/* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" #include "cairo-path-fixed-private.h" typedef struct cairo_filler { double tolerance; cairo_traps_t *traps; cairo_point_t current_point; cairo_polygon_t polygon; } cairo_filler_t; static void _cairo_filler_init (cairo_filler_t *filler, double tolerance, cairo_traps_t *traps); static void _cairo_filler_fini (cairo_filler_t *filler); static cairo_status_t _cairo_filler_move_to (void *closure, cairo_point_t *point); static cairo_status_t _cairo_filler_line_to (void *closure, cairo_point_t *point); static cairo_status_t _cairo_filler_curve_to (void *closure, cairo_point_t *b, cairo_point_t *c, cairo_point_t *d); static cairo_status_t _cairo_filler_close_path (void *closure); static void _cairo_filler_init (cairo_filler_t *filler, double tolerance, cairo_traps_t *traps) { filler->tolerance = tolerance; filler->traps = traps; filler->current_point.x = 0; filler->current_point.y = 0; _cairo_polygon_init (&filler->polygon); } static void _cairo_filler_fini (cairo_filler_t *filler) { _cairo_polygon_fini (&filler->polygon); } static cairo_status_t _cairo_filler_move_to (void *closure, cairo_point_t *point) { cairo_status_t status; cairo_filler_t *filler = closure; cairo_polygon_t *polygon = &filler->polygon; status = _cairo_polygon_close (polygon); if (status) return status; status = _cairo_polygon_move_to (polygon, point); if (status) return status; filler->current_point = *point; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_filler_line_to (void *closure, cairo_point_t *point) { cairo_status_t status; cairo_filler_t *filler = closure; cairo_polygon_t *polygon = &filler->polygon; status = _cairo_polygon_line_to (polygon, point); if (status) return status; filler->current_point = *point; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_filler_curve_to (void *closure, cairo_point_t *b, cairo_point_t *c, cairo_point_t *d) { int i; cairo_status_t status = CAIRO_STATUS_SUCCESS; cairo_filler_t *filler = closure; cairo_polygon_t *polygon = &filler->polygon; cairo_spline_t spline; status = _cairo_spline_init (&spline, &filler->current_point, b, c, d); if (status == CAIRO_INT_STATUS_DEGENERATE) return CAIRO_STATUS_SUCCESS; status = _cairo_spline_decompose (&spline, filler->tolerance); if (status) goto CLEANUP_SPLINE; for (i = 1; i < spline.num_points; i++) { status = _cairo_polygon_line_to (polygon, &spline.points[i]); if (status) break; } CLEANUP_SPLINE: _cairo_spline_fini (&spline); filler->current_point = *d; return status; } static cairo_status_t _cairo_filler_close_path (void *closure) { cairo_status_t status; cairo_filler_t *filler = closure; cairo_polygon_t *polygon = &filler->polygon; status = _cairo_polygon_close (polygon); if (status) return status; return CAIRO_STATUS_SUCCESS; } static cairo_int_status_t _cairo_path_fixed_fill_rectangle (cairo_path_fixed_t *path, cairo_traps_t *traps); cairo_status_t _cairo_path_fixed_fill_to_traps (cairo_path_fixed_t *path, cairo_fill_rule_t fill_rule, double tolerance, cairo_traps_t *traps) { cairo_status_t status = CAIRO_STATUS_SUCCESS; cairo_filler_t filler; /* Before we do anything else, we use a special-case filler for * a device-axis aligned rectangle if possible. */ status = _cairo_path_fixed_fill_rectangle (path, traps); if (status != CAIRO_INT_STATUS_UNSUPPORTED) return status; _cairo_filler_init (&filler, tolerance, traps); status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD, _cairo_filler_move_to, _cairo_filler_line_to, _cairo_filler_curve_to, _cairo_filler_close_path, &filler); if (status) goto BAIL; status = _cairo_polygon_close (&filler.polygon); if (status) goto BAIL; status = _cairo_bentley_ottmann_tessellate_polygon (filler.traps, &filler.polygon, fill_rule); if (status) goto BAIL; BAIL: _cairo_filler_fini (&filler); return status; } /* This special-case filler supports only a path that describes a * device-axis aligned rectangle. It exists to avoid the overhead of * the general tessellator when drawing very common rectangles. * * If the path described anything but a device-axis aligned rectangle, * this function will return CAIRO_INT_STATUS_UNSUPPORTED. */ static cairo_int_status_t _cairo_path_fixed_fill_rectangle (cairo_path_fixed_t *path, cairo_traps_t *traps) { cairo_path_buf_t *buf = path->buf_head; int final; /* Ensure the path has the operators we expect for a rectangular path. */ if (buf == NULL || buf->num_ops < 5) return CAIRO_INT_STATUS_UNSUPPORTED; if (buf->op[0] != CAIRO_PATH_OP_MOVE_TO || buf->op[1] != CAIRO_PATH_OP_LINE_TO || buf->op[2] != CAIRO_PATH_OP_LINE_TO || buf->op[3] != CAIRO_PATH_OP_LINE_TO) { return CAIRO_INT_STATUS_UNSUPPORTED; } /* Now, there are choices. The rectangle might end with a LINE_TO * (to the original point), but this isn't required. If it * doesn't, then it must end with a CLOSE_PATH. */ if (buf->op[4] == CAIRO_PATH_OP_LINE_TO) { if (buf->points[4].x != buf->points[0].x || buf->points[4].y != buf->points[0].y) { return CAIRO_INT_STATUS_UNSUPPORTED; } } else if (buf->op[4] != CAIRO_PATH_OP_CLOSE_PATH) { return CAIRO_INT_STATUS_UNSUPPORTED; } /* Finally, a trailing CLOSE_PATH or MOVE_TO after the rectangle * is fine. But anything more than that means we must return * unsupported. */ final = 5; if (final < buf->num_ops && buf->op[final] == CAIRO_PATH_OP_CLOSE_PATH) { final++; } if (final < buf->num_ops && buf->op[final] == CAIRO_PATH_OP_MOVE_TO) { final++; } if (final < buf->num_ops) return CAIRO_INT_STATUS_UNSUPPORTED; /* Now that we've verified the operators, we must ensure that the * path coordinates are consistent with a rectangle. There are two * choices here. */ if (buf->points[0].y == buf->points[1].y && buf->points[1].x == buf->points[2].x && buf->points[2].y == buf->points[3].y && buf->points[3].x == buf->points[0].x) { return _cairo_traps_tessellate_convex_quad (traps, buf->points); } if (buf->points[0].x == buf->points[1].x && buf->points[1].y == buf->points[2].y && buf->points[2].x == buf->points[3].x && buf->points[3].y == buf->points[0].y) { return _cairo_traps_tessellate_convex_quad (traps, buf->points); } return CAIRO_INT_STATUS_UNSUPPORTED; }