/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ /* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * Copyright © 2005 Red Hat, Inc. * Copyright © 2006 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" /* XXX We currently have a confusing mix of boxes and rectangles as * exemplified by this function. A #cairo_box_t is a rectangular area * represented by the coordinates of the upper left and lower right * corners, expressed in fixed point numbers. A #cairo_rectangle_int_t is * also a rectangular area, but represented by the upper left corner * and the width and the height, as integer numbers. * * This function converts a #cairo_box_t to a #cairo_rectangle_int_t by * increasing the area to the nearest integer coordinates. We should * standardize on #cairo_rectangle_fixed_t and #cairo_rectangle_int_t, and * this function could be renamed to the more reasonable * _cairo_rectangle_fixed_round. */ void _cairo_box_round_to_rectangle (cairo_box_t *box, cairo_rectangle_int_t *rectangle) { rectangle->x = _cairo_fixed_integer_floor (box->p1.x); rectangle->y = _cairo_fixed_integer_floor (box->p1.y); rectangle->width = _cairo_fixed_integer_ceil (box->p2.x) - rectangle->x; rectangle->height = _cairo_fixed_integer_ceil (box->p2.y) - rectangle->y; } void _cairo_rectangle_intersect (cairo_rectangle_int_t *dest, cairo_rectangle_int_t *src) { int x1, y1, x2, y2; x1 = MAX (dest->x, src->x); y1 = MAX (dest->y, src->y); x2 = MIN (dest->x + dest->width, src->x + src->width); y2 = MIN (dest->y + dest->height, src->y + src->height); if (x1 >= x2 || y1 >= y2) { dest->x = 0; dest->y = 0; dest->width = 0; dest->height = 0; } else { dest->x = x1; dest->y = y1; dest->width = x2 - x1; dest->height = y2 - y1; } } #define P1x (line->p1.x) #define P1y (line->p1.y) #define P2x (line->p2.x) #define P2y (line->p2.y) #define B1x (box->p1.x) #define B1y (box->p1.y) #define B2x (box->p2.x) #define B2y (box->p2.y) /* * Check whether any part of line intersects box. This function essentially * computes whether the ray starting at line->p1 in the direction of line->p2 * intersects the box before it reaches p2. Normally, this is done * by dividing by the lengths of the line projected onto each axis. Because * we're in fixed point, this function does a bit more work to avoid having to * do the division -- we don't care about the actual intersection point, so * it's of no interest to us. */ cairo_bool_t _cairo_box_intersects_line_segment (cairo_box_t *box, cairo_line_t *line) { cairo_fixed_t t1, t2, t3, t4; cairo_int64_t t1y, t2y, t3x, t4x; cairo_fixed_t xlen, ylen; if (_cairo_box_contains_point(box, &line->p1) || _cairo_box_contains_point(box, &line->p2)) return TRUE; xlen = P2x - P1x; ylen = P2y - P1y; if (xlen) { if (xlen > 0) { t1 = B1x - P1x; t2 = B2x - P1x; } else { t1 = P1x - B2x; t2 = P1x - B1x; xlen = - xlen; } if ((t1 < 0 || t1 > xlen) && (t2 < 0 || t2 > xlen)) return FALSE; } else { /* Fully vertical line -- check that X is in bounds */ if (P1x < B1x || P1x > B2x) return FALSE; } if (ylen) { if (ylen > 0) { t3 = B1y - P1y; t4 = B2y - P1y; } else { t3 = P1y - B2y; t4 = P1y - B1y; ylen = - ylen; } if ((t3 < 0 || t3 > ylen) && (t4 < 0 || t4 > ylen)) return FALSE; } else { /* Fully horizontal line -- check Y */ if (P1y < B1y || P1y > B2y) return FALSE; } /* If we had a horizontal or vertical line, then it's already been checked */ if (P1x == P2x || P1y == P2y) return TRUE; /* Check overlap. Note that t1 < t2 and t3 < t4 here. */ t1y = _cairo_int32x32_64_mul (t1, ylen); t2y = _cairo_int32x32_64_mul (t2, ylen); t3x = _cairo_int32x32_64_mul (t3, xlen); t4x = _cairo_int32x32_64_mul (t4, xlen); if (_cairo_int64_lt(t1y, t4x) && _cairo_int64_lt(t3x, t2y)) return TRUE; return FALSE; } cairo_bool_t _cairo_box_contains_point (cairo_box_t *box, cairo_point_t *point) { if (point->x < box->p1.x || point->x > box->p2.x || point->y < box->p1.y || point->y > box->p2.y) return FALSE; return TRUE; }