1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2003 University of Southern California
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Carl D. Worth <cworth@isi.edu>
*/
#include "cairoint.h"
typedef struct cairo_hull
{
cairo_point_t point;
cairo_slope_t slope;
int discard;
} cairo_hull_t;
static cairo_hull_t *
_cairo_hull_create (cairo_pen_vertex_t *vertices, int num_vertices)
{
int i;
cairo_hull_t *hull;
cairo_point_t *p, *extremum, tmp;
extremum = &vertices[0].point;
for (i = 1; i < num_vertices; i++) {
p = &vertices[i].point;
if (p->y < extremum->y || (p->y == extremum->y && p->x < extremum->x))
extremum = p;
}
/* Put the extremal point at the beginning of the array */
tmp = *extremum;
*extremum = vertices[0].point;
vertices[0].point = tmp;
hull = malloc (num_vertices * sizeof (cairo_hull_t));
if (hull == NULL)
return NULL;
for (i = 0; i < num_vertices; i++) {
hull[i].point = vertices[i].point;
_cairo_slope_init (&hull[i].slope, &hull[0].point, &hull[i].point);
/* Discard all points coincident with the extremal point */
if (i != 0 && hull[i].slope.dx == 0 && hull[i].slope.dy == 0)
hull[i].discard = 1;
else
hull[i].discard = 0;
}
return hull;
}
static int
_cairo_hull_vertex_compare (const void *av, const void *bv)
{
cairo_hull_t *a = (cairo_hull_t *) av;
cairo_hull_t *b = (cairo_hull_t *) bv;
int ret;
ret = _cairo_slope_compare (&a->slope, &b->slope);
/* In the case of two vertices with identical slope from the
extremal point discard the nearer point. */
if (ret == 0) {
cairo_fixed_48_16_t a_dist, b_dist;
a_dist = ((cairo_fixed_48_16_t) a->slope.dx * a->slope.dx +
(cairo_fixed_48_16_t) a->slope.dy * a->slope.dy);
b_dist = ((cairo_fixed_48_16_t) b->slope.dx * b->slope.dx +
(cairo_fixed_48_16_t) b->slope.dy * b->slope.dy);
if (a_dist < b_dist)
a->discard = 1;
else
b->discard = 1;
}
return ret;
}
static int
_cairo_hull_prev_valid (cairo_hull_t *hull, int num_hull, int index)
{
do {
/* hull[0] is always valid, so don't test and wraparound */
index--;
} while (hull[index].discard);
return index;
}
static int
_cairo_hull_next_valid (cairo_hull_t *hull, int num_hull, int index)
{
do {
index = (index + 1) % num_hull;
} while (hull[index].discard);
return index;
}
static cairo_status_t
_cairo_hull_eliminate_concave (cairo_hull_t *hull, int num_hull)
{
int i, j, k;
cairo_slope_t slope_ij, slope_jk;
i = 0;
j = _cairo_hull_next_valid (hull, num_hull, i);
k = _cairo_hull_next_valid (hull, num_hull, j);
do {
_cairo_slope_init (&slope_ij, &hull[i].point, &hull[j].point);
_cairo_slope_init (&slope_jk, &hull[j].point, &hull[k].point);
/* Is the angle formed by ij and jk concave? */
if (_cairo_slope_compare (&slope_ij, &slope_jk) >= 0) {
if (i == k)
return CAIRO_STATUS_SUCCESS;
hull[j].discard = 1;
j = i;
i = _cairo_hull_prev_valid (hull, num_hull, j);
} else {
i = j;
j = k;
k = _cairo_hull_next_valid (hull, num_hull, j);
}
} while (j != 0);
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_hull_to_pen (cairo_hull_t *hull, cairo_pen_vertex_t *vertices, int *num_vertices)
{
int i, j = 0;
for (i = 0; i < *num_vertices; i++) {
if (hull[i].discard)
continue;
vertices[j++].point = hull[i].point;
}
*num_vertices = j;
return CAIRO_STATUS_SUCCESS;
}
/* Given a set of vertices, compute the convex hull using the Graham
scan algorithm. */
cairo_status_t
_cairo_hull_compute (cairo_pen_vertex_t *vertices, int *num_vertices)
{
cairo_hull_t *hull;
int num_hull = *num_vertices;
hull = _cairo_hull_create (vertices, num_hull);
if (hull == NULL)
return CAIRO_STATUS_NO_MEMORY;
qsort (hull + 1, num_hull - 1,
sizeof (cairo_hull_t), _cairo_hull_vertex_compare);
_cairo_hull_eliminate_concave (hull, num_hull);
_cairo_hull_to_pen (hull, vertices, num_vertices);
free (hull);
return CAIRO_STATUS_SUCCESS;
}
|