1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
|
/* Copyright (C) 1992, 1995, 1996, 1997, 1998, 1999 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* Path copying and flattening */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gconfigv.h" /* for USE_FPU */
#include "gxfixed.h"
#include "gxfarith.h"
#include "gxistate.h" /* for access to line params */
#include "gzpath.h"
/* Forward declarations */
private void adjust_point_to_tangent(P3(segment *, const segment *,
const gs_fixed_point *));
private int monotonize_internal(P2(gx_path *, const curve_segment *));
/* Copy a path, optionally flattening or monotonizing it. */
/* If the copy fails, free the new path. */
int
gx_path_copy_reducing(const gx_path *ppath_old, gx_path *ppath,
fixed fixed_flatness, const gs_imager_state *pis,
gx_path_copy_options options)
{
const segment *pseg;
fixed flat = fixed_flatness;
gs_fixed_point expansion;
/*
* Since we're going to be adding to the path, unshare it
* before we start.
*/
int code = gx_path_unshare(ppath);
if (code < 0)
return code;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath_old, "before reducing");
#endif
if (options & pco_for_stroke) {
/* Precompute the maximum expansion of the bounding box. */
double width = pis->line_params.half_width;
expansion.x =
float2fixed((fabs(pis->ctm.xx) + fabs(pis->ctm.yx)) * width) * 2;
expansion.y =
float2fixed((fabs(pis->ctm.xy) + fabs(pis->ctm.yy)) * width) * 2;
}
pseg = (const segment *)(ppath_old->first_subpath);
while (pseg) {
switch (pseg->type) {
case s_start:
code = gx_path_add_point(ppath,
pseg->pt.x, pseg->pt.y);
break;
case s_curve:
{
const curve_segment *pc = (const curve_segment *)pseg;
if (fixed_flatness == max_fixed) { /* don't flatten */
if (options & pco_monotonize)
code = monotonize_internal(ppath, pc);
else
code = gx_path_add_curve_notes(ppath,
pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
pc->pt.x, pc->pt.y, pseg->notes);
} else {
fixed x0 = ppath->position.x;
fixed y0 = ppath->position.y;
segment_notes notes = pseg->notes;
curve_segment cseg;
int k;
if (options & pco_for_stroke) {
/*
* When flattening for stroking, the flatness
* must apply to the outside of the resulting
* stroked region. We approximate this by
* dividing the flatness by the ratio of the
* expanded bounding box to the original
* bounding box. This is crude, but pretty
* simple to calculate, and produces reasonably
* good results.
*/
fixed min01, max01, min23, max23;
fixed ex, ey, flat_x, flat_y;
#define SET_EXTENT(r, c0, c1, c2, c3)\
BEGIN\
if (c0 < c1) min01 = c0, max01 = c1;\
else min01 = c1, max01 = c0;\
if (c2 < c3) min23 = c2, max23 = c3;\
else min23 = c3, max23 = c2;\
r = max(max01, max23) - min(min01, min23);\
END
SET_EXTENT(ex, x0, pc->p1.x, pc->p2.x, pc->pt.x);
SET_EXTENT(ey, y0, pc->p1.y, pc->p2.y, pc->pt.y);
#undef SET_EXTENT
flat_x = fixed_mult_quo(fixed_flatness, ex,
ex + expansion.x);
flat_y = fixed_mult_quo(fixed_flatness, ey,
ey + expansion.y);
flat = min(flat_x, flat_y);
}
k = gx_curve_log2_samples(x0, y0, pc, flat);
if (options & pco_accurate) {
segment *start;
segment *end;
/*
* Add an extra line, which will become
* the tangent segment.
*/
code = gx_path_add_line_notes(ppath, x0, y0,
notes);
if (code < 0)
break;
start = ppath->current_subpath->last;
notes |= sn_not_first;
cseg = *pc;
code = gx_flatten_sample(ppath, k, &cseg, notes);
if (code < 0)
break;
/*
* Adjust the first and last segments so that
* they line up with the tangents.
*/
end = ppath->current_subpath->last;
if ((code = gx_path_add_line_notes(ppath,
ppath->position.x,
ppath->position.y,
pseg->notes | sn_not_first)) < 0)
break;
adjust_point_to_tangent(start, start->next,
&pc->p1);
adjust_point_to_tangent(end, end->prev,
&pc->p2);
} else {
cseg = *pc;
code = gx_flatten_sample(ppath, k, &cseg, notes);
}
}
break;
}
case s_line:
code = gx_path_add_line_notes(ppath,
pseg->pt.x, pseg->pt.y, pseg->notes);
break;
case s_line_close:
code = gx_path_close_subpath(ppath);
break;
default: /* can't happen */
code = gs_note_error(gs_error_unregistered);
}
if (code < 0) {
gx_path_new(ppath);
return code;
}
pseg = pseg->next;
}
if (path_last_is_moveto(ppath_old))
gx_path_add_point(ppath, ppath_old->position.x,
ppath_old->position.y);
if (ppath_old->bbox_set) {
if (ppath->bbox_set) {
ppath->bbox.p.x = min(ppath_old->bbox.p.x, ppath->bbox.p.x);
ppath->bbox.p.y = min(ppath_old->bbox.p.y, ppath->bbox.p.y);
ppath->bbox.q.x = max(ppath_old->bbox.q.x, ppath->bbox.q.x);
ppath->bbox.q.y = max(ppath_old->bbox.q.y, ppath->bbox.q.y);
} else {
ppath->bbox_set = true;
ppath->bbox = ppath_old->bbox;
}
}
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath, "after reducing");
#endif
return 0;
}
/*
* Adjust one end of a line (the first or last line of a flattened curve)
* so it falls on the curve tangent. The closest point on the line from
* (0,0) to (C,D) to a point (U,V) -- i.e., the point on the line at which
* a perpendicular line from the point intersects it -- is given by
* T = (C*U + D*V) / (C^2 + D^2)
* (X,Y) = (C*T,D*T)
* However, any smaller value of T will also work: the one we actually
* use is 0.25 * the value we just derived. We must check that
* numerical instabilities don't lead to a negative value of T.
*/
private void
adjust_point_to_tangent(segment * pseg, const segment * next,
const gs_fixed_point * p1)
{
const fixed x0 = pseg->pt.x, y0 = pseg->pt.y;
const fixed fC = p1->x - x0, fD = p1->y - y0;
/*
* By far the commonest case is that the end of the curve is
* horizontal or vertical. Check for this specially, because
* we can handle it with far less work (and no floating point).
*/
if (fC == 0) {
/* Vertical tangent. */
const fixed DT = arith_rshift(next->pt.y - y0, 2);
if (fD == 0)
return; /* anomalous case */
if_debug1('2', "[2]adjusting vertical: DT = %g\n",
fixed2float(DT));
if (DT > 0)
pseg->pt.y = DT + y0;
} else if (fD == 0) {
/* Horizontal tangent. */
const fixed CT = arith_rshift(next->pt.x - x0, 2);
if_debug1('2', "[2]adjusting horizontal: CT = %g\n",
fixed2float(CT));
if (CT > 0)
pseg->pt.x = CT + x0;
} else {
/* General case. */
const double C = fC, D = fD;
const double T = (C * (next->pt.x - x0) + D * (next->pt.y - y0)) /
(C * C + D * D);
if_debug3('2', "[2]adjusting: C = %g, D = %g, T = %g\n",
C, D, T);
if (T > 0) {
pseg->pt.x = arith_rshift((fixed) (C * T), 2) + x0;
pseg->pt.y = arith_rshift((fixed) (D * T), 2) + y0;
}
}
}
/* ---------------- Curve flattening ---------------- */
#define x1 pc->p1.x
#define y1 pc->p1.y
#define x2 pc->p2.x
#define y2 pc->p2.y
#define x3 pc->pt.x
#define y3 pc->pt.y
#ifdef DEBUG
private void
dprint_curve(const char *str, fixed x0, fixed y0, const curve_segment * pc)
{
dlprintf9("%s p0=(%g,%g) p1=(%g,%g) p2=(%g,%g) p3=(%g,%g)\n",
str, fixed2float(x0), fixed2float(y0),
fixed2float(pc->p1.x), fixed2float(pc->p1.y),
fixed2float(pc->p2.x), fixed2float(pc->p2.y),
fixed2float(pc->pt.x), fixed2float(pc->pt.y));
}
#endif
/* Initialize a cursor for rasterizing a monotonic curve. */
void
gx_curve_cursor_init(curve_cursor * prc, fixed x0, fixed y0,
const curve_segment * pc, int k)
{
fixed v01, v12;
int k2 = k + k, k3 = k2 + k;
#define bits_fit(v, n)\
(any_abs(v) <= max_fixed >> (n))
/* The +2s are because of t3d and t2d, see below. */
#define coeffs_fit(a, b, c)\
(k3 <= sizeof(fixed) * 8 - 3 &&\
bits_fit(a, k3 + 2) && bits_fit(b, k2 + 2) && bits_fit(c, k + 1))
prc->k = k;
prc->p0.x = x0, prc->p0.y = y0;
prc->pc = pc;
/* Compute prc->a..c taking into account reversal of xy0/3 */
/* in curve_x_at_y. */
{
fixed w0, w1, w2, w3;
if (y0 < y3)
w0 = x0, w1 = x1, w2 = x2, w3 = x3;
else
w0 = x3, w1 = x2, w2 = x1, w3 = x0;
curve_points_to_coefficients(w0, w1, w2, w3,
prc->a, prc->b, prc->c, v01, v12);
}
prc->double_set = false;
prc->fixed_limit =
(coeffs_fit(prc->a, prc->b, prc->c) ? (1 << k) - 1 : -1);
/* Initialize the cache. */
prc->cache.ky0 = prc->cache.ky3 = y0;
prc->cache.xl = x0;
prc->cache.xd = 0;
}
/*
* Determine the X value on a monotonic curve at a given Y value. It turns
* out that we use so few points on the curve that it's actually faster to
* locate the desired point by recursive subdivision each time than to try
* to keep a cursor that we move incrementally. What's even more surprising
* is that if floating point arithmetic is reasonably fast, it's faster to
* compute the X value at the desired point explicitly than to do the
* recursive subdivision on X as well as Y.
*/
#define SUBDIVIDE_X USE_FPU_FIXED
fixed
gx_curve_x_at_y(curve_cursor * prc, fixed y)
{
fixed xl, xd;
fixed yd, yrel;
/* Check the cache before doing anything else. */
if (y >= prc->cache.ky0 && y <= prc->cache.ky3) {
yd = prc->cache.ky3 - prc->cache.ky0;
yrel = y - prc->cache.ky0;
xl = prc->cache.xl;
xd = prc->cache.xd;
goto done;
} {
#define x0 prc->p0.x
#define y0 prc->p0.y
const curve_segment *pc = prc->pc;
/* Reduce case testing by ensuring y3 >= y0. */
fixed cy0 = y0, cy1, cy2, cy3 = y3;
fixed cx0;
#if SUBDIVIDE_X
fixed cx1, cx2, cx3;
#else
int t = 0;
#endif
int k, i;
if (cy0 > cy3)
cx0 = x3,
#if SUBDIVIDE_X
cx1 = x2, cx2 = x1, cx3 = x0,
#endif
cy0 = y3, cy1 = y2, cy2 = y1, cy3 = y0;
else
cx0 = x0,
#if SUBDIVIDE_X
cx1 = x1, cx2 = x2, cx3 = x3,
#endif
cy1 = y1, cy2 = y2;
#define midpoint_fast(a,b)\
arith_rshift_1((a) + (b) + 1)
for (i = k = prc->k; i > 0; --i) {
fixed ym = midpoint_fast(cy1, cy2);
fixed yn = ym + arith_rshift(cy0 - cy1 - cy2 + cy3 + 4, 3);
#if SUBDIVIDE_X
fixed xm = midpoint_fast(cx1, cx2);
fixed xn = xm + arith_rshift(cx0 - cx1 - cx2 + cx3 + 4, 3);
#else
t <<= 1;
#endif
if (y < yn)
#if SUBDIVIDE_X
cx1 = midpoint_fast(cx0, cx1),
cx2 = midpoint_fast(cx1, xm),
cx3 = xn,
#endif
cy1 = midpoint_fast(cy0, cy1),
cy2 = midpoint_fast(cy1, ym),
cy3 = yn;
else
#if SUBDIVIDE_X
cx2 = midpoint_fast(cx2, cx3),
cx1 = midpoint_fast(xm, cx2),
cx0 = xn,
#else
t++,
#endif
cy2 = midpoint_fast(cy2, cy3),
cy1 = midpoint_fast(ym, cy2),
cy0 = yn;
}
#if SUBDIVIDE_X
xl = cx0;
xd = cx3 - cx0;
#else
{
fixed a = prc->a, b = prc->b, c = prc->c;
/* We must use (1 << k) >> 1 instead of 1 << (k - 1) in case k == 0. */
#define compute_fixed(a, b, c)\
arith_rshift(arith_rshift(arith_rshift(a * t3, k) + b * t2, k)\
+ c * t + ((1 << k) >> 1), k)
#define compute_diff_fixed(a, b, c)\
arith_rshift(arith_rshift(arith_rshift(a * t3d, k) + b * t2d, k)\
+ c, k)
/* use multiply if possible */
#define np2(n) (1.0 / (1L << (n)))
static const double k_denom[11] =
{np2(0), np2(1), np2(2), np2(3), np2(4),
np2(5), np2(6), np2(7), np2(8), np2(9), np2(10)
};
static const double k2_denom[11] =
{np2(0), np2(2), np2(4), np2(6), np2(8),
np2(10), np2(12), np2(14), np2(16), np2(18), np2(20)
};
static const double k3_denom[11] =
{np2(0), np2(3), np2(6), np2(9), np2(12),
np2(15), np2(18), np2(21), np2(24), np2(27), np2(30)
};
double den1, den2;
#undef np2
#define setup_floating(da, db, dc, a, b, c)\
(k >= countof(k_denom) ?\
(den1 = ldexp(1.0, -k),\
den2 = den1 * den1,\
da = (den2 * den1) * a,\
db = den2 * b,\
dc = den1 * c) :\
(da = k3_denom[k] * a,\
db = k2_denom[k] * b,\
dc = k_denom[k] * c))
#define compute_floating(da, db, dc)\
((fixed)(da * t3 + db * t2 + dc * t + 0.5))
#define compute_diff_floating(da, db, dc)\
((fixed)(da * t3d + db * t2d + dc))
if (t <= prc->fixed_limit) { /* We can do everything in integer/fixed point. */
int t2 = t * t, t3 = t2 * t;
int t3d = (t2 + t) * 3 + 1, t2d = t + t + 1;
xl = compute_fixed(a, b, c) + cx0;
xd = compute_diff_fixed(a, b, c);
#ifdef DEBUG
{
double fa, fb, fc;
fixed xlf, xdf;
setup_floating(fa, fb, fc, a, b, c);
xlf = compute_floating(fa, fb, fc) + cx0;
xdf = compute_diff_floating(fa, fb, fc);
if (any_abs(xlf - xl) > fixed_epsilon ||
any_abs(xdf - xd) > fixed_epsilon
)
dlprintf9("Curve points differ: k=%d t=%d a,b,c=%g,%g,%g\n xl,xd fixed=%g,%g floating=%g,%g\n",
k, t,
fixed2float(a), fixed2float(b), fixed2float(c),
fixed2float(xl), fixed2float(xd),
fixed2float(xlf), fixed2float(xdf));
/*xl = xlf, xd = xdf; */
}
#endif
} else { /*
* Either t3 (and maybe t2) won't fit in an int, or more
* likely the result of the multiplies won't fit.
*/
#define fa prc->da
#define fb prc->db
#define fc prc->dc
if (!prc->double_set) {
setup_floating(fa, fb, fc, a, b, c);
prc->double_set = true;
}
if (t < 1L << ((sizeof(long) * 8 - 1) / 3)) { /*
* t3 (and maybe t2) might not fit in an int, but they
* will fit in a long. If we have slow floating point,
* do the computation in double-precision fixed point,
* otherwise do it in fixed point.
*/
long t2 = (long)t * t, t3 = t2 * t;
long t3d = (t2 + t) * 3 + 1, t2d = t + t + 1;
xl = compute_floating(fa, fb, fc) + cx0;
xd = compute_diff_floating(fa, fb, fc);
} else { /*
* t3 (and maybe t2) don't even fit in a long.
* Do the entire computation in floating point.
*/
double t2 = (double)t * t, t3 = t2 * t;
double t3d = (t2 + t) * 3 + 1, t2d = t + t + 1;
xl = compute_floating(fa, fb, fc) + cx0;
xd = compute_diff_floating(fa, fb, fc);
}
#undef fa
#undef fb
#undef fc
}
}
#endif /* (!)SUBDIVIDE_X */
/* Update the cache. */
prc->cache.ky0 = cy0;
prc->cache.ky3 = cy3;
prc->cache.xl = xl;
prc->cache.xd = xd;
yd = cy3 - cy0;
yrel = y - cy0;
#undef x0
#undef y0
}
done:
/*
* Now interpolate linearly between current and next.
* We know that 0 <= yrel < yd.
* It's unlikely but possible that cy0 = y = cy3:
* handle this case specially.
*/
if (yrel == 0)
return xl;
/*
* Compute in fixed point if possible.
*/
#define half_fixed_bits ((fixed)1 << (sizeof(fixed) * 4))
if (yrel < half_fixed_bits) {
if (xd >= 0) {
if (xd < half_fixed_bits)
return (ufixed) xd *(ufixed) yrel / (ufixed) yd + xl;
} else {
if (xd > -half_fixed_bits)
return -(fixed) ((ufixed) (-xd) * (ufixed) yrel / (ufixed) yd) + xl;
}
}
#undef half_fixed_bits
return fixed_mult_quo(xd, yrel, yd) + xl;
}
#undef x1
#undef y1
#undef x2
#undef y2
#undef x3
#undef y3
/* ---------------- Monotonic curves ---------------- */
/* Test whether a path is free of non-monotonic curves. */
bool
gx_path_is_monotonic(const gx_path * ppath)
{
const segment *pseg = (const segment *)(ppath->first_subpath);
gs_fixed_point pt0;
while (pseg) {
switch (pseg->type) {
case s_start:
{
const subpath *psub = (const subpath *)pseg;
/* Skip subpaths without curves. */
if (!psub->curve_count)
pseg = psub->last;
}
break;
case s_curve:
{
const curve_segment *pc = (const curve_segment *)pseg;
double t[2];
int nz = gx_curve_monotonic_points(pt0.y,
pc->p1.y, pc->p2.y, pc->pt.y, t);
if (nz != 0)
return false;
nz = gx_curve_monotonic_points(pt0.x,
pc->p1.x, pc->p2.x, pc->pt.x, t);
if (nz != 0)
return false;
}
break;
default:
;
}
pt0 = pseg->pt;
pseg = pseg->next;
}
return true;
}
/* Monotonize a curve, by splitting it if necessary. */
/* In the worst case, this could split the curve into 9 pieces. */
private int
monotonize_internal(gx_path * ppath, const curve_segment * pc)
{
fixed x0 = ppath->position.x, y0 = ppath->position.y;
segment_notes notes = pc->notes;
double t[2];
#define max_segs 9
curve_segment cs[max_segs];
const curve_segment *pcs;
curve_segment *pcd;
int i, j, nseg;
int nz;
/* Monotonize in Y. */
nz = gx_curve_monotonic_points(y0, pc->p1.y, pc->p2.y, pc->pt.y, t);
nseg = max_segs - 1 - nz;
pcd = cs + nseg;
if (nz == 0)
*pcd = *pc;
else {
gx_curve_split(x0, y0, pc, t[0], pcd, pcd + 1);
if (nz == 2)
gx_curve_split(pcd->pt.x, pcd->pt.y, pcd + 1,
(t[1] - t[0]) / (1 - t[0]),
pcd + 1, pcd + 2);
}
/* Monotonize in X. */
for (pcs = pcd, pcd = cs, j = nseg; j < max_segs; ++pcs, ++j) {
nz = gx_curve_monotonic_points(x0, pcs->p1.x, pcs->p2.x,
pcs->pt.x, t);
if (nz == 0)
*pcd = *pcs;
else {
gx_curve_split(x0, y0, pcs, t[0], pcd, pcd + 1);
if (nz == 2)
gx_curve_split(pcd->pt.x, pcd->pt.y, pcd + 1,
(t[1] - t[0]) / (1 - t[0]),
pcd + 1, pcd + 2);
}
pcd += nz + 1;
x0 = pcd[-1].pt.x;
y0 = pcd[-1].pt.y;
}
nseg = pcd - cs;
/* Add the segment(s) to the output. */
#ifdef DEBUG
if (gs_debug_c('2')) {
int pi;
gs_fixed_point pp0;
pp0 = ppath->position;
if (nseg == 1)
dprint_curve("[2]No split", pp0.x, pp0.y, pc);
else {
dlprintf1("[2]Split into %d segments:\n", nseg);
dprint_curve("[2]Original", pp0.x, pp0.y, pc);
for (pi = 0; pi < nseg; ++pi) {
dprint_curve("[2] =>", pp0.x, pp0.y, cs + pi);
pp0 = cs[pi].pt;
}
}
}
#endif
for (pcs = cs, i = 0; i < nseg; ++pcs, ++i) {
int code = gx_path_add_curve_notes(ppath, pcs->p1.x, pcs->p1.y,
pcs->p2.x, pcs->p2.y,
pcs->pt.x, pcs->pt.y,
notes |
(i > 0 ? sn_not_first :
sn_none));
if (code < 0)
return code;
}
return 0;
}
/*
* Split a curve if necessary into pieces that are monotonic in X or Y as a
* function of the curve parameter t. This allows us to rasterize curves
* directly without pre-flattening. This takes a fair amount of analysis....
* Store the values of t of the split points in pst[0] and pst[1]. Return
* the number of split points (0, 1, or 2).
*/
int
gx_curve_monotonic_points(fixed v0, fixed v1, fixed v2, fixed v3,
double pst[2])
{
/*
Let
v(t) = a*t^3 + b*t^2 + c*t + d, 0 <= t <= 1.
Then
dv(t) = 3*a*t^2 + 2*b*t + c.
v(t) has a local minimum or maximum (or inflection point)
precisely where dv(t) = 0. Now the roots of dv(t) = 0 (i.e.,
the zeros of dv(t)) are at
t = ( -2*b +/- sqrt(4*b^2 - 12*a*c) ) / 6*a
= ( -b +/- sqrt(b^2 - 3*a*c) ) / 3*a
(Note that real roots exist iff b^2 >= 3*a*c.)
We want to know if these lie in the range (0..1).
(The endpoints don't count.) Call such a root a "valid zero."
Since computing the roots is expensive, we would like to have
some cheap tests to filter out cases where they don't exist
(i.e., where the curve is already monotonic).
*/
fixed v01, v12, a, b, c, b2, a3;
fixed dv_end, b2abs, a3abs;
curve_points_to_coefficients(v0, v1, v2, v3, a, b, c, v01, v12);
b2 = b << 1;
a3 = (a << 1) + a;
/*
If a = 0, the only possible zero is t = -c / 2*b.
This zero is valid iff sign(c) != sign(b) and 0 < |c| < 2*|b|.
*/
if (a == 0) {
if ((b ^ c) < 0 && any_abs(c) < any_abs(b2) && c != 0) {
*pst = (double)(-c) / b2;
return 1;
} else
return 0;
}
/*
Iff a curve is horizontal at t = 0, c = 0. In this case,
there can be at most one other zero, at -2*b / 3*a.
This zero is valid iff sign(a) != sign(b) and 0 < 2*|b| < 3*|a|.
*/
if (c == 0) {
if ((a ^ b) < 0 && any_abs(b2) < any_abs(a3) && b != 0) {
*pst = (double)(-b2) / a3;
return 1;
} else
return 0;
}
/*
Similarly, iff a curve is horizontal at t = 1, 3*a + 2*b + c = 0.
In this case, there can be at most one other zero,
at -1 - 2*b / 3*a, iff sign(a) != sign(b) and 1 < -2*b / 3*a < 2,
i.e., 3*|a| < 2*|b| < 6*|a|.
*/
else if ((dv_end = a3 + b2 + c) == 0) {
if ((a ^ b) < 0 &&
(b2abs = any_abs(b2)) > (a3abs = any_abs(a3)) &&
b2abs < a3abs << 1
) {
*pst = (double)(-b2 - a3) / a3;
return 1;
} else
return 0;
}
/*
If sign(dv_end) != sign(c), at least one valid zero exists,
since dv(0) and dv(1) have opposite signs and hence
dv(t) must be zero somewhere in the interval [0..1].
*/
else if ((dv_end ^ c) < 0);
/*
If sign(a) = sign(b), no valid zero exists,
since dv is monotonic on [0..1] and has the same sign
at both endpoints.
*/
else if ((a ^ b) >= 0)
return 0;
/*
Otherwise, dv(t) may be non-monotonic on [0..1]; it has valid zeros
iff its sign anywhere in this interval is different from its sign
at the endpoints, which occurs iff it has an extremum in this
interval and the extremum is of the opposite sign from c.
To find this out, we look for the local extremum of dv(t)
by observing
d2v(t) = 6*a*t + 2*b
which has a zero only at
t1 = -b / 3*a
Now if t1 <= 0 or t1 >= 1, no valid zero exists.
Note that we just determined that sign(a) != sign(b), so we know t1 > 0.
*/
else if (any_abs(b) >= any_abs(a3))
return 0;
/*
Otherwise, we just go ahead with the computation of the roots,
and test them for being in the correct range. Note that a valid
zero is an inflection point of v(t) iff d2v(t) = 0; we don't
bother to check for this case, since it's rare.
*/
{
double nbf = (double)(-b);
double a3f = (double)a3;
double radicand = nbf * nbf - a3f * c;
if (radicand < 0) {
if_debug1('2', "[2]negative radicand = %g\n", radicand);
return 0;
} {
double root = sqrt(radicand);
int nzeros = 0;
double z = (nbf - root) / a3f;
/*
* We need to return the zeros in the correct order.
* We know that root is non-negative, but a3f may be either
* positive or negative, so we need to check the ordering
* explicitly.
*/
if_debug2('2', "[2]zeros at %g, %g\n", z, (nbf + root) / a3f);
if (z > 0 && z < 1)
*pst = z, nzeros = 1;
if (root != 0) {
z = (nbf + root) / a3f;
if (z > 0 && z < 1) {
if (nzeros && a3f < 0) /* order is reversed */
pst[1] = *pst, *pst = z;
else
pst[nzeros] = z;
nzeros++;
}
}
return nzeros;
}
}
}
/*
* Split a curve at an arbitrary point t. The above midpoint split is a
* special case of this with t = 0.5.
*/
void
gx_curve_split(fixed x0, fixed y0, const curve_segment * pc, double t,
curve_segment * pc1, curve_segment * pc2)
{ /*
* If the original function was v(t), we want to compute the points
* for the functions v1(T) = v(t * T) and v2(T) = v(t + (1 - t) * T).
* Straightforwardly,
* v1(T) = a*t^3*T^3 + b*t^2*T^2 + c*t*T + d
* i.e.
* a1 = a*t^3, b1 = b*t^2, c1 = c*t, d1 = d.
* Similarly,
* v2(T) = a*[t + (1-t)*T]^3 + b*[t + (1-t)*T]^2 +
* c*[t + (1-t)*T] + d
* = a*[(1-t)^3*T^3 + 3*t*(1-t)^2*T^2 + 3*t^2*(1-t)*T +
* t^3] + b*[(1-t)^2*T^2 + 2*t*(1-t)*T + t^2] +
* c*[(1-t)*T + t] + d
* = a*(1-t)^3*T^3 + [a*3*t + b]*(1-t)^2*T^2 +
* [a*3*t^2 + b*2*t + c]*(1-t)*T +
* a*t^3 + b*t^2 + c*t + d
* We do this in the simplest way, namely, we convert the points to
* coefficients, do the arithmetic, and convert back. It would
* obviously be faster to do the arithmetic directly on the points,
* as the midpoint code does; this is just an implementation issue
* that we can revisit if necessary.
*/
double t2 = t * t, t3 = t2 * t;
double omt = 1 - t, omt2 = omt * omt, omt3 = omt2 * omt;
fixed v01, v12, a, b, c, na, nb, nc;
if_debug1('2', "[2]splitting at t = %g\n", t);
#define compute_seg(v0, v)\
curve_points_to_coefficients(v0, pc->p1.v, pc->p2.v, pc->pt.v,\
a, b, c, v01, v12);\
na = (fixed)(a * t3), nb = (fixed)(b * t2), nc = (fixed)(c * t);\
curve_coefficients_to_points(na, nb, nc, v0,\
pc1->p1.v, pc1->p2.v, pc1->pt.v);\
na = (fixed)(a * omt3);\
nb = (fixed)((a * t * 3 + b) * omt2);\
nc = (fixed)((a * t2 * 3 + b * 2 * t + c) * omt);\
curve_coefficients_to_points(na, nb, nc, pc1->pt.v,\
pc2->p1.v, pc2->p2.v, pc2->pt.v)
compute_seg(x0, x);
compute_seg(y0, y);
#undef compute_seg
}
|