diff options
author | Behdad Esfahbod <behdad@behdad.org> | 2008-12-27 23:13:45 -0500 |
---|---|---|
committer | Behdad Esfahbod <behdad@behdad.org> | 2008-12-27 23:44:58 -0500 |
commit | ef0f6c3ca311c41c9062e1298b020eae1212984e (patch) | |
tree | 8cf73cf584c1fcf565b3a4c5092a734b48cd2b9e /src/cairo-spline.c | |
parent | f2f62c7c4402a28a65c8171238d163af6b2fb95a (diff) |
[spline] Add an analytical bounder for splines
The way this works is very simple: Once for X, and once for Y, it
takes the derivative of the bezier equation, equals it to zero and
solves to find the extreme points, and if the extreme points are
interesting, adds them to the bounder.
Not the fastest algorithm out there, but my estimate is that if
_de_casteljau() ends up breaking a stroke in at least 10 pieces,
then the new bounder is faster. Would be good to see some real
perf data.
Diffstat (limited to 'src/cairo-spline.c')
-rw-r--r-- | src/cairo-spline.c | 131 |
1 files changed, 131 insertions, 0 deletions
diff --git a/src/cairo-spline.c b/src/cairo-spline.c index 7e794cf5..9ae15f97 100644 --- a/src/cairo-spline.c +++ b/src/cairo-spline.c @@ -208,3 +208,134 @@ _cairo_spline_decompose (cairo_spline_t *spline, double tolerance) return _cairo_spline_add_point (spline, &spline->knots.d); } + +void +_cairo_spline_bound (cairo_spline_add_point_func_t add_point_func, + void *closure, + const cairo_point_t *p0, const cairo_point_t *p1, + const cairo_point_t *p2, const cairo_point_t *p3) +{ + double x0, x1, x2, x3; + double y0, y1, y2, y3; + double a, b, c, delta; + double t[4]; + int t_num = 0, i; + + x0 = _cairo_fixed_to_double (p0->x); + y0 = _cairo_fixed_to_double (p0->y); + x1 = _cairo_fixed_to_double (p1->x); + y1 = _cairo_fixed_to_double (p1->y); + x2 = _cairo_fixed_to_double (p2->x); + y2 = _cairo_fixed_to_double (p2->y); + x3 = _cairo_fixed_to_double (p3->x); + y3 = _cairo_fixed_to_double (p3->y); + + /* The spline can be written as a polynomial of the four points: + * + * (1-t)³p0 + t(1-t)²p1 + t²(1-t)p2 + t³p3 + * + * for 0≤t≤1. Now, the X and Y components of the spline follow the + * same polynomial but with x and y replaced for p. To find the + * bounds of the spline, we just need to find the X and Y bounds. + * To find the bound, we take the derivative and equal it to zero, + * and solve to find the t's that give the extreme points. + * + * Here is the derivative of the curve, sorted on t: + * + * 3t²(-p0+3p1-3p2+p3) + 6t(3p0-6p1+3p2) -3p0+3p1 + * + * Let: + * + * a = -p0+3p1-3p2+p3 + * b = 3p0-6p1+3p2 + * c = -3p0+3p1 + * + * Gives: + * + * a.t² + 2b.t + c = 0 + * + * With: + * + * delta = b*b - a*c + * + * the extreme points are at -c/2b if a is zero, at (-b±√delta)/a if + * delta is positive, and at -b/a if delta is zero. + */ + +#define ADD(t0) \ + if (0 < (t0) && (t0) < 1) \ + t[t_num++] = (t0); + + /* Find X extremes */ + a = -x0 + 3*x1 - 3*x2 + x3; + b = x0 - 2*x1 + x2; + c = -x0 + x1; + delta = b * b - a * c; + if (a == 0) { + double t0 = -c / (2*b); + ADD (t0); + } else if (delta > 0) { + double sqrt_delta = sqrt (delta); + double t1 = (-b - sqrt_delta) / a; + double t2 = (-b + sqrt_delta) / a; + ADD (t1); + ADD (t2); + } else if (delta == 0) { + double t0 = -b / a; + ADD (t0); + } + + /* Find Y extremes */ + a = -y0 + 3*y1 - 3*y2 + y3; + b = y0 - 2*y1 + y2; + c = -y0 + y1; + delta = b * b - a * c; + if (a == 0) { + double t0 = -c / (2*b); + ADD (t0); + } else if (delta > 0) { + double sqrt_delta = sqrt (delta); + double t1 = (-b - sqrt_delta) / a; + double t2 = (-b + sqrt_delta) / a; + ADD (t1); + ADD (t2); + } else if (delta == 0) { + double t0 = -b / a; + ADD (t0); + } + + add_point_func (closure, p0); + for (i = 0; i < t_num; i++) { + cairo_point_t p; + double x, y; + double t_1_0, t_0_1; + double t_2_0, t_0_2; + double t_3_0, t_2_1, t_1_2, t_0_3; + + t_1_0 = t[i]; /* t */ + t_0_1 = 1 - t_1_0; /* (1 - t) */ + + t_2_0 = t_1_0 * t_1_0; /* t * t */ + t_0_2 = t_0_1 * t_0_1; /* (1 - t) * (1 - t) */ + + t_3_0 = t_2_0 * t_1_0; /* t * t * t */ + t_2_1 = t_2_0 * t_0_1; /* t * t * (1 - t) */ + t_1_2 = t_1_0 * t_0_2; /* t * (1 - t) * (1 - t) */ + t_0_3 = t_0_1 * t_0_2; /* (1 - t) * (1 - t) * (1 - t) */ + + /* Bezier polynomial */ + x = x0 * t_0_3 + + 3 * x1 * t_1_2 + + 3 * x2 * t_2_1 + + x3 * t_3_0; + y = y0 * t_0_3 + + 3 * y1 * t_1_2 + + 3 * y2 * t_2_1 + + y3 * t_3_0; + + p.x = _cairo_fixed_from_double (x); + p.y = _cairo_fixed_from_double (y); + add_point_func (closure, &p); + } + add_point_func (closure, p3); +} |