.\" Copyright (c) 2001-2003 The Open Group, All Rights Reserved .TH "LOG1P" 3P 2003 "IEEE/The Open Group" "POSIX Programmer's Manual" .\" log1p .SH PROLOG This manual page is part of the POSIX Programmer's Manual. The Linux implementation of this interface may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface may not be implemented on Linux. .SH NAME log1p, log1pf, log1pl \- compute a natural logarithm .SH SYNOPSIS .LP \fB#include .br .sp double log1p(double\fP \fIx\fP\fB); .br float log1pf(float\fP \fIx\fP\fB); .br long double log1pl(long double\fP \fIx\fP\fB); .br \fP .SH DESCRIPTION .LP These functions shall compute log_e(1.0 + \fIx\fP). .LP An application wishing to check for error situations should set \fIerrno\fP to zero and call \fIfeclearexcept\fP(FE_ALL_EXCEPT) before calling these functions. On return, if \fIerrno\fP is non-zero or \fIfetestexcept\fP(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has occurred. .SH RETURN VALUE .LP Upon successful completion, these functions shall return the natural logarithm of 1.0 + \fIx\fP. .LP If \fIx\fP is -1, a pole error shall occur and \fIlog1p\fP(), \fIlog1pf\fP(), and \fIlog1pl\fP() shall return -HUGE_VAL, -HUGE_VALF, and -HUGE_VALL, respectively. .LP For finite values of \fIx\fP that are less than -1, \ or if \fIx\fP is -Inf, a domain error shall occur, and \ either a NaN (if supported), or \ an implementation-defined value shall be returned. .LP If \fIx\fP is NaN, a NaN shall be returned. .LP If \fIx\fP is \(+-0, or +Inf, \fIx\fP shall be returned. .LP If \fIx\fP is subnormal, a range error may occur and \fIx\fP should be returned. .SH ERRORS .LP These functions shall fail if: .TP 7 Domain\ Error The finite value of \fIx\fP is less than -1, \ or \fIx\fP is -Inf. .LP If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then \fIerrno\fP shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception shall be raised. .TP 7 Pole\ Error The value of \fIx\fP is -1. .LP If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then \fIerrno\fP shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised. .sp .LP These functions may fail if: .TP 7 Range\ Error The value of \fIx\fP is subnormal. .LP If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then \fIerrno\fP shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow floating-point exception shall be raised. .sp .LP \fIThe following sections are informative.\fP .SH EXAMPLES .LP None. .SH APPLICATION USAGE .LP On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero. .SH RATIONALE .LP None. .SH FUTURE DIRECTIONS .LP None. .SH SEE ALSO .LP \fIfeclearexcept\fP(), \fIfetestexcept\fP(), \fIlog\fP(), the Base Definitions volume of IEEE\ Std\ 1003.1-2001, Section 4.18, Treatment of Error Conditions for Mathematical Functions, \fI\fP .SH COPYRIGHT Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition, Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .