1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
/* Copyright (C) 1999, 2000 Aladdin Enterprises. All rights reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
For more information about licensing, please refer to
http://www.ghostscript.com/licensing/. For information on
commercial licensing, go to http://www.artifex.com/licensing/ or
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
*/
/*$RCSfile$ $Revision$ */
/* Halftone bit updating for imaging library */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsbitops.h"
#include "gscdefs.h"
#include "gxbitmap.h"
#include "gxhttile.h"
#include "gxtmap.h"
#include "gxdht.h"
#include "gxdhtres.h"
extern_gx_device_halftone_list();
/*
* Construct a standard-representation order from a threshold array.
*/
private int
construct_ht_order_default(gx_ht_order *porder, const byte *thresholds)
{
gx_ht_bit *bits = (gx_ht_bit *)porder->bit_data;
uint i;
for (i = 0; i < porder->num_bits; i++)
bits[i].mask = max(1, thresholds[i]);
gx_ht_complete_threshold_order(porder);
return 0;
}
/*
* Construct a short-representation order from a threshold array.
* Uses porder->width, num_levels, num_bits, levels, bit_data;
* sets porder->levels[], bit_data[].
*/
private int
construct_ht_order_short(gx_ht_order *porder, const byte *thresholds)
{
uint size = porder->num_bits;
uint i;
ushort *bits = (ushort *)porder->bit_data;
uint *levels = porder->levels;
uint num_levels = porder->num_levels;
memset(levels, 0, num_levels * sizeof(*levels));
/* Count the number of threshold elements with each value. */
for (i = 0; i < size; i++) {
uint value = max(1, thresholds[i]);
if (value + 1 < num_levels)
levels[value + 1]++;
}
for (i = 2; i < num_levels; ++i)
levels[i] += levels[i - 1];
/* Now construct the actual order. */
{
uint width = porder->width;
uint padding = bitmap_raster(width) * 8 - width;
for (i = 0; i < size; i++) {
uint value = max(1, thresholds[i]);
/* Adjust the bit index to account for padding. */
bits[levels[value]++] = i + (i / width * padding);
}
}
/* Check whether this is a predefined halftone. */
{
const gx_dht_proc *phtrp = gx_device_halftone_list;
for (; *phtrp; ++phtrp) {
const gx_device_halftone_resource_t *const *pphtr = (*phtrp)();
const gx_device_halftone_resource_t *phtr;
while ((phtr = *pphtr++) != 0) {
if (phtr->Width == porder->width &&
phtr->Height == porder->height &&
phtr->elt_size == sizeof(ushort) &&
!memcmp(phtr->levels, levels, num_levels * sizeof(*levels)) &&
!memcmp(phtr->bit_data, porder->bit_data,
size * phtr->elt_size)
) {
/*
* This is a predefined halftone. Free the levels and
* bit_data arrays, replacing them with the built-in ones.
*/
if (porder->data_memory) {
gs_free_object(porder->data_memory, porder->bit_data,
"construct_ht_order_short(bit_data)");
gs_free_object(porder->data_memory, porder->levels,
"construct_ht_order_short(levels)");
}
porder->data_memory = 0;
porder->levels = (uint *)phtr->levels; /* actually const */
porder->bit_data = (void *)phtr->bit_data; /* actually const */
goto out;
}
}
}
}
out:
return 0;
}
/* Return the bit coordinate using the standard representation. */
private int
ht_bit_index_default(const gx_ht_order *porder, uint index, gs_int_point *ppt)
{
const gx_ht_bit *phtb = &((const gx_ht_bit *)porder->bit_data)[index];
uint offset = phtb->offset;
int bit = 0;
while (!(((const byte *)&phtb->mask)[bit >> 3] & (0x80 >> (bit & 7))))
++bit;
ppt->x = (offset % porder->raster * 8) + bit;
ppt->y = offset / porder->raster;
return 0;
}
/* Return the bit coordinate using the short representation. */
private int
ht_bit_index_short(const gx_ht_order *porder, uint index, gs_int_point *ppt)
{
uint bit_index = ((const ushort *)porder->bit_data)[index];
uint bit_raster = porder->raster * 8;
ppt->x = bit_index % bit_raster;
ppt->y = bit_index / bit_raster;
return 0;
}
/* Update a halftone tile using the default order representation. */
private int
render_ht_default(gx_ht_tile *pbt, int level, const gx_ht_order *porder)
{
int old_level = pbt->level;
register const gx_ht_bit *p =
(const gx_ht_bit *)porder->bit_data + old_level;
register byte *data = pbt->tiles.data;
/*
* Invert bits between the two levels. Note that we can use the same
* loop to turn bits either on or off, using xor. The Borland compiler
* generates truly dreadful code if we don't use a temporary, and it
* doesn't hurt better compilers, so we always use one.
*/
#define INVERT_DATA(i)\
BEGIN\
ht_mask_t *dp = (ht_mask_t *)&data[p[i].offset];\
*dp ^= p[i].mask;\
END
#ifdef DEBUG
# define INVERT(i)\
BEGIN\
if_debug3('H', "[H]invert level=%d offset=%u mask=0x%x\n",\
(int)(p + i - (const gx_ht_bit *)porder->bit_data),\
p[i].offset, p[i].mask);\
INVERT_DATA(i);\
END
#else
# define INVERT(i) INVERT_DATA(i)
#endif
sw:switch (level - old_level) {
default:
if (level > old_level) {
INVERT(0); INVERT(1); INVERT(2); INVERT(3);
p += 4; old_level += 4;
} else {
INVERT(-1); INVERT(-2); INVERT(-3); INVERT(-4);
p -= 4; old_level -= 4;
}
goto sw;
case 7: INVERT(6);
case 6: INVERT(5);
case 5: INVERT(4);
case 4: INVERT(3);
case 3: INVERT(2);
case 2: INVERT(1);
case 1: INVERT(0);
case 0: break; /* Shouldn't happen! */
case -7: INVERT(-7);
case -6: INVERT(-6);
case -5: INVERT(-5);
case -4: INVERT(-4);
case -3: INVERT(-3);
case -2: INVERT(-2);
case -1: INVERT(-1);
}
#undef INVERT_DATA
#undef INVERT
return 0;
}
/* Update a halftone tile using the short representation. */
private int
render_ht_short(gx_ht_tile *pbt, int level, const gx_ht_order *porder)
{
int old_level = pbt->level;
register const ushort *p = (const ushort *)porder->bit_data + old_level;
register byte *data = pbt->tiles.data;
/* Invert bits between the two levels. */
#define INVERT_DATA(i)\
BEGIN\
uint bit_index = p[i];\
byte *dp = &data[bit_index >> 3];\
*dp ^= 0x80 >> (bit_index & 7);\
END
#ifdef DEBUG
# define INVERT(i)\
BEGIN\
if_debug3('H', "[H]invert level=%d offset=%u mask=0x%x\n",\
(int)(p + i - (const ushort *)porder->bit_data),\
p[i] >> 3, 0x80 >> (p[i] & 7));\
INVERT_DATA(i);\
END
#else
# define INVERT(i) INVERT_DATA(i)
#endif
sw:switch (level - old_level) {
default:
if (level > old_level) {
INVERT(0); INVERT(1); INVERT(2); INVERT(3);
p += 4; old_level += 4;
} else {
INVERT(-1); INVERT(-2); INVERT(-3); INVERT(-4);
p -= 4; old_level -= 4;
}
goto sw;
case 7: INVERT(6);
case 6: INVERT(5);
case 5: INVERT(4);
case 4: INVERT(3);
case 3: INVERT(2);
case 2: INVERT(1);
case 1: INVERT(0);
case 0: break; /* Shouldn't happen! */
case -7: INVERT(-7);
case -6: INVERT(-6);
case -5: INVERT(-5);
case -4: INVERT(-4);
case -3: INVERT(-3);
case -2: INVERT(-2);
case -1: INVERT(-1);
}
#undef INVERT_DATA
#undef INVERT
return 0;
}
/* Define the procedure vectors for the order data implementations. */
const gx_ht_order_procs_t ht_order_procs_table[2] = {
{ sizeof(gx_ht_bit), construct_ht_order_default, ht_bit_index_default,
render_ht_default },
{ sizeof(ushort), construct_ht_order_short, ht_bit_index_short,
render_ht_short }
};
|