/* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" #include "cairo-error-private.h" #include "cairo-slope-private.h" void _cairo_polygon_init (cairo_polygon_t *polygon) { VG (VALGRIND_MAKE_MEM_UNDEFINED (polygon, sizeof (cairo_polygon_t))); polygon->status = CAIRO_STATUS_SUCCESS; polygon->num_edges = 0; polygon->edges = polygon->edges_embedded; polygon->edges_size = ARRAY_LENGTH (polygon->edges_embedded); polygon->has_current_point = FALSE; polygon->has_current_edge = FALSE; polygon->num_limits = 0; polygon->extents.p1.x = polygon->extents.p1.y = INT32_MAX; polygon->extents.p2.x = polygon->extents.p2.y = INT32_MIN; } void _cairo_polygon_limit (cairo_polygon_t *polygon, const cairo_box_t *limits, int num_limits) { int n; polygon->limits = limits; polygon->num_limits = num_limits; if (polygon->num_limits) { polygon->limit = limits[0]; for (n = 1; n < num_limits; n++) { if (limits[n].p1.x < polygon->limit.p1.x) polygon->limit.p1.x = limits[n].p1.x; if (limits[n].p1.y < polygon->limit.p1.y) polygon->limit.p1.y = limits[n].p1.y; if (limits[n].p2.x > polygon->limit.p2.x) polygon->limit.p2.x = limits[n].p2.x; if (limits[n].p2.y > polygon->limit.p2.y) polygon->limit.p2.y = limits[n].p2.y; } } } void _cairo_polygon_fini (cairo_polygon_t *polygon) { if (polygon->edges != polygon->edges_embedded) free (polygon->edges); VG (VALGRIND_MAKE_MEM_NOACCESS (polygon, sizeof (cairo_polygon_t))); } /* make room for at least one more edge */ static cairo_bool_t _cairo_polygon_grow (cairo_polygon_t *polygon) { cairo_edge_t *new_edges; int old_size = polygon->edges_size; int new_size = 4 * old_size; if (CAIRO_INJECT_FAULT ()) { polygon->status = _cairo_error (CAIRO_STATUS_NO_MEMORY); return FALSE; } if (polygon->edges == polygon->edges_embedded) { new_edges = _cairo_malloc_ab (new_size, sizeof (cairo_edge_t)); if (new_edges != NULL) memcpy (new_edges, polygon->edges, old_size * sizeof (cairo_edge_t)); } else { new_edges = _cairo_realloc_ab (polygon->edges, new_size, sizeof (cairo_edge_t)); } if (unlikely (new_edges == NULL)) { polygon->status = _cairo_error (CAIRO_STATUS_NO_MEMORY); return FALSE; } polygon->edges = new_edges; polygon->edges_size = new_size; return TRUE; } static void _add_edge (cairo_polygon_t *polygon, const cairo_point_t *p1, const cairo_point_t *p2, int top, int bottom, int dir) { cairo_edge_t *edge; assert (top < bottom); if (polygon->num_edges == polygon->edges_size) { if (! _cairo_polygon_grow (polygon)) return; } edge = &polygon->edges[polygon->num_edges++]; edge->line.p1 = *p1; edge->line.p2 = *p2; edge->top = top; edge->bottom = bottom; edge->dir = dir; if (top < polygon->extents.p1.y) polygon->extents.p1.y = top; if (bottom > polygon->extents.p2.y) polygon->extents.p2.y = bottom; if (p1->x < polygon->extents.p1.x || p1->x > polygon->extents.p2.x) { cairo_fixed_t x = p1->x; if (top != p1->y) x = _cairo_edge_compute_intersection_x_for_y (p1, p2, top); if (x < polygon->extents.p1.x) polygon->extents.p1.x = x; if (x > polygon->extents.p2.x) polygon->extents.p2.x = x; } if (p2->x < polygon->extents.p1.x || p2->x > polygon->extents.p2.x) { cairo_fixed_t x = p2->x; if (bottom != p2->y) x = _cairo_edge_compute_intersection_x_for_y (p1, p2, bottom); if (x < polygon->extents.p1.x) polygon->extents.p1.x = x; if (x > polygon->extents.p2.x) polygon->extents.p2.x = x; } } static void _add_clipped_edge (cairo_polygon_t *polygon, const cairo_point_t *p1, const cairo_point_t *p2, const int top, const int bottom, const int dir) { cairo_point_t p[2]; int top_y, bot_y; int n; for (n = 0; n < polygon->num_limits; n++) { const cairo_box_t *limits = &polygon->limits[n]; if (top >= limits->p2.y) continue; if (bottom <= limits->p1.y) continue; if (p1->x <= limits->p1.x && p2->x <= limits->p1.x) { p[0].x = limits->p1.x; p[0].y = limits->p1.y; top_y = top; if (top_y < p[0].y) top_y = p[0].y; p[1].x = limits->p1.x; p[1].y = limits->p2.y; bot_y = bottom; if (bot_y > p[1].y) bot_y = p[1].y; _add_edge (polygon, &p[0], &p[1], top_y, bot_y, dir); } else if (p1->x >= limits->p2.x && p2->x >= limits->p2.x) { p[0].x = limits->p2.x; p[0].y = limits->p1.y; top_y = top; if (top_y < p[0].y) top_y = p[0].y; p[1].x = limits->p2.x; p[1].y = limits->p2.y; bot_y = bottom; if (bot_y > p[1].y) bot_y = p[1].y; _add_edge (polygon, &p[0], &p[1], top_y, bot_y, dir); } else if (p1->x >= limits->p1.x && p2->x >= limits->p1.x && p1->x <= limits->p2.x && p2->x <= limits->p2.x) { top_y = top; if (top_y < limits->p1.y) top_y = limits->p1.y; bot_y = bottom; if (bot_y > limits->p2.y) bot_y = limits->p2.y; _add_edge (polygon, p1, p2, top_y, bot_y, dir); } else { int left_y, right_y; int p1_y, p2_y; left_y = _cairo_edge_compute_intersection_y_for_x (p1, p2, limits->p1.x); right_y = _cairo_edge_compute_intersection_y_for_x (p1, p2, limits->p2.x); if (left_y == right_y) /* horizontal within bounds */ continue; p1_y = top; p2_y = bottom; if (left_y < right_y) { if (p1->x < limits->p1.x && left_y > limits->p1.y) { p[0].x = limits->p1.x; p[0].y = limits->p1.y; top_y = p1_y; if (top_y < p[0].y) top_y = p[0].y; p[1].x = limits->p1.x; p[1].y = limits->p2.y; bot_y = left_y; if (bot_y > p[1].y) bot_y = p[1].y; if (bot_y > top_y) _add_edge (polygon, &p[0], &p[1], top_y, bot_y, dir); p1_y = bot_y; } if (p2->x > limits->p2.x && right_y < limits->p2.y) { p[0].x = limits->p2.x; p[0].y = limits->p1.y; top_y = right_y; if (top_y < p[0].y) top_y = p[0].y; p[1].x = limits->p2.x; p[1].y = limits->p2.y; bot_y = p2_y; if (bot_y > p[1].y) bot_y = p[1].y; if (bot_y > top_y) _add_edge (polygon, &p[0], &p[1], top_y, bot_y, dir); p2_y = top_y; } } else { if (p1->x > limits->p2.x && right_y > limits->p1.y) { p[0].x = limits->p2.x; p[0].y = limits->p1.y; top_y = p1_y; if (top_y < p[0].y) top_y = p[0].y; p[1].x = limits->p2.x; p[1].y = limits->p2.y; bot_y = right_y; if (bot_y > p[1].y) bot_y = p[1].y; if (bot_y > top_y) _add_edge (polygon, &p[0], &p[1], top_y, bot_y, dir); p1_y = bot_y; } if (p2->x < limits->p1.x && left_y < limits->p2.y) { p[0].x = limits->p1.x; p[0].y = limits->p1.y; top_y = left_y; if (top_y < p[0].y) top_y = p[0].y; p[1].x = limits->p1.x; p[1].y = limits->p2.y; bot_y = p2_y; if (bot_y > p[1].y) bot_y = p[1].y; if (bot_y > top_y) _add_edge (polygon, &p[0], &p[1], top_y, bot_y, dir); p2_y = top_y; } } if (p1_y < limits->p1.y) p1_y = limits->p1.y; if (p2_y > limits->p2.y) p2_y = limits->p2.y; if (p2_y > p1_y) _add_edge (polygon, p1, p2, p1_y, p2_y, dir); } } } static void _cairo_polygon_add_edge (cairo_polygon_t *polygon, const cairo_point_t *p1, const cairo_point_t *p2) { int dir; /* drop horizontal edges */ if (p1->y == p2->y) return; if (p1->y < p2->y) { dir = 1; } else { const cairo_point_t *t; t = p1, p1 = p2, p2 = t; dir = -1; } if (polygon->num_limits) { if (p2->y <= polygon->limit.p1.y) return; if (p1->y >= polygon->limit.p2.y) return; _add_clipped_edge (polygon, p1, p2, p1->y, p2->y, dir); } else _add_edge (polygon, p1, p2, p1->y, p2->y, dir); } cairo_status_t _cairo_polygon_add_external_edge (void *polygon, const cairo_point_t *p1, const cairo_point_t *p2) { _cairo_polygon_add_edge (polygon, p1, p2); return _cairo_polygon_status (polygon); } cairo_status_t _cairo_polygon_add_line (cairo_polygon_t *polygon, const cairo_line_t *line, int top, int bottom, int dir) { /* drop horizontal edges */ if (line->p1.y == line->p2.y) return CAIRO_STATUS_SUCCESS; if (bottom <= top) return CAIRO_STATUS_SUCCESS; if (polygon->num_limits) { if (line->p2.y <= polygon->limit.p1.y) return CAIRO_STATUS_SUCCESS; if (line->p1.y >= polygon->limit.p2.y) return CAIRO_STATUS_SUCCESS; _add_clipped_edge (polygon, &line->p1, &line->p2, top, bottom, dir); } else _add_edge (polygon, &line->p1, &line->p2, top, bottom, dir); return polygon->status; } /* flattened path operations */ cairo_status_t _cairo_polygon_move_to (cairo_polygon_t *polygon, const cairo_point_t *point) { if (polygon->has_current_edge) { _cairo_polygon_add_edge (polygon, &polygon->last_point, &polygon->current_point); polygon->has_current_edge = FALSE; } if (! polygon->has_current_point) { polygon->first_point = *point; polygon->has_current_point = TRUE; } polygon->current_point = *point; return polygon->status; } cairo_status_t _cairo_polygon_line_to (cairo_polygon_t *polygon, const cairo_point_t *point) { /* squash collinear edges */ if (polygon->has_current_edge) { if (polygon->current_point.x != point->x || polygon->current_point.y != point->y) { cairo_slope_t this; _cairo_slope_init (&this, &polygon->current_point, point); if (_cairo_slope_equal (&polygon->current_edge, &this)) { polygon->current_point = *point; return CAIRO_STATUS_SUCCESS; } _cairo_polygon_add_edge (polygon, &polygon->last_point, &polygon->current_point); polygon->last_point = polygon->current_point; polygon->current_edge = this; } } else if (polygon->has_current_point) { if (polygon->current_point.x != point->x || polygon->current_point.y != point->y) { polygon->last_point = polygon->current_point; _cairo_slope_init (&polygon->current_edge, &polygon->last_point, point); polygon->has_current_edge = TRUE; } } else { polygon->first_point = *point; polygon->has_current_point = TRUE; } polygon->current_point = *point; return polygon->status; } cairo_status_t _cairo_polygon_close (cairo_polygon_t *polygon) { cairo_status_t status; if (polygon->has_current_point) { status = _cairo_polygon_line_to (polygon, &polygon->first_point); polygon->has_current_point = FALSE; } if (polygon->has_current_edge) { _cairo_polygon_add_edge (polygon, &polygon->last_point, &polygon->current_point); polygon->has_current_edge = FALSE; } return polygon->status; }