/* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" #include "cairo-slope-private.h" cairo_bool_t _cairo_spline_init (cairo_spline_t *spline, cairo_spline_add_point_func_t add_point_func, void *closure, const cairo_point_t *a, const cairo_point_t *b, const cairo_point_t *c, const cairo_point_t *d) { spline->add_point_func = add_point_func; spline->closure = closure; spline->knots.a = *a; spline->knots.b = *b; spline->knots.c = *c; spline->knots.d = *d; if (a->x != b->x || a->y != b->y) _cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.b); else if (a->x != c->x || a->y != c->y) _cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.c); else if (a->x != d->x || a->y != d->y) _cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.d); else return FALSE; if (c->x != d->x || c->y != d->y) _cairo_slope_init (&spline->final_slope, &spline->knots.c, &spline->knots.d); else if (b->x != d->x || b->y != d->y) _cairo_slope_init (&spline->final_slope, &spline->knots.b, &spline->knots.d); else _cairo_slope_init (&spline->final_slope, &spline->knots.a, &spline->knots.d); return TRUE; } static cairo_status_t _cairo_spline_add_point (cairo_spline_t *spline, cairo_point_t *point) { cairo_point_t *prev; prev = &spline->last_point; if (prev->x == point->x && prev->y == point->y) return CAIRO_STATUS_SUCCESS; spline->last_point = *point; return spline->add_point_func (spline->closure, point); } static void _lerp_half (const cairo_point_t *a, const cairo_point_t *b, cairo_point_t *result) { result->x = a->x + ((b->x - a->x) >> 1); result->y = a->y + ((b->y - a->y) >> 1); } static void _de_casteljau (cairo_spline_knots_t *s1, cairo_spline_knots_t *s2) { cairo_point_t ab, bc, cd; cairo_point_t abbc, bccd; cairo_point_t final; _lerp_half (&s1->a, &s1->b, &ab); _lerp_half (&s1->b, &s1->c, &bc); _lerp_half (&s1->c, &s1->d, &cd); _lerp_half (&ab, &bc, &abbc); _lerp_half (&bc, &cd, &bccd); _lerp_half (&abbc, &bccd, &final); s2->a = final; s2->b = bccd; s2->c = cd; s2->d = s1->d; s1->b = ab; s1->c = abbc; s1->d = final; } /* Return an upper bound on the error (squared) that could result from * approximating a spline as a line segment connecting the two endpoints. */ static double _cairo_spline_error_squared (const cairo_spline_knots_t *knots) { double bdx, bdy, berr; double cdx, cdy, cerr; /* Intersection point (px): * px = p1 + u(p2 - p1) * (p - px) ∙ (p2 - p1) = 0 * Thus: * u = ((p - p1) ∙ (p2 - p1)) / ∥p2 - p1∥²; */ bdx = _cairo_fixed_to_double (knots->b.x - knots->a.x); bdy = _cairo_fixed_to_double (knots->b.y - knots->a.y); cdx = _cairo_fixed_to_double (knots->c.x - knots->a.x); cdy = _cairo_fixed_to_double (knots->c.y - knots->a.y); if (knots->a.x != knots->d.x || knots->a.y != knots->d.y) { double dx, dy, u, v; dx = _cairo_fixed_to_double (knots->d.x - knots->a.x); dy = _cairo_fixed_to_double (knots->d.y - knots->a.y); v = dx * dx + dy * dy; u = bdx * dx + bdy * dy; if (u <= 0) { /* bdx -= 0; * bdy -= 0; */ } else if (u >= v) { bdx -= dx; bdy -= dy; } else { bdx -= u/v * dx; bdy -= u/v * dy; } u = cdx * dx + cdy * dy; if (u <= 0) { /* cdx -= 0; * cdy -= 0; */ } else if (u >= v) { cdx -= dx; cdy -= dy; } else { cdx -= u/v * dx; cdy -= u/v * dy; } } berr = bdx * bdx + bdy * bdy; cerr = cdx * cdx + cdy * cdy; if (berr > cerr) return berr; else return cerr; } static cairo_status_t _cairo_spline_decompose_into (cairo_spline_knots_t *s1, double tolerance_squared, cairo_spline_t *result) { cairo_spline_knots_t s2; cairo_status_t status; if (_cairo_spline_error_squared (s1) < tolerance_squared) return _cairo_spline_add_point (result, &s1->a); _de_casteljau (s1, &s2); status = _cairo_spline_decompose_into (s1, tolerance_squared, result); if (unlikely (status)) return status; return _cairo_spline_decompose_into (&s2, tolerance_squared, result); } cairo_status_t _cairo_spline_decompose (cairo_spline_t *spline, double tolerance) { cairo_spline_knots_t s1; cairo_status_t status; s1 = spline->knots; spline->last_point = s1.a; status = _cairo_spline_decompose_into (&s1, tolerance * tolerance, spline); if (unlikely (status)) return status; return _cairo_spline_add_point (spline, &spline->knots.d); } /* Note: this function is only good for computing bounds in device space. */ cairo_status_t _cairo_spline_bound (cairo_spline_add_point_func_t add_point_func, void *closure, const cairo_point_t *p0, const cairo_point_t *p1, const cairo_point_t *p2, const cairo_point_t *p3) { double x0, x1, x2, x3; double y0, y1, y2, y3; double a, b, c; double t[4]; int t_num = 0, i; cairo_status_t status; x0 = _cairo_fixed_to_double (p0->x); y0 = _cairo_fixed_to_double (p0->y); x1 = _cairo_fixed_to_double (p1->x); y1 = _cairo_fixed_to_double (p1->y); x2 = _cairo_fixed_to_double (p2->x); y2 = _cairo_fixed_to_double (p2->y); x3 = _cairo_fixed_to_double (p3->x); y3 = _cairo_fixed_to_double (p3->y); /* The spline can be written as a polynomial of the four points: * * (1-t)³p0 + 3t(1-t)²p1 + 3t²(1-t)p2 + t³p3 * * for 0≤t≤1. Now, the X and Y components of the spline follow the * same polynomial but with x and y replaced for p. To find the * bounds of the spline, we just need to find the X and Y bounds. * To find the bound, we take the derivative and equal it to zero, * and solve to find the t's that give the extreme points. * * Here is the derivative of the curve, sorted on t: * * 3t²(-p0+3p1-3p2+p3) + 2t(3p0-6p1+3p2) -3p0+3p1 * * Let: * * a = -p0+3p1-3p2+p3 * b = p0-2p1+p2 * c = -p0+p1 * * Gives: * * a.t² + 2b.t + c = 0 * * With: * * delta = b*b - a*c * * the extreme points are at -c/2b if a is zero, at (-b±√delta)/a if * delta is positive, and at -b/a if delta is zero. */ #define ADD(t0) \ { \ double _t0 = (t0); \ if (0 < _t0 && _t0 < 1) \ t[t_num++] = _t0; \ } #define FIND_EXTREMES(a,b,c) \ { \ if (a == 0) { \ if (b != 0) \ ADD (-c / (2*b)); \ } else { \ double b2 = b * b; \ double delta = b2 - a * c; \ if (delta > 0) { \ cairo_bool_t feasible; \ double _2ab = 2 * a * b; \ /* We are only interested in solutions t that satisfy 0= 0) \ feasible = delta > b2 && delta < a*a + b2 + _2ab; \ else if (-b / a >= 1) \ feasible = delta < b2 && delta > a*a + b2 + _2ab; \ else \ feasible = delta < b2 || delta < a*a + b2 + _2ab; \ \ if (unlikely (feasible)) { \ double sqrt_delta = sqrt (delta); \ ADD ((-b - sqrt_delta) / a); \ ADD ((-b + sqrt_delta) / a); \ } \ } else if (delta == 0) { \ ADD (-b / a); \ } \ } \ } /* Find X extremes */ a = -x0 + 3*x1 - 3*x2 + x3; b = x0 - 2*x1 + x2; c = -x0 + x1; FIND_EXTREMES (a, b, c); /* Find Y extremes */ a = -y0 + 3*y1 - 3*y2 + y3; b = y0 - 2*y1 + y2; c = -y0 + y1; FIND_EXTREMES (a, b, c); status = add_point_func (closure, p0); if (unlikely (status)) return status; for (i = 0; i < t_num; i++) { cairo_point_t p; double x, y; double t_1_0, t_0_1; double t_2_0, t_0_2; double t_3_0, t_2_1_3, t_1_2_3, t_0_3; t_1_0 = t[i]; /* t */ t_0_1 = 1 - t_1_0; /* (1 - t) */ t_2_0 = t_1_0 * t_1_0; /* t * t */ t_0_2 = t_0_1 * t_0_1; /* (1 - t) * (1 - t) */ t_3_0 = t_2_0 * t_1_0; /* t * t * t */ t_2_1_3 = t_2_0 * t_0_1 * 3; /* t * t * (1 - t) * 3 */ t_1_2_3 = t_1_0 * t_0_2 * 3; /* t * (1 - t) * (1 - t) * 3 */ t_0_3 = t_0_1 * t_0_2; /* (1 - t) * (1 - t) * (1 - t) */ /* Bezier polynomial */ x = x0 * t_0_3 + x1 * t_1_2_3 + x2 * t_2_1_3 + x3 * t_3_0; y = y0 * t_0_3 + y1 * t_1_2_3 + y2 * t_2_1_3 + y3 * t_3_0; p.x = _cairo_fixed_from_double (x); p.y = _cairo_fixed_from_double (y); status = add_point_func (closure, &p); if (unlikely (status)) return status; } return add_point_func (closure, p3); }