal) + Normal*a_InstanceQuat.w)*2.0 + Normal; } #endif #define QF_LatLong2Norm(ll) vec3(cos((ll).y) * sin((ll).x), sin((ll).y) * sin((ll).x), cos((ll).x)) #define APPLY_RGB_CONST #define APPLY_ALPHA_VERTEX #define DRAWFLAT_NORMAL_STEP 0.5 // floor or ceiling if < abs(normal.z) uniform mat4 u_ModelViewMatrix; uniform mat4 u_ModelViewProjectionMatrix; uniform float u_ShaderTime; uniform vec3 u_ViewOrigin; uniform mat3 u_ViewAxis; uniform vec3 u_EntityDist; uniform vec3 u_EntityOrigin; uniform myhalf4 u_EntityColor; uniform myhalf4 u_ConstColor; uniform myhalf4 u_RGBGenFuncArgs, u_AlphaGenFuncArgs; uniform myhalf3 u_LightstyleColor[4]; // lightstyle colors uniform myhalf3 u_LightAmbient; uniform myhalf3 u_LightDiffuse; uniform vec3 u_LightDir; uniform myhalf2 u_BlendMix; uniform vec2 u_TextureMatrix[3]; #define TextureMatrix2x3Mul(m2x3,tc) vec2(dot((m2x3)[0],(tc)) + (m2x3)[2][0], dot((m2x3)[1],(tc)) + (m2x3)[2][1]) uniform float u_MirrorSide; uniform float u_ZNear, u_ZFar; uniform ivec4 u_Viewport; // x, y, width, height uniform vec4 u_TextureParams; uniform myhalf u_SoftParticlesScale; #if defined(NUM_DLIGHTS) #if defined(FRAGMENT_SHADER) #if defined(NUM_DLIGHTS) struct DynamicLight { myhalf Radius; vec3 Position; myhalf3 Diffuse; }; uniform DynamicLight u_DynamicLights[NUM_DLIGHTS]; uniform int u_NumDynamicLights; #ifdef DLIGHTS_SURFACE_NORMAL_IN myhalf3 DynamicLightsSummaryColor(in vec3 Position, in myhalf3 surfaceNormalModelspace) #else myhalf3 DynamicLightsSummaryColor(in vec3 Position) #endif { myhalf3 Color = myhalf3(0.0); #if QF_GLSL_VERSION >= 330 for (int i = 0; i < u_NumDynamicLights; i++) #else for (int i = 0; i < NUM_DLIGHTS; i++) #endif { myhalf3 STR = myhalf3(u_DynamicLights[i].Position - Position); myhalf distance = length(STR); myhalf falloff = clamp(1.0 - distance / u_DynamicLights[i].Radius, 0.0, 1.0); falloff *= falloff; #ifdef DLIGHTS_SURFACE_NORMAL_IN falloff *= myhalf(max(dot(normalize(STR), surfaceNormalModelspace), 0.0)); #endif Color += falloff * u_DynamicLights[i].Diffuse; } return Color; } #define DLIGHTS_SURFACE_NORMAL_IN #ifdef DLIGHTS_SURFACE_NORMAL_IN myhalf3 DynamicLightsSummaryColor(in vec3 Position, in myhalf3 surfaceNormalModelspace) #else myhalf3 DynamicLightsSummaryColor(in vec3 Position) #endif { myhalf3 Color = myhalf3(0.0); #if QF_GLSL_VERSION >= 330 for (int i = 0; i < u_NumDynamicLights; i++) #else for (int i = 0; i < NUM_DLIGHTS; i++) #endif { myhalf3 STR = myhalf3(u_DynamicLights[i].Position - Position); myhalf distance = length(STR); myhalf falloff = clamp(1.0 - distance / u_DynamicLights[i].Radius, 0.0, 1.0); falloff *= falloff; #ifdef DLIGHTS_SURFACE_NORMAL_IN falloff *= myhalf(max(dot(normalize(STR), surfaceNormalModelspace), 0.0)); #endif Color += falloff * u_DynamicLights[i].Diffuse; } return Color; } #endif #endif #endif #ifdef APPLY_FOG struct Fog { float EyeDist; vec4 EyePlane, Plane; myhalf3 Color; float Scale; }; uniform Fog u_Fog; #define FOG_TEXCOORD_STEP 1.0/256.0 #define FogDensity(coord) sqrt(clamp((coord)[0],0.0,1.0))*step(FOG_TEXCOORD_STEP,(coord)[1]) #define FOG_GEN_OUTPUT_COLOR #if defined(FOG_GEN_OUTPUT_COLOR) void FogGen(in vec4 Position, inout myhalf4 outColor, in myhalf2 blendMix) #elif defined(FOG_GEN_OUTPUT_TEXCOORDS) void FogGen(in vec4 Position, inout vec2 outTexCoord) #endif { // side = vec2(inside, outside) myhalf2 side = myhalf2(step(u_Fog.EyeDist, 0.0), step(0.0, u_Fog.EyeDist)); myhalf FDist = dot(Position.xyz, u_Fog.EyePlane.xyz) - u_Fog.EyePlane.w; myhalf FVdist = dot(Position.xyz, u_Fog.Plane.xyz) - u_Fog.Plane.w; myhalf FogDistScale = FVdist / (FVdist - u_Fog.EyeDist); #if defined(FOG_GEN_OUTPUT_COLOR) myhalf FogDist = FDist * dot(side, myhalf2(1.0, FogDistScale)); myhalf FogScale = myhalf(clamp(1.0 - FogDist * u_Fog.Scale, 0.0, 1.0)); outColor *= mix(myhalf4(1.0), myhalf4(FogScale), blendMix.xxxy); #endif #if defined(FOG_GEN_OUTPUT_TEXCOORDS) myhalf FogS = FDist * dot(side, myhalf2(1.0, step(FVdist, 0.0) * FogDistScale)); myhalf FogT = -FVdist; outTexCoord = vec2(FogS * u_Fog.Scale, FogT * u_Fog.Scale + 1.5*FOG_TEXCOORD_STEP); #endif } #undef FOG_GEN_OUTPUT_COLOR #define FOG_GEN_OUTPUT_TEXCOORDS #if defined(FOG_GEN_OUTPUT_COLOR) void FogGen(in vec4 Position, inout myhalf4 outColor, in myhalf2 blendMix) #elif defined(FOG_GEN_OUTPUT_TEXCOORDS) void FogGen(in vec4 Position, inout vec2 outTexCoord) #endif { // side = vec2(inside, outside) myhalf2 side = myhalf2(step(u_Fog.EyeDist, 0.0), step(0.0, u_Fog.EyeDist)); myhalf FDist = dot(Position.xyz, u_Fog.EyePlane.xyz) - u_Fog.EyePlane.w; myhalf FVdist = dot(Position.xyz, u_Fog.Plane.xyz) - u_Fog.Plane.w; myhalf FogDistScale = FVdist / (FVdist - u_Fog.EyeDist); #if defined(FOG_GEN_OUTPUT_COLOR) myhalf FogDist = FDist * dot(side, myhalf2(1.0, FogDistScale)); myhalf FogScale = myhalf(clamp(1.0 - FogDist * u_Fog.Scale, 0.0, 1.0)); outColor *= mix(myhalf4(1.0), myhalf4(FogScale), blendMix.xxxy); #endif #if defined(FOG_GEN_OUTPUT_TEXCOORDS) myhalf FogS = FDist * dot(side, myhalf2(1.0, step(FVdist, 0.0) * FogDistScale)); myhalf FogT = -FVdist; outTexCoord = vec2(FogS * u_Fog.Scale, FogT * u_Fog.Scale + 1.5*FOG_TEXCOORD_STEP); #endif } #endif #ifdef APPLY_GREYSCALE myhalf3 Greyscale(myhalf3 color) { return myhalf3(dot(color, myhalf3(0.299, 0.587, 0.114))); } #endif qf_varying vec3 v_Position; #ifdef APPLY_DRAWFLAT qf_varying myhalf v_NormalZ; #endif #ifdef APPLY_TC_GEN_REFLECTION #define APPLY_CUBEMAP #endif #ifdef APPLY_CUBEMAP qf_varying vec3 v_TexCoord; #else qf_varying vec2 v_TexCoord; #endif #ifdef NUM_LIGHTMAPS qf_varying vec2 v_LightmapTexCoord[NUM_LIGHTMAPS]; #endif #if defined(APPLY_FOG) && !defined(APPLY_FOG_COLOR) qf_varying vec2 v_FogCoord; #endif #if defined(APPLY_SOFT_PARTICLE) qf_varying float v_Depth; #endif #ifdef VERTEX_SHADER #ifdef VERTEX_SHADER qf_attribute vec4 a_Position; qf_attribute vec4 a_SVector; qf_attribute vec4 a_Normal; qf_attribute vec4 a_Color; qf_attribute vec2 a_TexCoord; qf_attribute vec2 a_LightmapCoord0, a_LightmapCoord1, a_LightmapCoord2, a_LightmapCoord3; #endif void TransformVerts(inout vec4 Position, inout vec3 Normal, inout vec2 TexCoord) { #ifdef NUM_BONE_INFLUENCES QF_VertexDualQuatsTransform(NUM_BONE_INFLUENCES, Position, Normal); #endif #ifdef APPLY_DEFORMVERTS QF_DeformVerts(Position, Normal, TexCoord); #endif #ifdef APPLY_INSTANCED_TRANSFORMS QF_InstancedTransform(Position, Normal); #endif } void TransformVerts(inout vec4 Position, inout vec3 Normal, inout vec3 Tangent, inout vec2 TexCoord) { #ifdef NUM_BONE_INFLUENCES QF_VertexDualQuatsTransform(NUM_BONE_INFLUENCES, Position, Normal, Tangent); #endif #ifdef APPLY_DEFORMVERTS QF_DeformVerts(Position, Normal, TexCoord); #endif #ifdef APPLY_INSTANCED_TRANSFORMS QF_InstancedTransform(Position, Normal); #endif } myhalf4 VertexRGBGen(in vec4 Position, in vec3 Normal, in myhalf4 VertexColor) { #if defined(APPLY_RGB_DISTANCERAMP) || defined(APPLY_ALPHA_DISTANCERAMP) #define DISTANCERAMP(x1,x2,y1,y2) ((y2 - y1) / (x2 - x1) * (clamp(myhalf(dot(u_EntityDist - Position.xyz, Normal)),0.0,x2) - x1) + y1) #endif #if defined(APPLY_RGB_CONST) && defined(APPLY_ALPHA_CONST) myhalf4 Color = u_ConstColor; #else myhalf4 Color = myhalf4(1.0); #if defined(APPLY_RGB_CONST) Color.rgb = u_ConstColor.rgb; #elif defined(APPLY_RGB_VERTEX) Color.rgb = VertexColor.rgb; #elif defined(APPLY_RGB_ONE_MINUS_VERTEX) Color.rgb = myhalf3(1.0) - VertexColor.rgb; #elif defined(APPLY_RGB_GEN_DIFFUSELIGHT) Color.rgb = myhalf3(u_LightAmbient + max(dot(u_LightDir, Normal), 0.0) * u_LightDiffuse); #endif #if defined(APPLY_ALPHA_CONST) Color.a = u_ConstColor.a; #elif defined(APPLY_ALPHA_VERTEX) Color.a = VertexColor.a; #elif defined(APPLY_ALPHA_ONE_MINUS_VERTEX) Color.a = 1.0 - VertexColor.a; #endif #endif #ifdef APPLY_RGB_DISTANCERAMP Color.rgb *= DISTANCERAMP(u_RGBGenFuncArgs[2], u_RGBGenFuncArgs[3], u_RGBGenFuncArgs[0], u_RGBGenFuncArgs[1]); #endif #ifdef APPLY_ALPHA_DISTANCERAMP Color.a *= DISTANCERAMP(u_AlphaGenFuncArgs[2], u_AlphaGenFuncArgs[3], u_AlphaGenFuncArgs[0], u_AlphaGenFuncArgs[1]); #endif return Color; #if defined(APPLY_RGB_DISTANCERAMP) || defined(APPLY_ALPHA_DISTANCERAMP) #undef DISTANCERAMP #endif } #if defined(APPLY_TC_GEN_REFLECTION) uniform mat4 u_ReflectionTexMatrix; #elif defined(APPLY_TC_GEN_VECTOR) uniform mat4 u_VectorTexMatrix; #endif void main(void) { vec4 Position = a_Position; vec3 Normal = a_Normal.xyz; vec2 TexCoord = a_TexCoord; myhalf4 inColor = myhalf4(a_Color); TransformVerts(Position, Normal, TexCoord); myhalf4 outColor = VertexRGBGen(Position, Normal, inColor); #ifdef APPLY_FOG #if defined(APPLY_FOG_COLOR) FogGen(Position, outColor, u_BlendMix); #else FogGen(Position, v_FogCoord); #endif #endif // APPLY_FOG qf_FrontColor = vec4(outColor); #if defined(APPLY_TC_GEN_ENV) vec3 Projection; Projection = u_EntityDist - Position.xyz; Projection = normalize(Projection); float Depth = dot(Normal.xyz, Projection) * 2.0; v_TexCoord = vec2(0.5 + (Normal.y * Depth - Projection.y) * 0.5, 0.5 - (Normal.z * Depth - Projection.z) * 0.5); #elif defined(APPLY_TC_GEN_VECTOR) v_TexCoord = vec2(u_VectorTexMatrix * Position); #elif defined(APPLY_TC_GEN_REFLECTION) v_TexCoord = vec3(u_ReflectionTexMatrix * vec4(reflect(normalize(Position.xyz - u_EntityDist), Normal.xyz), 0.0)); #elif defined(APPLY_TC_GEN_PROJECTION) v_TexCoord = vec2(normalize(u_ModelViewProjectionMatrix * Position) * 0.5 + vec4(0.5)); #else v_TexCoord = TextureMatrix2x3Mul(u_TextureMatrix, TexCoord); #endif // defined(APPLY_TC_GEN_ENV) v_Position = Position.xyz; #ifdef APPLY_DRAWFLAT v_NormalZ = Normal.z; #endif #ifdef NUM_LIGHTMAPS v_LightmapTexCoord[0] = a_LightmapCoord0; #if NUM_LIGHTMAPS >= 2 v_LightmapTexCoord[1] = a_LightmapCoord1; #if NUM_LIGHTMAPS >= 3 v_LightmapTexCoord[2] = a_LightmapCoord2; #if NUM_LIGHTMAPS >= 4 v_LightmapTexCoord[3] = a_LightmapCoord3; #endif // NUM_LIGHTMAPS >= 4 #endif // NUM_LIGHTMAPS >= 3 #endif // NUM_LIGHTMAPS >= 2 #endif // NUM_LIGHTMAPS gl_Position = u_ModelViewProjectionMatrix * Position; #if defined(APPLY_SOFT_PARTICLE) vec4 modelPos = u_ModelViewMatrix * Position; v_Depth = -modelPos.z; #endif } #endif // VERTEX_SHADER #ifdef FRAGMENT_SHADER // Fragment shader #ifdef APPLY_CUBEMAP uniform samplerCube u_BaseTexture; #else uniform sampler2D u_BaseTexture; #endif #ifdef APPLY_DRAWFLAT uniform myhalf3 u_WallColor; uniform myhalf3 u_FloorColor; #endif #ifdef NUM_LIGHTMAPS uniform sampler2D u_LightmapTexture[NUM_LIGHTMAPS]; #endif #if defined(APPLY_SOFT_PARTICLE) #ifdef FRAGMENT_SHADER myhalf FragmentSoftness(float Depth, sampler2D DepthTexture, in vec2 ScreenCoord, in ivec4 Viewport, in float ZNear, in float ZFar, myhalf Scale) { vec2 tc = ScreenCoord * u_TextureParams.zw; myhalf fragdepth = ZNear*ZFar/(ZFar - qf_texture(DepthTexture, tc).r*(ZFar-ZNear)); myhalf partdepth = Depth; myhalf d = max((fragdepth - partdepth) * Scale, 0.0); myhalf softness = 1.0 - min(1.0, d); softness *= softness; softness = 1.0 - softness * softness; return softness; } #endif uniform sampler2D u_DepthTexture; #endif void main(void) { myhalf4 color; #ifdef NUM_LIGHTMAPS color = myhalf4(0.0, 0.0, 0.0, qf_FrontColor.a); color.rgb += myhalf3(qf_texture(u_LightmapTexture[0], v_LightmapTexCoord[0])) * u_LightstyleColor[0]; #if NUM_LIGHTMAPS >= 2 color.rgb += myhalf3(qf_texture(u_LightmapTexture[1], v_LightmapTexCoord[1])) * u_LightstyleColor[1]; #if NUM_LIGHTMAPS >= 3 color.rgb += myhalf3(qf_texture(u_LightmapTexture[2], v_LightmapTexCoord[2])) * u_LightstyleColor[2]; #if NUM_LIGHTMAPS >= 4 color.rgb += myhalf3(qf_texture(u_LightmapTexture[3], v_LightmapTexCoord[3])) * u_LightstyleColor[3]; #endif // NUM_LIGHTMAPS >= 4 #endif // NUM_LIGHTMAPS >= 3 #endif // NUM_LIGHTMAPS >= 2 #else color = myhalf4(qf_FrontColor); #endif // NUM_LIGHTMAPS #if defined(APPLY_FOG) && !defined(APPLY_FOG_COLOR) myhalf fogDensity = FogDensity(v_FogCoord); #endif #if defined(NUM_DLIGHTS) color.rgb += DynamicLightsSummaryColor(v_Position); #endif myhalf4 diffuse; #ifdef APPLY_CUBEMAP diffuse = myhalf4(qf_textureCube(u_BaseTexture, v_TexCoord)); #else diffuse = myhalf4(qf_texture(u_BaseTexture, v_TexCoord)); #endif #ifdef APPLY_DRAWFLAT myhalf n = myhalf(step(DRAWFLAT_NORMAL_STEP, abs(v_NormalZ))); diffuse.rgb = myhalf3(mix(u_WallColor, u_FloorColor, n)); #endif color *= diffuse; #ifdef NUM_LIGHTMAPS // so that team-colored shaders work color *= myhalf4(qf_FrontColor); #endif #ifdef APPLY_GREYSCALE color.rgb = Greyscale(color.rgb); #endif #if defined(APPLY_FOG) && !defined(APPLY_FOG_COLOR) color.rgb = mix(color.rgb, u_Fog.Color, fogDensity); #endif #if defined(APPLY_SOFT_PARTICLE) myhalf softness = FragmentSoftness(v_Depth, u_DepthTexture, gl_FragCoord.xy, u_Viewport, u_ZNear, u_ZFar, u_SoftParticlesScale); color *= mix(myhalf4(1.0), myhalf4(softness), u_BlendMix.xxxy); #endif qf_FragColor = vec4(color); } #endif // FRAGMENT_SHADER