1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
/* cairo - a vector graphics library with display and print output
*
* This file is Copyright © 2004 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Red Hat, Inc.
*
* Contributor(s):
* Keith Packard
* Graydon Hoare <graydon@redhat.com>
*/
#include "cairoint.h"
/*
* This structure, and accompanying table, is borrowed/modified from the
* file xserver/render/glyph.c in the freedesktop.org x server, with
* permission (and suggested modification of doubling sizes) by Keith
* Packard.
*/
static const cairo_cache_arrangement_t cache_arrangements [] = {
{ 16, 43, 41 },
{ 32, 73, 71 },
{ 64, 151, 149 },
{ 128, 283, 281 },
{ 256, 571, 569 },
{ 512, 1153, 1151 },
{ 1024, 2269, 2267 },
{ 2048, 4519, 4517 },
{ 4096, 9013, 9011 },
{ 8192, 18043, 18041 },
{ 16384, 36109, 36107 },
{ 32768, 72091, 72089 },
{ 65536, 144409, 144407 },
{ 131072, 288361, 288359 },
{ 262144, 576883, 576881 },
{ 524288, 1153459, 1153457 },
{ 1048576, 2307163, 2307161 },
{ 2097152, 4613893, 4613891 },
{ 4194304, 9227641, 9227639 },
{ 8388608, 18455029, 18455027 },
{ 16777216, 36911011, 36911009 },
{ 33554432, 73819861, 73819859 },
{ 67108864, 147639589, 147639587 },
{ 134217728, 295279081, 295279079 },
{ 268435456, 590559793, 590559791 }
};
#define N_CACHE_SIZES (sizeof(cache_arrangements)/sizeof(cache_arrangements[0]))
/*
* Entries 'e' are poiners, in one of 3 states:
*
* e == NULL: The entry has never had anything put in it
* e != DEAD_ENTRY: The entry has an active value in it currently
* e == DEAD_ENTRY: The entry *had* a value in it at some point, but the
* entry has been killed. Lookups requesting free space can
* reuse these entries; lookups requesting a precise match
* should neither return these entries nor stop searching when
* seeing these entries.
*
* We expect keys will not be destroyed frequently, so our table does not
* contain any explicit shrinking code nor any chain-coalescing code for
* entries randomly deleted by memory pressure (except during rehashing, of
* course). These assumptions are potentially bad, but they make the
* implementation straightforward.
*
* Revisit later if evidence appears that we're using excessive memory from
* a mostly-dead table.
*
* Generally you do not need to worry about freeing cache entries; the
* cache will expire entries randomly as it experiences memory pressure.
* If max_memory is set, entries are not expired, and must be explicitely
* removed.
*
* This table is open-addressed with double hashing. Each table size is a
* prime chosen to be a little more than double the high water mark for a
* given arrangement, so the tables should remain < 50% full. The table
* size makes for the "first" hash modulus; a second prime (2 less than the
* first prime) serves as the "second" hash modulus, which is co-prime and
* thus guarantees a complete permutation of table indices.
*
*/
#define DEAD_ENTRY ((cairo_cache_entry_base_t *) 1)
#define NULL_ENTRY_P(cache, i) ((cache)->entries[i] == NULL)
#define DEAD_ENTRY_P(cache, i) ((cache)->entries[i] == DEAD_ENTRY)
#define LIVE_ENTRY_P(cache, i) \
(!((NULL_ENTRY_P((cache),(i))) || (DEAD_ENTRY_P((cache),(i)))))
#ifdef CAIRO_DO_SANITY_CHECKING
static void
_cache_sane_state (cairo_cache_t *cache)
{
assert (cache != NULL);
assert (cache->entries != NULL);
assert (cache->backend != NULL);
assert (cache->arrangement != NULL);
/* Cannot check this, a single object may larger */
/* assert (cache->used_memory <= cache->max_memory); */
assert (cache->live_entries <= cache->arrangement->size);
}
#else
#define _cache_sane_state(c)
#endif
static void
_entry_destroy (cairo_cache_t *cache, unsigned long i)
{
_cache_sane_state (cache);
if (LIVE_ENTRY_P(cache, i))
{
cairo_cache_entry_base_t *entry = cache->entries[i];
assert(cache->live_entries > 0);
assert(cache->used_memory >= entry->memory);
cache->live_entries--;
cache->used_memory -= entry->memory;
cache->backend->destroy_entry (cache, entry);
cache->entries[i] = DEAD_ENTRY;
}
}
static cairo_cache_entry_base_t **
_cache_lookup (cairo_cache_t *cache,
void *key,
int (*predicate)(void*,void*,void*))
{
cairo_cache_entry_base_t **probe;
unsigned long hash;
unsigned long table_size, i, idx, step;
_cache_sane_state (cache);
assert (key != NULL);
table_size = cache->arrangement->size;
hash = cache->backend->hash (cache, key);
idx = hash % table_size;
step = 0;
for (i = 0; i < table_size; ++i)
{
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
cache->probes++;
#endif
assert(idx < table_size);
probe = cache->entries + idx;
/*
* There are two lookup modes: searching for a free slot and searching
* for an exact entry.
*/
if (predicate != NULL)
{
/* We are looking up an exact entry. */
if (*probe == NULL)
/* Found an empty spot, there can't be a match */
break;
else if (*probe != DEAD_ENTRY
&& (*probe)->hashcode == hash
&& predicate (cache, key, *probe))
return probe;
}
else
{
/* We are just looking for a free slot. */
if (*probe == NULL
|| *probe == DEAD_ENTRY)
return probe;
}
if (step == 0) {
step = hash % cache->arrangement->rehash;
if (step == 0)
step = 1;
}
idx += step;
if (idx >= table_size)
idx -= table_size;
}
/*
* The table should not have permitted you to get here if you were just
* looking for a free slot: there should have been room.
*/
assert(predicate != NULL);
return NULL;
}
static cairo_cache_entry_base_t **
_find_available_entry_for (cairo_cache_t *cache,
void *key)
{
return _cache_lookup (cache, key, NULL);
}
static cairo_cache_entry_base_t **
_find_exact_live_entry_for (cairo_cache_t *cache,
void *key)
{
return _cache_lookup (cache, key, cache->backend->keys_equal);
}
static const cairo_cache_arrangement_t *
_find_cache_arrangement (unsigned long proposed_size)
{
unsigned long idx;
for (idx = 0; idx < N_CACHE_SIZES; ++idx)
if (cache_arrangements[idx].high_water_mark >= proposed_size)
return &cache_arrangements[idx];
return NULL;
}
static cairo_status_t
_resize_cache (cairo_cache_t *cache, unsigned long proposed_size)
{
cairo_cache_t tmp;
cairo_cache_entry_base_t **e;
unsigned long new_size, i;
tmp = *cache;
tmp.arrangement = _find_cache_arrangement (proposed_size);
assert(tmp.arrangement != NULL);
if (tmp.arrangement == cache->arrangement)
return CAIRO_STATUS_SUCCESS;
new_size = tmp.arrangement->size;
tmp.entries = calloc (new_size, sizeof (cairo_cache_entry_base_t *));
if (tmp.entries == NULL)
return CAIRO_STATUS_NO_MEMORY;
for (i = 0; i < cache->arrangement->size; ++i) {
if (LIVE_ENTRY_P(cache, i)) {
e = _find_available_entry_for (&tmp, cache->entries[i]);
assert (e != NULL);
*e = cache->entries[i];
}
}
free (cache->entries);
cache->entries = tmp.entries;
cache->arrangement = tmp.arrangement;
return CAIRO_STATUS_SUCCESS;
}
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
static double
_load_factor (cairo_cache_t *cache)
{
return ((double) cache->live_entries)
/ ((double) cache->arrangement->size);
}
#endif
/* Find a random in the cache matching the given predicate. We use the
* same algorithm as the probing algorithm to walk over the entries in
* the hash table in a pseudo-random order. Walking linearly would
* favor entries following gaps in the hash table. We could also
* call rand() repeatedly, which works well for almost-full tables,
* but degrades when the table is almost empty, or predicate
* returns false for most entries.
*/
static cairo_cache_entry_base_t **
_random_entry (cairo_cache_t *cache,
int (*predicate)(void*))
{
cairo_cache_entry_base_t **probe;
unsigned long hash;
unsigned long table_size, i, idx, step;
_cache_sane_state (cache);
table_size = cache->arrangement->size;
hash = rand ();
idx = hash % table_size;
step = 0;
for (i = 0; i < table_size; ++i)
{
assert(idx < table_size);
probe = cache->entries + idx;
if (LIVE_ENTRY_P(cache, idx)
&& (!predicate || predicate (*probe)))
return probe;
if (step == 0) {
step = hash % cache->arrangement->rehash;
if (step == 0)
step = 1;
}
idx += step;
if (idx >= table_size)
idx -= table_size;
}
return NULL;
}
/* public API follows */
cairo_status_t
_cairo_cache_init (cairo_cache_t *cache,
const cairo_cache_backend_t *backend,
unsigned long max_memory)
{
assert (backend != NULL);
if (cache != NULL){
cache->arrangement = &cache_arrangements[0];
cache->refcount = 1;
cache->max_memory = max_memory;
cache->used_memory = 0;
cache->live_entries = 0;
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
cache->hits = 0;
cache->misses = 0;
cache->probes = 0;
#endif
cache->backend = backend;
cache->entries = calloc (cache->arrangement->size,
sizeof(cairo_cache_entry_base_t *));
if (cache->entries == NULL)
return CAIRO_STATUS_NO_MEMORY;
}
_cache_sane_state (cache);
return CAIRO_STATUS_SUCCESS;
}
void
_cairo_cache_reference (cairo_cache_t *cache)
{
_cache_sane_state (cache);
cache->refcount++;
}
void
_cairo_cache_destroy (cairo_cache_t *cache)
{
unsigned long i;
if (cache != NULL) {
_cache_sane_state (cache);
if (--cache->refcount > 0)
return;
for (i = 0; i < cache->arrangement->size; ++i) {
_entry_destroy (cache, i);
}
free (cache->entries);
cache->entries = NULL;
cache->backend->destroy_cache (cache);
}
}
cairo_status_t
_cairo_cache_lookup (cairo_cache_t *cache,
void *key,
void **entry_return,
int *created_entry)
{
unsigned long idx;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
cairo_cache_entry_base_t **slot = NULL, *new_entry;
_cache_sane_state (cache);
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
if ((cache->hits + cache->misses) % 0xffff == 0)
printf("cache %p stats: size %ld, live %ld, load %.2f\n"
" mem %ld/%ld, hit %ld, miss %ld\n"
" probe %ld, %.2f probe/access\n",
cache,
cache->arrangement->size,
cache->live_entries,
_load_factor (cache),
cache->used_memory,
cache->max_memory,
cache->hits,
cache->misses,
cache->probes,
((double) cache->probes)
/ ((double) (cache->hits +
cache->misses + 1)));
#endif
/* See if we have an entry in the table already. */
slot = _find_exact_live_entry_for (cache, key);
if (slot != NULL) {
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
cache->hits++;
#endif
*entry_return = *slot;
if (created_entry)
*created_entry = 0;
return status;
}
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
cache->misses++;
#endif
/* Build the new entry. */
status = cache->backend->create_entry (cache, key,
(void **)&new_entry);
if (status != CAIRO_STATUS_SUCCESS)
return status;
/* Store the hash value in case the backend forgot. */
new_entry->hashcode = cache->backend->hash (cache, key);
/* Make some entries die if we're under memory pressure. */
while (cache->live_entries > 0 &&
cache->max_memory > 0 &&
((cache->max_memory - cache->used_memory) < new_entry->memory)) {
idx = _random_entry (cache, NULL) - cache->entries;
assert (idx < cache->arrangement->size);
_entry_destroy (cache, idx);
}
/* Can't assert this; new_entry->memory may be larger than max_memory */
/* assert(cache->max_memory >= (cache->used_memory + new_entry->memory)); */
/* Make room in the table for a new slot. */
status = _resize_cache (cache, cache->live_entries + 1);
if (status != CAIRO_STATUS_SUCCESS) {
cache->backend->destroy_entry (cache, new_entry);
return status;
}
slot = _find_available_entry_for (cache, key);
assert(slot != NULL);
/* Store entry in slot and increment statistics. */
*slot = new_entry;
cache->live_entries++;
cache->used_memory += new_entry->memory;
_cache_sane_state (cache);
*entry_return = new_entry;
if (created_entry)
*created_entry = 1;
return status;
}
cairo_status_t
_cairo_cache_remove (cairo_cache_t *cache,
void *key)
{
cairo_cache_entry_base_t **slot;
_cache_sane_state (cache);
/* See if we have an entry in the table already. */
slot = _find_exact_live_entry_for (cache, key);
if (slot != NULL)
_entry_destroy (cache, slot - cache->entries);
return CAIRO_STATUS_SUCCESS;
}
void *
_cairo_cache_random_entry (cairo_cache_t *cache,
int (*predicate)(void*))
{
cairo_cache_entry_base_t **slot = _random_entry (cache, predicate);
return slot ? *slot : NULL;
}
unsigned long
_cairo_hash_string (const char *c)
{
/* This is the djb2 hash. */
unsigned long hash = 5381;
while (*c)
hash = ((hash << 5) + hash) + *c++;
return hash;
}
|