/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ /* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * Copyright © 2005 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" #include "cairo-error-private.h" #include "cairo-path-fixed-private.h" #include "cairo-slope-private.h" static cairo_status_t _cairo_path_fixed_add (cairo_path_fixed_t *path, cairo_path_op_t op, const cairo_point_t *points, int num_points); static void _cairo_path_fixed_add_buf (cairo_path_fixed_t *path, cairo_path_buf_t *buf); static cairo_path_buf_t * _cairo_path_buf_create (int buf_size); static void _cairo_path_buf_destroy (cairo_path_buf_t *buf); static void _cairo_path_buf_add_op (cairo_path_buf_t *buf, cairo_path_op_t op); static void _cairo_path_buf_add_points (cairo_path_buf_t *buf, const cairo_point_t *points, int num_points); #define cairo_path_head(path__) (&(path__)->buf.base) #define cairo_path_tail(path__) cairo_path_buf_prev (cairo_path_head (path__)) #define cairo_path_buf_next(pos__) \ cairo_list_entry ((pos__)->link.next, cairo_path_buf_t, link) #define cairo_path_buf_prev(pos__) \ cairo_list_entry ((pos__)->link.prev, cairo_path_buf_t, link) #define cairo_path_foreach_buf_start(pos__, path__) \ pos__ = cairo_path_head (path__); do #define cairo_path_foreach_buf_end(pos__, path__) \ while ((pos__ = cairo_path_buf_next (pos__)) != cairo_path_head (path__)) void _cairo_path_fixed_init (cairo_path_fixed_t *path) { VG (VALGRIND_MAKE_MEM_UNDEFINED (path, sizeof (cairo_path_fixed_t))); cairo_list_init (&path->buf.base.link); path->buf.base.num_ops = 0; path->buf.base.num_points = 0; path->buf.base.buf_size = CAIRO_PATH_BUF_SIZE; path->buf.base.op = path->buf.op; path->buf.base.points = path->buf.points; path->current_point.x = 0; path->current_point.y = 0; path->last_move_point = path->current_point; path->has_last_move_point = FALSE; path->has_current_point = FALSE; path->has_curve_to = FALSE; path->is_rectilinear = TRUE; path->maybe_fill_region = TRUE; path->is_empty_fill = TRUE; path->extents.p1.x = path->extents.p1.y = INT_MAX; path->extents.p2.x = path->extents.p2.y = INT_MIN; } cairo_status_t _cairo_path_fixed_init_copy (cairo_path_fixed_t *path, const cairo_path_fixed_t *other) { cairo_path_buf_t *buf, *other_buf; unsigned int num_points, num_ops, buf_size; VG (VALGRIND_MAKE_MEM_UNDEFINED (path, sizeof (cairo_path_fixed_t))); cairo_list_init (&path->buf.base.link); path->buf.base.op = path->buf.op; path->buf.base.points = path->buf.points; path->current_point = other->current_point; path->last_move_point = other->last_move_point; path->has_last_move_point = other->has_last_move_point; path->has_current_point = other->has_current_point; path->has_curve_to = other->has_curve_to; path->is_rectilinear = other->is_rectilinear; path->maybe_fill_region = other->maybe_fill_region; path->is_empty_fill = other->is_empty_fill; path->extents = other->extents; path->buf.base.num_ops = other->buf.base.num_ops; path->buf.base.num_points = other->buf.base.num_points; path->buf.base.buf_size = other->buf.base.buf_size; memcpy (path->buf.op, other->buf.base.op, other->buf.base.num_ops * sizeof (other->buf.op[0])); memcpy (path->buf.points, other->buf.points, other->buf.base.num_points * sizeof (other->buf.points[0])); num_points = num_ops = 0; for (other_buf = cairo_path_buf_next (cairo_path_head (other)); other_buf != cairo_path_head (other); other_buf = cairo_path_buf_next (other_buf)) { num_ops += other_buf->num_ops; num_points += other_buf->num_points; } buf_size = MAX (num_ops, (num_points + 1) / 2); if (buf_size) { buf = _cairo_path_buf_create (buf_size); if (unlikely (buf == NULL)) { _cairo_path_fixed_fini (path); return _cairo_error (CAIRO_STATUS_NO_MEMORY); } for (other_buf = cairo_path_buf_next (cairo_path_head (other)); other_buf != cairo_path_head (other); other_buf = cairo_path_buf_next (other_buf)) { memcpy (buf->op + buf->num_ops, other_buf->op, other_buf->num_ops * sizeof (buf->op[0])); buf->num_ops += other_buf->num_ops; memcpy (buf->points + buf->num_points, other_buf->points, other_buf->num_points * sizeof (buf->points[0])); buf->num_points += other_buf->num_points; } _cairo_path_fixed_add_buf (path, buf); } return CAIRO_STATUS_SUCCESS; } unsigned long _cairo_path_fixed_hash (const cairo_path_fixed_t *path) { unsigned long hash = _CAIRO_HASH_INIT_VALUE; const cairo_path_buf_t *buf; int num_points, num_ops; hash = _cairo_hash_bytes (hash, &path->extents, sizeof (path->extents)); num_ops = num_points = 0; cairo_path_foreach_buf_start (buf, path) { hash = _cairo_hash_bytes (hash, buf->op, buf->num_ops * sizeof (buf->op[0])); hash = _cairo_hash_bytes (hash, buf->points, buf->num_points * sizeof (buf->points[0])); num_ops += buf->num_ops; num_points += buf->num_points; } cairo_path_foreach_buf_end (buf, path); hash = _cairo_hash_bytes (hash, &num_ops, sizeof (num_ops)); hash = _cairo_hash_bytes (hash, &num_points, sizeof (num_points)); return hash; } unsigned long _cairo_path_fixed_size (const cairo_path_fixed_t *path) { const cairo_path_buf_t *buf; int num_points, num_ops; num_ops = num_points = 0; cairo_path_foreach_buf_start (buf, path) { num_ops += buf->num_ops; num_points += buf->num_points; } cairo_path_foreach_buf_end (buf, path); return num_ops * sizeof (buf->op[0]) + num_points * sizeof (buf->points[0]); } cairo_bool_t _cairo_path_fixed_equal (const cairo_path_fixed_t *a, const cairo_path_fixed_t *b) { const cairo_path_buf_t *buf_a, *buf_b; const cairo_path_op_t *ops_a, *ops_b; const cairo_point_t *points_a, *points_b; int num_points_a, num_ops_a; int num_points_b, num_ops_b; if (a == b) return TRUE; /* use the flags to quickly differentiate based on contents */ if (a->is_empty_fill != b->is_empty_fill || a->has_curve_to != b->has_curve_to || a->maybe_fill_region != b->maybe_fill_region || a->is_rectilinear != b->is_rectilinear) { return FALSE; } if (a->extents.p1.x != b->extents.p1.x || a->extents.p1.y != b->extents.p1.y || a->extents.p2.x != b->extents.p2.x || a->extents.p2.y != b->extents.p2.y) { return FALSE; } num_ops_a = num_points_a = 0; if (a != NULL) { cairo_path_foreach_buf_start (buf_a, a) { num_ops_a += buf_a->num_ops; num_points_a += buf_a->num_points; } cairo_path_foreach_buf_end (buf_a, a); } num_ops_b = num_points_b = 0; if (b != NULL) { cairo_path_foreach_buf_start (buf_b, b) { num_ops_b += buf_b->num_ops; num_points_b += buf_b->num_points; } cairo_path_foreach_buf_end (buf_b, b); } if (num_ops_a == 0 && num_ops_b == 0) return TRUE; if (num_ops_a != num_ops_b || num_points_a != num_points_b) return FALSE; assert (a != NULL && b != NULL); buf_a = cairo_path_head (a); num_points_a = buf_a->num_points; num_ops_a = buf_a->num_ops; ops_a = buf_a->op; points_a = buf_a->points; buf_b = cairo_path_head (b); num_points_b = buf_b->num_points; num_ops_b = buf_b->num_ops; ops_b = buf_b->op; points_b = buf_b->points; while (TRUE) { int num_ops = MIN (num_ops_a, num_ops_b); int num_points = MIN (num_points_a, num_points_b); if (memcmp (ops_a, ops_b, num_ops * sizeof (cairo_path_op_t))) return FALSE; if (memcmp (points_a, points_b, num_points * sizeof (cairo_point_t))) return FALSE; num_ops_a -= num_ops; ops_a += num_ops; num_points_a -= num_points; points_a += num_points; if (num_ops_a == 0 || num_points_a == 0) { if (num_ops_a || num_points_a) return FALSE; buf_a = cairo_path_buf_next (buf_a); if (buf_a == cairo_path_head (a)) break; num_points_a = buf_a->num_points; num_ops_a = buf_a->num_ops; ops_a = buf_a->op; points_a = buf_a->points; } num_ops_b -= num_ops; ops_b += num_ops; num_points_b -= num_points; points_b += num_points; if (num_ops_b == 0 || num_points_b == 0) { if (num_ops_b || num_points_b) return FALSE; buf_b = cairo_path_buf_next (buf_b); if (buf_b == cairo_path_head (b)) break; num_points_b = buf_b->num_points; num_ops_b = buf_b->num_ops; ops_b = buf_b->op; points_b = buf_b->points; } } return TRUE; } cairo_path_fixed_t * _cairo_path_fixed_create (void) { cairo_path_fixed_t *path; path = malloc (sizeof (cairo_path_fixed_t)); if (!path) { _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); return NULL; } _cairo_path_fixed_init (path); return path; } void _cairo_path_fixed_fini (cairo_path_fixed_t *path) { cairo_path_buf_t *buf; buf = cairo_path_buf_next (cairo_path_head (path)); while (buf != cairo_path_head (path)) { cairo_path_buf_t *this = buf; buf = cairo_path_buf_next (buf); _cairo_path_buf_destroy (this); } VG (VALGRIND_MAKE_MEM_NOACCESS (path, sizeof (cairo_path_fixed_t))); } void _cairo_path_fixed_destroy (cairo_path_fixed_t *path) { _cairo_path_fixed_fini (path); free (path); } static cairo_path_op_t _cairo_path_last_op (cairo_path_fixed_t *path) { cairo_path_buf_t *buf; buf = cairo_path_tail (path); if (buf->num_ops == 0) return -1; return buf->op[buf->num_ops - 1]; } static inline void _cairo_path_fixed_extents_add (cairo_path_fixed_t *path, const cairo_point_t *point) { if (point->x < path->extents.p1.x) path->extents.p1.x = point->x; if (point->y < path->extents.p1.y) path->extents.p1.y = point->y; if (point->x > path->extents.p2.x) path->extents.p2.x = point->x; if (point->y > path->extents.p2.y) path->extents.p2.y = point->y; } cairo_status_t _cairo_path_fixed_move_to (cairo_path_fixed_t *path, cairo_fixed_t x, cairo_fixed_t y) { cairo_status_t status; cairo_point_t point; point.x = x; point.y = y; /* If the previous op was also a MOVE_TO, then just change its * point rather than adding a new op. */ if (_cairo_path_last_op (path) == CAIRO_PATH_OP_MOVE_TO) { cairo_path_buf_t *buf; buf = cairo_path_tail (path); buf->points[buf->num_points - 1] = point; } else { status = _cairo_path_fixed_add (path, CAIRO_PATH_OP_MOVE_TO, &point, 1); if (unlikely (status)) return status; if (path->has_current_point && path->is_rectilinear) { /* a move-to is first an implicit close */ path->is_rectilinear = path->current_point.x == path->last_move_point.x || path->current_point.y == path->last_move_point.y; path->maybe_fill_region &= path->is_rectilinear; } if (path->maybe_fill_region) { path->maybe_fill_region = _cairo_fixed_is_integer (path->last_move_point.x) && _cairo_fixed_is_integer (path->last_move_point.y); } } path->current_point = point; path->last_move_point = point; path->has_last_move_point = TRUE; path->has_current_point = TRUE; return CAIRO_STATUS_SUCCESS; } void _cairo_path_fixed_new_sub_path (cairo_path_fixed_t *path) { path->has_current_point = FALSE; } cairo_status_t _cairo_path_fixed_rel_move_to (cairo_path_fixed_t *path, cairo_fixed_t dx, cairo_fixed_t dy) { if (unlikely (! path->has_current_point)) return _cairo_error (CAIRO_STATUS_NO_CURRENT_POINT); return _cairo_path_fixed_move_to (path, path->current_point.x + dx, path->current_point.y + dy); } cairo_status_t _cairo_path_fixed_line_to (cairo_path_fixed_t *path, cairo_fixed_t x, cairo_fixed_t y) { cairo_status_t status; cairo_point_t point; point.x = x; point.y = y; /* When there is not yet a current point, the line_to operation * becomes a move_to instead. Note: We have to do this by * explicitly calling into _cairo_path_fixed_move_to to ensure * that the last_move_point state is updated properly. */ if (! path->has_current_point) return _cairo_path_fixed_move_to (path, point.x, point.y); /* If the previous op was but the initial MOVE_TO and this segment * is degenerate, then we can simply skip this point. Note that * a move-to followed by a degenerate line-to is a valid path for * stroking, but at all other times is simply a degenerate segment. */ if (_cairo_path_last_op (path) != CAIRO_PATH_OP_MOVE_TO) { if (x == path->current_point.x && y == path->current_point.y) return CAIRO_STATUS_SUCCESS; } /* If the previous op was also a LINE_TO with the same gradient, * then just change its end-point rather than adding a new op. */ if (_cairo_path_last_op (path) == CAIRO_PATH_OP_LINE_TO) { cairo_path_buf_t *buf; const cairo_point_t *p; buf = cairo_path_tail (path); if (likely (buf->num_points >= 2)) { p = &buf->points[buf->num_points-2]; } else { cairo_path_buf_t *prev_buf = cairo_path_buf_prev (buf); p = &prev_buf->points[prev_buf->num_points - (2 - buf->num_points)]; } if (p->x == path->current_point.x && p->y == path->current_point.y) { /* previous line element was degenerate, replace */ buf->points[buf->num_points - 1] = point; goto FLAGS; } else { cairo_slope_t prev, self; _cairo_slope_init (&prev, p, &path->current_point); _cairo_slope_init (&self, &path->current_point, &point); if (_cairo_slope_equal (&prev, &self) && /* cannot trim anti-parallel segments whilst stroking */ ! _cairo_slope_backwards (&prev, &self)) { buf->points[buf->num_points - 1] = point; goto FLAGS; } } } status = _cairo_path_fixed_add (path, CAIRO_PATH_OP_LINE_TO, &point, 1); if (unlikely (status)) return status; FLAGS: if (path->is_rectilinear) { path->is_rectilinear = path->current_point.x == x || path->current_point.y == y; path->maybe_fill_region &= path->is_rectilinear; } if (path->maybe_fill_region) { path->maybe_fill_region = _cairo_fixed_is_integer (x) && _cairo_fixed_is_integer (y); } if (path->is_empty_fill) { path->is_empty_fill = path->current_point.x == x && path->current_point.y == y; } path->current_point = point; if (path->has_last_move_point) { _cairo_path_fixed_extents_add (path, &path->last_move_point); path->has_last_move_point = FALSE; } _cairo_path_fixed_extents_add (path, &point); return CAIRO_STATUS_SUCCESS; } cairo_status_t _cairo_path_fixed_rel_line_to (cairo_path_fixed_t *path, cairo_fixed_t dx, cairo_fixed_t dy) { if (unlikely (! path->has_current_point)) return _cairo_error (CAIRO_STATUS_NO_CURRENT_POINT); return _cairo_path_fixed_line_to (path, path->current_point.x + dx, path->current_point.y + dy); } cairo_status_t _cairo_path_fixed_curve_to (cairo_path_fixed_t *path, cairo_fixed_t x0, cairo_fixed_t y0, cairo_fixed_t x1, cairo_fixed_t y1, cairo_fixed_t x2, cairo_fixed_t y2) { cairo_status_t status; cairo_point_t point[3]; /* make sure subpaths are started properly */ if (! path->has_current_point) { status = _cairo_path_fixed_move_to (path, x0, y0); if (unlikely (status)) return status; } point[0].x = x0; point[0].y = y0; point[1].x = x1; point[1].y = y1; point[2].x = x2; point[2].y = y2; status = _cairo_path_fixed_add (path, CAIRO_PATH_OP_CURVE_TO, point, 3); if (unlikely (status)) return status; path->current_point = point[2]; path->has_current_point = TRUE; path->is_empty_fill = FALSE; path->has_curve_to = TRUE; path->is_rectilinear = FALSE; path->maybe_fill_region = FALSE; /* coarse bounds */ if (path->has_last_move_point) { _cairo_path_fixed_extents_add (path, &path->last_move_point); path->has_last_move_point = FALSE; } _cairo_path_fixed_extents_add (path, &point[0]); _cairo_path_fixed_extents_add (path, &point[1]); _cairo_path_fixed_extents_add (path, &point[2]); return CAIRO_STATUS_SUCCESS; } cairo_status_t _cairo_path_fixed_rel_curve_to (cairo_path_fixed_t *path, cairo_fixed_t dx0, cairo_fixed_t dy0, cairo_fixed_t dx1, cairo_fixed_t dy1, cairo_fixed_t dx2, cairo_fixed_t dy2) { if (unlikely (! path->has_current_point)) return _cairo_error (CAIRO_STATUS_NO_CURRENT_POINT); return _cairo_path_fixed_curve_to (path, path->current_point.x + dx0, path->current_point.y + dy0, path->current_point.x + dx1, path->current_point.y + dy1, path->current_point.x + dx2, path->current_point.y + dy2); } cairo_status_t _cairo_path_fixed_close_path (cairo_path_fixed_t *path) { cairo_status_t status; if (! path->has_current_point) return CAIRO_STATUS_SUCCESS; /* If the previous op was also a LINE_TO back to the start, discard it */ if (_cairo_path_last_op (path) == CAIRO_PATH_OP_LINE_TO) { if (path->current_point.x == path->last_move_point.x && path->current_point.y == path->last_move_point.y) { cairo_path_buf_t *buf; cairo_point_t *p; buf = cairo_path_tail (path); if (likely (buf->num_points >= 2)) { p = &buf->points[buf->num_points-2]; } else { cairo_path_buf_t *prev_buf = cairo_path_buf_prev (buf); p = &prev_buf->points[prev_buf->num_points - (2 - buf->num_points)]; } path->current_point = *p; buf->num_ops--; buf->num_points--; } } status = _cairo_path_fixed_add (path, CAIRO_PATH_OP_CLOSE_PATH, NULL, 0); if (unlikely (status)) return status; return _cairo_path_fixed_move_to (path, path->last_move_point.x, path->last_move_point.y); } cairo_bool_t _cairo_path_fixed_get_current_point (cairo_path_fixed_t *path, cairo_fixed_t *x, cairo_fixed_t *y) { if (! path->has_current_point) return FALSE; *x = path->current_point.x; *y = path->current_point.y; return TRUE; } static cairo_status_t _cairo_path_fixed_add (cairo_path_fixed_t *path, cairo_path_op_t op, const cairo_point_t *points, int num_points) { cairo_path_buf_t *buf = cairo_path_tail (path); if (buf->num_ops + 1 > buf->buf_size || buf->num_points + num_points > 2 * buf->buf_size) { buf = _cairo_path_buf_create (buf->buf_size * 2); if (unlikely (buf == NULL)) return _cairo_error (CAIRO_STATUS_NO_MEMORY); _cairo_path_fixed_add_buf (path, buf); } if (WATCH_PATH) { const char *op_str[] = { "move-to", "line-to", "curve-to", "close-path", }; char buf[1024]; int len = 0; int i; len += snprintf (buf + len, sizeof (buf), "["); for (i = 0; i < num_points; i++) { if (i != 0) len += snprintf (buf + len, sizeof (buf), " "); len += snprintf (buf + len, sizeof (buf), "(%f, %f)", _cairo_fixed_to_double (points[i].x), _cairo_fixed_to_double (points[i].y)); } len += snprintf (buf + len, sizeof (buf), "]"); fprintf (stderr, "_cairo_path_fixed_add (%s, %s)\n", op_str[(int) op], buf); } _cairo_path_buf_add_op (buf, op); _cairo_path_buf_add_points (buf, points, num_points); return CAIRO_STATUS_SUCCESS; } static void _cairo_path_fixed_add_buf (cairo_path_fixed_t *path, cairo_path_buf_t *buf) { cairo_list_add_tail (&buf->link, &cairo_path_head (path)->link); } static cairo_path_buf_t * _cairo_path_buf_create (int buf_size) { cairo_path_buf_t *buf; /* adjust buf_size to ensure that buf->points is naturally aligned */ buf_size += sizeof (double) - ((buf_size + sizeof (cairo_path_buf_t)) & (sizeof (double)-1)); buf = _cairo_malloc_ab_plus_c (buf_size, sizeof (cairo_path_op_t) + 2 * sizeof (cairo_point_t), sizeof (cairo_path_buf_t)); if (buf) { buf->num_ops = 0; buf->num_points = 0; buf->buf_size = buf_size; buf->op = (cairo_path_op_t *) (buf + 1); buf->points = (cairo_point_t *) (buf->op + buf_size); } return buf; } static void _cairo_path_buf_destroy (cairo_path_buf_t *buf) { free (buf); } static void _cairo_path_buf_add_op (cairo_path_buf_t *buf, cairo_path_op_t op) { buf->op[buf->num_ops++] = op; } static void _cairo_path_buf_add_points (cairo_path_buf_t *buf, const cairo_point_t *points, int num_points) { memcpy (buf->points + buf->num_points, points, sizeof (points[0]) * num_points); buf->num_points += num_points; } cairo_status_t _cairo_path_fixed_interpret (const cairo_path_fixed_t *path, cairo_direction_t dir, cairo_path_fixed_move_to_func_t *move_to, cairo_path_fixed_line_to_func_t *line_to, cairo_path_fixed_curve_to_func_t *curve_to, cairo_path_fixed_close_path_func_t *close_path, void *closure) { const uint8_t num_args[] = { 1, /* cairo_path_move_to */ 1, /* cairo_path_op_line_to */ 3, /* cairo_path_op_curve_to */ 0, /* cairo_path_op_close_path */ }; cairo_status_t status; const cairo_path_buf_t *buf, *first; cairo_bool_t forward = (dir == CAIRO_DIRECTION_FORWARD); int step = forward ? 1 : -1; buf = first = forward ? cairo_path_head (path) : cairo_path_tail (path); do { cairo_point_t *points; int start, stop, i; if (forward) { start = 0; stop = buf->num_ops; points = buf->points; } else { start = buf->num_ops - 1; stop = -1; points = buf->points + buf->num_points; } for (i = start; i != stop; i += step) { cairo_path_op_t op = buf->op[i]; if (! forward) points -= num_args[(int) op]; switch (op) { case CAIRO_PATH_OP_MOVE_TO: status = (*move_to) (closure, &points[0]); break; case CAIRO_PATH_OP_LINE_TO: status = (*line_to) (closure, &points[0]); break; case CAIRO_PATH_OP_CURVE_TO: status = (*curve_to) (closure, &points[0], &points[1], &points[2]); break; default: ASSERT_NOT_REACHED; case CAIRO_PATH_OP_CLOSE_PATH: status = (*close_path) (closure); break; } if (unlikely (status)) return status; if (forward) points += num_args[(int) op]; } } while ((buf = forward ? cairo_path_buf_next (buf) : cairo_path_buf_prev (buf)) != first); return CAIRO_STATUS_SUCCESS; } typedef struct _cairo_path_fixed_append_closure { cairo_point_t offset; cairo_path_fixed_t *path; } cairo_path_fixed_append_closure_t; static cairo_status_t _append_move_to (void *abstract_closure, const cairo_point_t *point) { cairo_path_fixed_append_closure_t *closure = abstract_closure; return _cairo_path_fixed_move_to (closure->path, point->x + closure->offset.x, point->y + closure->offset.y); } static cairo_status_t _append_line_to (void *abstract_closure, const cairo_point_t *point) { cairo_path_fixed_append_closure_t *closure = abstract_closure; return _cairo_path_fixed_line_to (closure->path, point->x + closure->offset.x, point->y + closure->offset.y); } static cairo_status_t _append_curve_to (void *abstract_closure, const cairo_point_t *p0, const cairo_point_t *p1, const cairo_point_t *p2) { cairo_path_fixed_append_closure_t *closure = abstract_closure; return _cairo_path_fixed_curve_to (closure->path, p0->x + closure->offset.x, p0->y + closure->offset.y, p1->x + closure->offset.x, p1->y + closure->offset.y, p2->x + closure->offset.x, p2->y + closure->offset.y); } static cairo_status_t _append_close_path (void *abstract_closure) { cairo_path_fixed_append_closure_t *closure = abstract_closure; return _cairo_path_fixed_close_path (closure->path); } cairo_status_t _cairo_path_fixed_append (cairo_path_fixed_t *path, const cairo_path_fixed_t *other, cairo_direction_t dir, cairo_fixed_t tx, cairo_fixed_t ty) { cairo_path_fixed_append_closure_t closure; closure.path = path; closure.offset.x = tx; closure.offset.y = ty; return _cairo_path_fixed_interpret (other, dir, _append_move_to, _append_line_to, _append_curve_to, _append_close_path, &closure); } static void _cairo_path_fixed_offset_and_scale (cairo_path_fixed_t *path, cairo_fixed_t offx, cairo_fixed_t offy, cairo_fixed_t scalex, cairo_fixed_t scaley) { cairo_path_buf_t *buf; unsigned int i; if (path->maybe_fill_region) { path->maybe_fill_region = _cairo_fixed_is_integer (offx) && _cairo_fixed_is_integer (offy) && _cairo_fixed_is_integer (scalex) && _cairo_fixed_is_integer (scaley); } cairo_path_foreach_buf_start (buf, path) { for (i = 0; i < buf->num_points; i++) { if (scalex != CAIRO_FIXED_ONE) buf->points[i].x = _cairo_fixed_mul (buf->points[i].x, scalex); buf->points[i].x += offx; if (scaley != CAIRO_FIXED_ONE) buf->points[i].y = _cairo_fixed_mul (buf->points[i].y, scaley); buf->points[i].y += offy; } } cairo_path_foreach_buf_end (buf, path); path->extents.p1.x = _cairo_fixed_mul (scalex, path->extents.p1.x) + offx; path->extents.p2.x = _cairo_fixed_mul (scalex, path->extents.p2.x) + offx; path->extents.p1.y = _cairo_fixed_mul (scaley, path->extents.p1.y) + offy; path->extents.p2.y = _cairo_fixed_mul (scaley, path->extents.p2.y) + offy; } void _cairo_path_fixed_translate (cairo_path_fixed_t *path, cairo_fixed_t offx, cairo_fixed_t offy) { cairo_path_buf_t *buf; unsigned int i; if (offx == 0 && offy == 0) return; if (path->maybe_fill_region && ! (_cairo_fixed_is_integer (offx) && _cairo_fixed_is_integer (offy))) { path->maybe_fill_region = FALSE; } path->last_move_point.x += offx; path->last_move_point.y += offy; path->current_point.x += offx; path->current_point.y += offy; cairo_path_foreach_buf_start (buf, path) { for (i = 0; i < buf->num_points; i++) { buf->points[i].x += offx; buf->points[i].y += offy; } } cairo_path_foreach_buf_end (buf, path); path->extents.p1.x += offx; path->extents.p1.y += offy; path->extents.p2.x += offx; path->extents.p2.y += offy; } /** * _cairo_path_fixed_transform: * @path: a #cairo_path_fixed_t to be transformed * @matrix: a #cairo_matrix_t * * Transform the fixed-point path according to the given matrix. * There is a fast path for the case where @matrix has no rotation * or shear. **/ void _cairo_path_fixed_transform (cairo_path_fixed_t *path, const cairo_matrix_t *matrix) { cairo_path_buf_t *buf; unsigned int i; double dx, dy; /* XXX current_point, last_move_to */ if (matrix->yx == 0.0 && matrix->xy == 0.0) { /* Fast path for the common case of scale+transform */ if (matrix->xx == 1. && matrix->yy == 1.) { _cairo_path_fixed_translate (path, _cairo_fixed_from_double (matrix->x0), _cairo_fixed_from_double (matrix->y0)); } else { _cairo_path_fixed_offset_and_scale (path, _cairo_fixed_from_double (matrix->x0), _cairo_fixed_from_double (matrix->y0), _cairo_fixed_from_double (matrix->xx), _cairo_fixed_from_double (matrix->yy)); } return; } path->extents.p1.x = path->extents.p1.y = INT_MAX; path->extents.p2.x = path->extents.p2.y = INT_MIN; path->maybe_fill_region = FALSE; cairo_path_foreach_buf_start (buf, path) { for (i = 0; i < buf->num_points; i++) { dx = _cairo_fixed_to_double (buf->points[i].x); dy = _cairo_fixed_to_double (buf->points[i].y); cairo_matrix_transform_point (matrix, &dx, &dy); buf->points[i].x = _cairo_fixed_from_double (dx); buf->points[i].y = _cairo_fixed_from_double (dy); /* XXX need to eliminate surplus move-to's? */ _cairo_path_fixed_extents_add (path, &buf->points[i]); } } cairo_path_foreach_buf_end (buf, path); } cairo_bool_t _cairo_path_fixed_is_equal (const cairo_path_fixed_t *path, const cairo_path_fixed_t *other) { const cairo_path_buf_t *path_buf, *other_buf; if (path->current_point.x != other->current_point.x || path->current_point.y != other->current_point.y || path->has_current_point != other->has_current_point || path->has_curve_to != other->has_curve_to || path->is_rectilinear != other->is_rectilinear || path->maybe_fill_region != other->maybe_fill_region || path->last_move_point.x != other->last_move_point.x || path->last_move_point.y != other->last_move_point.y) { return FALSE; } other_buf = cairo_path_head (other); cairo_path_foreach_buf_start (path_buf, path) { if (path_buf->num_ops != other_buf->num_ops || path_buf->num_points != other_buf->num_points || memcmp (path_buf->op, other_buf->op, sizeof (cairo_path_op_t) * path_buf->num_ops) != 0 || memcmp (path_buf->points, other_buf->points, sizeof (cairo_point_t) * path_buf->num_points) != 0) { return FALSE; } other_buf = cairo_path_buf_next (other_buf); } cairo_path_foreach_buf_end (path_buf, path); return TRUE; } /* Closure for path flattening */ typedef struct cairo_path_flattener { double tolerance; cairo_point_t current_point; cairo_path_fixed_move_to_func_t *move_to; cairo_path_fixed_line_to_func_t *line_to; cairo_path_fixed_close_path_func_t *close_path; void *closure; } cpf_t; static cairo_status_t _cpf_move_to (void *closure, const cairo_point_t *point) { cpf_t *cpf = closure; cpf->current_point = *point; return cpf->move_to (cpf->closure, point); } static cairo_status_t _cpf_line_to (void *closure, const cairo_point_t *point) { cpf_t *cpf = closure; cpf->current_point = *point; return cpf->line_to (cpf->closure, point); } static cairo_status_t _cpf_curve_to (void *closure, const cairo_point_t *p1, const cairo_point_t *p2, const cairo_point_t *p3) { cpf_t *cpf = closure; cairo_spline_t spline; cairo_point_t *p0 = &cpf->current_point; if (! _cairo_spline_init (&spline, cpf->line_to, cpf->closure, p0, p1, p2, p3)) { return _cpf_line_to (closure, p3); } cpf->current_point = *p3; return _cairo_spline_decompose (&spline, cpf->tolerance); } static cairo_status_t _cpf_close_path (void *closure) { cpf_t *cpf = closure; return cpf->close_path (cpf->closure); } cairo_status_t _cairo_path_fixed_interpret_flat (const cairo_path_fixed_t *path, cairo_direction_t dir, cairo_path_fixed_move_to_func_t *move_to, cairo_path_fixed_line_to_func_t *line_to, cairo_path_fixed_close_path_func_t *close_path, void *closure, double tolerance) { cpf_t flattener; if (! path->has_curve_to) { return _cairo_path_fixed_interpret (path, dir, move_to, line_to, NULL, close_path, closure); } flattener.tolerance = tolerance; flattener.move_to = move_to; flattener.line_to = line_to; flattener.close_path = close_path; flattener.closure = closure; return _cairo_path_fixed_interpret (path, dir, _cpf_move_to, _cpf_line_to, _cpf_curve_to, _cpf_close_path, &flattener); } static inline void _canonical_box (cairo_box_t *box, const cairo_point_t *p1, const cairo_point_t *p2) { if (p1->x <= p2->x) { box->p1.x = p1->x; box->p2.x = p2->x; } else { box->p1.x = p2->x; box->p2.x = p1->x; } if (p1->y <= p2->y) { box->p1.y = p1->y; box->p2.y = p2->y; } else { box->p1.y = p2->y; box->p2.y = p1->y; } } /* * Check whether the given path contains a single rectangle. */ cairo_bool_t _cairo_path_fixed_is_box (const cairo_path_fixed_t *path, cairo_box_t *box) { const cairo_path_buf_t *buf = cairo_path_head (path); if (! path->is_rectilinear) return FALSE; /* Do we have the right number of ops? */ if (buf->num_ops < 4 || buf->num_ops > 6) return FALSE; /* Check whether the ops are those that would be used for a rectangle */ if (buf->op[0] != CAIRO_PATH_OP_MOVE_TO || buf->op[1] != CAIRO_PATH_OP_LINE_TO || buf->op[2] != CAIRO_PATH_OP_LINE_TO || buf->op[3] != CAIRO_PATH_OP_LINE_TO) { return FALSE; } /* we accept an implicit close for filled paths */ if (buf->num_ops > 4) { /* Now, there are choices. The rectangle might end with a LINE_TO * (to the original point), but this isn't required. If it * doesn't, then it must end with a CLOSE_PATH. */ if (buf->op[4] == CAIRO_PATH_OP_LINE_TO) { if (buf->points[4].x != buf->points[0].x || buf->points[4].y != buf->points[0].y) return FALSE; } else if (buf->op[4] != CAIRO_PATH_OP_CLOSE_PATH) { return FALSE; } if (buf->num_ops == 6) { /* A trailing CLOSE_PATH or MOVE_TO is ok */ if (buf->op[5] != CAIRO_PATH_OP_MOVE_TO && buf->op[5] != CAIRO_PATH_OP_CLOSE_PATH) return FALSE; } } /* Ok, we may have a box, if the points line up */ if (buf->points[0].y == buf->points[1].y && buf->points[1].x == buf->points[2].x && buf->points[2].y == buf->points[3].y && buf->points[3].x == buf->points[0].x) { _canonical_box (box, &buf->points[0], &buf->points[2]); return TRUE; } if (buf->points[0].x == buf->points[1].x && buf->points[1].y == buf->points[2].y && buf->points[2].x == buf->points[3].x && buf->points[3].y == buf->points[0].y) { _canonical_box (box, &buf->points[0], &buf->points[2]); return TRUE; } return FALSE; } /* * Check whether the given path contains a single rectangle * that is logically equivalent to: * * cairo_move_to (cr, x, y); * cairo_rel_line_to (cr, width, 0); * cairo_rel_line_to (cr, 0, height); * cairo_rel_line_to (cr, -width, 0); * cairo_close_path (cr); * */ cairo_bool_t _cairo_path_fixed_is_rectangle (const cairo_path_fixed_t *path, cairo_box_t *box) { const cairo_path_buf_t *buf; if (! _cairo_path_fixed_is_box (path, box)) return FALSE; buf = cairo_path_head (path); if (buf->points[0].y == buf->points[1].y) return TRUE; return FALSE; } void _cairo_path_fixed_iter_init (cairo_path_fixed_iter_t *iter, const cairo_path_fixed_t *path) { iter->first = iter->buf = cairo_path_head (path); iter->n_op = 0; iter->n_point = 0; } static cairo_bool_t _cairo_path_fixed_iter_next_op (cairo_path_fixed_iter_t *iter) { if (++iter->n_op >= iter->buf->num_ops) { iter->buf = cairo_path_buf_next (iter->buf); if (iter->buf == iter->first) { iter->buf = NULL; return FALSE; } iter->n_op = 0; iter->n_point = 0; } return TRUE; } cairo_bool_t _cairo_path_fixed_iter_is_fill_box (cairo_path_fixed_iter_t *_iter, cairo_box_t *box) { cairo_point_t points[5]; cairo_path_fixed_iter_t iter; if (_iter->buf == NULL) return FALSE; iter = *_iter; if (iter.n_op == iter.buf->num_ops && ! _cairo_path_fixed_iter_next_op (&iter)) { return FALSE; } /* Check whether the ops are those that would be used for a rectangle */ if (iter.buf->op[iter.n_op] != CAIRO_PATH_OP_MOVE_TO) return FALSE; points[0] = iter.buf->points[iter.n_point++]; if (! _cairo_path_fixed_iter_next_op (&iter)) return FALSE; if (iter.buf->op[iter.n_op] != CAIRO_PATH_OP_LINE_TO) return FALSE; points[1] = iter.buf->points[iter.n_point++]; if (! _cairo_path_fixed_iter_next_op (&iter)) return FALSE; if (iter.buf->op[iter.n_op] != CAIRO_PATH_OP_LINE_TO) return FALSE; points[2] = iter.buf->points[iter.n_point++]; if (! _cairo_path_fixed_iter_next_op (&iter)) return FALSE; if (iter.buf->op[iter.n_op] != CAIRO_PATH_OP_LINE_TO) return FALSE; points[3] = iter.buf->points[iter.n_point++]; if (! _cairo_path_fixed_iter_next_op (&iter)) return FALSE; /* Now, there are choices. The rectangle might end with a LINE_TO * (to the original point), but this isn't required. If it * doesn't, then it must end with a CLOSE_PATH (which may be implicit). */ if (iter.buf->op[iter.n_op] == CAIRO_PATH_OP_LINE_TO) { points[4] = iter.buf->points[iter.n_point++]; if (points[4].x != points[0].x || points[4].y != points[0].y) return FALSE; } else if (! (iter.buf->op[iter.n_op] == CAIRO_PATH_OP_CLOSE_PATH || iter.buf->op[iter.n_op] == CAIRO_PATH_OP_MOVE_TO)) { return FALSE; } if (! _cairo_path_fixed_iter_next_op (&iter)) return FALSE; /* Ok, we may have a box, if the points line up */ if (points[0].y == points[1].y && points[1].x == points[2].x && points[2].y == points[3].y && points[3].x == points[0].x) { box->p1 = points[0]; box->p2 = points[2]; *_iter = iter; return TRUE; } if (points[0].x == points[1].x && points[1].y == points[2].y && points[2].x == points[3].x && points[3].y == points[0].y) { box->p1 = points[1]; box->p2 = points[3]; *_iter = iter; return TRUE; } return FALSE; } cairo_bool_t _cairo_path_fixed_iter_at_end (const cairo_path_fixed_iter_t *iter) { if (iter->buf == NULL) return TRUE; if (iter->n_op == iter->buf->num_ops) return TRUE; if (iter->buf->op[iter->n_op] == CAIRO_PATH_OP_MOVE_TO && iter->buf->num_ops == iter->n_op + 1) { return TRUE; } return FALSE; }