/* cairo - a vector graphics library with display and print output * * Copyright © 2004 Red Hat, Inc * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Kristian Høgsberg * Carl Worth */ #include "cairoint.h" #include "cairo-error-private.h" /** * _cairo_array_init: * * Initialize a new #cairo_array_t object to store objects each of size * @element_size. * * The #cairo_array_t object provides grow-by-doubling storage. It * never interprets the data passed to it, nor does it provide any * sort of callback mechanism for freeing resources held onto by * stored objects. * * When finished using the array, _cairo_array_fini() should be * called to free resources allocated during use of the array. **/ void _cairo_array_init (cairo_array_t *array, int element_size) { array->size = 0; array->num_elements = 0; array->element_size = element_size; array->elements = NULL; array->is_snapshot = FALSE; } /** * _cairo_array_init_snapshot: * @array: A #cairo_array_t to be initialized as a snapshot * @other: The #cairo_array_t from which to create the snapshot * * Initialize @array as an immutable copy of @other. It is an error to * call an array-modifying function (other than _cairo_array_fini) on * @array after calling this function. **/ void _cairo_array_init_snapshot (cairo_array_t *array, const cairo_array_t *other) { array->size = other->size; array->num_elements = other->num_elements; array->element_size = other->element_size; array->elements = other->elements; array->is_snapshot = TRUE; } /** * _cairo_array_fini: * @array: A #cairo_array_t * * Free all resources associated with @array. After this call, @array * should not be used again without a subsequent call to * _cairo_array_init() again first. **/ void _cairo_array_fini (cairo_array_t *array) { if (array->is_snapshot) return; if (array->elements) { free (* array->elements); free (array->elements); } } /** * _cairo_array_grow_by: * @array: a #cairo_array_t * * Increase the size of @array (if needed) so that there are at least * @additional free spaces in the array. The actual size of the array * is always increased by doubling as many times as necessary. **/ cairo_status_t _cairo_array_grow_by (cairo_array_t *array, unsigned int additional) { char *new_elements; unsigned int old_size = array->size; unsigned int required_size = array->num_elements + additional; unsigned int new_size; assert (! array->is_snapshot); /* check for integer overflow */ if (required_size > INT_MAX || required_size < array->num_elements) return _cairo_error (CAIRO_STATUS_NO_MEMORY); if (CAIRO_INJECT_FAULT ()) return _cairo_error (CAIRO_STATUS_NO_MEMORY); if (required_size <= old_size) return CAIRO_STATUS_SUCCESS; if (old_size == 0) new_size = 1; else new_size = old_size * 2; while (new_size < required_size) new_size = new_size * 2; if (array->elements == NULL) { array->elements = malloc (sizeof (char *)); if (unlikely (array->elements == NULL)) return _cairo_error (CAIRO_STATUS_NO_MEMORY); *array->elements = NULL; } array->size = new_size; new_elements = _cairo_realloc_ab (*array->elements, array->size, array->element_size); if (unlikely (new_elements == NULL)) { array->size = old_size; return _cairo_error (CAIRO_STATUS_NO_MEMORY); } *array->elements = new_elements; return CAIRO_STATUS_SUCCESS; } /** * _cairo_array_truncate: * @array: a #cairo_array_t * * Truncate size of the array to @num_elements if less than the * current size. No memory is actually freed. The stored objects * beyond @num_elements are simply "forgotten". **/ void _cairo_array_truncate (cairo_array_t *array, unsigned int num_elements) { assert (! array->is_snapshot); if (num_elements < array->num_elements) array->num_elements = num_elements; } /** * _cairo_array_index: * @array: a #cairo_array_t * Returns: A pointer to the object stored at @index. * * If the resulting value is assigned to a pointer to an object of the same * element_size as initially passed to _cairo_array_init() then that * pointer may be used for further direct indexing with []. For * example: * * * cairo_array_t array; * double *values; * * _cairo_array_init (&array, sizeof(double)); * ... calls to _cairo_array_append() here ... * * values = _cairo_array_index (&array, 0); * for (i = 0; i < _cairo_array_num_elements (&array); i++) * ... use values[i] here ... * **/ void * _cairo_array_index (cairo_array_t *array, unsigned int index) { /* We allow an index of 0 for the no-elements case. * This makes for cleaner calling code which will often look like: * * elements = _cairo_array_index (array, num_elements); * for (i=0; i < num_elements; i++) { * ... use elements[i] here ... * } * * which in the num_elements==0 case gets the NULL pointer here, * but never dereferences it. */ if (index == 0 && array->num_elements == 0) return NULL; assert (index < array->num_elements); return (void *) &(*array->elements)[index * array->element_size]; } /** * _cairo_array_copy_element: * @array: a #cairo_array_t * * Copy a single element out of the array from index @index into the * location pointed to by @dst. **/ void _cairo_array_copy_element (cairo_array_t *array, int index, void *dst) { memcpy (dst, _cairo_array_index (array, index), array->element_size); } /** * _cairo_array_append: * @array: a #cairo_array_t * * Append a single item onto the array by growing the array by at * least one element, then copying element_size bytes from @element * into the array. The address of the resulting object within the * array can be determined with: * * _cairo_array_index (array, _cairo_array_num_elements (array) - 1); * * Return value: %CAIRO_STATUS_SUCCESS if successful or * %CAIRO_STATUS_NO_MEMORY if insufficient memory is available for the * operation. **/ cairo_status_t _cairo_array_append (cairo_array_t *array, const void *element) { assert (! array->is_snapshot); return _cairo_array_append_multiple (array, element, 1); } /** * _cairo_array_append: * @array: a #cairo_array_t * * Append one or more items onto the array by growing the array by * @num_elements, then copying @num_elements * element_size bytes from * @elements into the array. * * Return value: %CAIRO_STATUS_SUCCESS if successful or * %CAIRO_STATUS_NO_MEMORY if insufficient memory is available for the * operation. **/ cairo_status_t _cairo_array_append_multiple (cairo_array_t *array, const void *elements, int num_elements) { cairo_status_t status; void *dest; assert (! array->is_snapshot); status = _cairo_array_allocate (array, num_elements, &dest); if (unlikely (status)) return status; memcpy (dest, elements, num_elements * array->element_size); return CAIRO_STATUS_SUCCESS; } /** * _cairo_array_allocate: * @array: a #cairo_array_t * * Allocate space at the end of the array for @num_elements additional * elements, providing the address of the new memory chunk in * @elements. This memory will be unitialized, but will be accounted * for in the return value of _cairo_array_num_elements(). * * Return value: %CAIRO_STATUS_SUCCESS if successful or * %CAIRO_STATUS_NO_MEMORY if insufficient memory is available for the * operation. **/ cairo_status_t _cairo_array_allocate (cairo_array_t *array, unsigned int num_elements, void **elements) { cairo_status_t status; assert (! array->is_snapshot); status = _cairo_array_grow_by (array, num_elements); if (unlikely (status)) return status; assert (array->num_elements + num_elements <= array->size); *elements = &(*array->elements)[array->num_elements * array->element_size]; array->num_elements += num_elements; return CAIRO_STATUS_SUCCESS; } /** * _cairo_array_num_elements: * @array: a #cairo_array_t * Returns: The number of elements stored in @array. * * This space was left intentionally blank, but gtk-doc filled it. **/ int _cairo_array_num_elements (cairo_array_t *array) { return array->num_elements; } /** * _cairo_array_size: * @array: a #cairo_array_t * Returns: The number of elements for which there is currently space * allocated in @array. * * This space was left intentionally blank, but gtk-doc filled it. **/ int _cairo_array_size (cairo_array_t *array) { return array->size; } /** * _cairo_user_data_array_init: * @array: a #cairo_user_data_array_t * * Initializes a #cairo_user_data_array_t structure for future * use. After initialization, the array has no keys. Call * _cairo_user_data_array_fini() to free any allocated memory * when done using the array. **/ void _cairo_user_data_array_init (cairo_user_data_array_t *array) { _cairo_array_init (array, sizeof (cairo_user_data_slot_t)); } /** * _cairo_user_data_array_fini: * @array: a #cairo_user_data_array_t * * Destroys all current keys in the user data array and deallocates * any memory allocated for the array itself. **/ void _cairo_user_data_array_fini (cairo_user_data_array_t *array) { unsigned int num_slots; num_slots = array->num_elements; if (num_slots) { cairo_user_data_slot_t *slots; slots = _cairo_array_index (array, 0); do { if (slots->user_data != NULL && slots->destroy != NULL) slots->destroy (slots->user_data); slots++; } while (--num_slots); } _cairo_array_fini (array); } /** * _cairo_user_data_array_get_data: * @array: a #cairo_user_data_array_t * @key: the address of the #cairo_user_data_key_t the user data was * attached to * * Returns user data previously attached using the specified * key. If no user data has been attached with the given key this * function returns %NULL. * * Return value: the user data previously attached or %NULL. **/ void * _cairo_user_data_array_get_data (cairo_user_data_array_t *array, const cairo_user_data_key_t *key) { int i, num_slots; cairo_user_data_slot_t *slots; /* We allow this to support degenerate objects such as cairo_surface_nil. */ if (array == NULL) return NULL; num_slots = array->num_elements; slots = _cairo_array_index (array, 0); for (i = 0; i < num_slots; i++) { if (slots[i].key == key) return slots[i].user_data; } return NULL; } /** * _cairo_user_data_array_set_data: * @array: a #cairo_user_data_array_t * @key: the address of a #cairo_user_data_key_t to attach the user data to * @user_data: the user data to attach * @destroy: a #cairo_destroy_func_t which will be called when the * user data array is destroyed or when new user data is attached using the * same key. * * Attaches user data to a user data array. To remove user data, * call this function with the key that was used to set it and %NULL * for @data. * * Return value: %CAIRO_STATUS_SUCCESS or %CAIRO_STATUS_NO_MEMORY if a * slot could not be allocated for the user data. **/ cairo_status_t _cairo_user_data_array_set_data (cairo_user_data_array_t *array, const cairo_user_data_key_t *key, void *user_data, cairo_destroy_func_t destroy) { cairo_status_t status; int i, num_slots; cairo_user_data_slot_t *slots, *slot, new_slot; if (user_data) { new_slot.key = key; new_slot.user_data = user_data; new_slot.destroy = destroy; } else { new_slot.key = NULL; new_slot.user_data = NULL; new_slot.destroy = NULL; } slot = NULL; num_slots = array->num_elements; slots = _cairo_array_index (array, 0); for (i = 0; i < num_slots; i++) { if (slots[i].key == key) { slot = &slots[i]; if (slot->destroy && slot->user_data) slot->destroy (slot->user_data); break; } if (user_data && slots[i].user_data == NULL) { slot = &slots[i]; /* Have to keep searching for an exact match */ } } if (slot) { *slot = new_slot; return CAIRO_STATUS_SUCCESS; } status = _cairo_array_append (array, &new_slot); if (unlikely (status)) return status; return CAIRO_STATUS_SUCCESS; } cairo_status_t _cairo_user_data_array_copy (cairo_user_data_array_t *dst, cairo_user_data_array_t *src) { /* discard any existing user-data */ if (dst->num_elements != 0) { _cairo_user_data_array_fini (dst); _cairo_user_data_array_init (dst); } if (src->num_elements == 0) return CAIRO_STATUS_SUCCESS; return _cairo_array_append_multiple (dst, _cairo_array_index (src, 0), src->num_elements); } void _cairo_user_data_array_foreach (cairo_user_data_array_t *array, void (*func) (const void *key, void *elt, void *closure), void *closure) { cairo_user_data_slot_t *slots; int i, num_slots; num_slots = array->num_elements; slots = _cairo_array_index (array, 0); for (i = 0; i < num_slots; i++) { if (slots[i].user_data != NULL) func (slots[i].key, slots[i].user_data, closure); } }