1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
/* Copyright (C) 1994, 1995, 1996, 1997, 1998 Aladdin Enterprises. All rights reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
For more information about licensing, please refer to
http://www.ghostscript.com/licensing/. For information on
commercial licensing, go to http://www.artifex.com/licensing/ or
contact Artifex Software, Inc., 101 Lucas Valley Road #110,
San Rafael, CA 94903, U.S.A., +1(415)492-9861.
*/
/*$RCSfile$ $Revision$ */
/* Definitions for DDAs */
/* Requires gxfixed.h */
#ifndef gxdda_INCLUDED
# define gxdda_INCLUDED
/*
* We use the familiar Bresenham DDA algorithm for several purposes:
* - tracking the edges when filling trapezoids;
* - tracking the current pixel corner coordinates when rasterizing
* skewed or rotated images;
* - converting curves to sequences of lines (this is a 3rd-order
* DDA, the others are 1st-order);
* - perhaps someday for drawing single-pixel lines.
* In the case of trapezoids, lines, and curves, we need to use
* the DDA to find the integer X values at integer+0.5 values of Y;
* in the case of images, we use DDAs to compute the (fixed)
* X and Y values at (integer) source pixel corners.
*
* The purpose of the DDA is to compute the exact values Q(i) = floor(i*D/N)
* for increasing integers i, 0 <= i <= N. D is considered to be an
* integer, although it may actually be a fixed. For the algorithm,
* we maintain i*D/N as Q + (N-R)/N where Q and R are integers, 0 < R <= N,
* with the following auxiliary values:
* dQ = floor(D/N)
* dR = D mod N (0 <= dR < N)
* NdR = N - dR
* Then at each iteration we do:
* Q += dQ;
* if ( R > dR ) R -= dR; else ++Q, R += NdR;
* These formulas work regardless of the sign of D, and never let R go
* out of range.
*/
/* In the following structure definitions, ntype must be an unsigned type. */
#define dda_state_struct(sname, dtype, ntype)\
struct sname { dtype Q; ntype R; }
#define dda_step_struct(sname, dtype, ntype)\
struct sname { dtype dQ; ntype dR, NdR; }
/* DDA with fixed Q and (unsigned) integer N */
typedef
dda_state_struct(_a, fixed, uint) gx_dda_state_fixed;
typedef dda_step_struct(_e, fixed, uint) gx_dda_step_fixed;
typedef struct gx_dda_fixed_s {
gx_dda_state_fixed state;
gx_dda_step_fixed step;
} gx_dda_fixed;
/*
* Define a pair of DDAs for iterating along an arbitrary line.
*/
typedef struct gx_dda_fixed_point_s {
gx_dda_fixed x, y;
} gx_dda_fixed_point;
/*
* Initialize a DDA. The sign test is needed only because C doesn't
* provide reliable definitions of / and % for integers (!!!).
*/
#define dda_init_state(dstate, init, N)\
(dstate).Q = (init), (dstate).R = (N)
#define dda_init_step(dstep, D, N)\
if ( (N) == 0 )\
(dstep).dQ = 0, (dstep).dR = 0;\
else if ( (D) < 0 )\
{ (dstep).dQ = -(-(D) / (N));\
if ( ((dstep).dR = -(D) % (N)) != 0 )\
--(dstep).dQ, (dstep).dR = (N) - (dstep).dR;\
}\
else\
{ (dstep).dQ = (D) / (N); (dstep).dR = (D) % (N); }\
(dstep).NdR = (N) - (dstep).dR
#define dda_init(dda, init, D, N)\
dda_init_state((dda).state, init, N);\
dda_init_step((dda).step, D, N)
/*
* Compute the sum of two DDA steps with the same D and N.
* Note that since dR + NdR = N, this quantity must be the same in both
* fromstep and tostep.
*/
#define dda_step_add(tostep, fromstep)\
(tostep).dQ +=\
((tostep).dR < (fromstep).NdR ?\
((tostep).dR += (fromstep).dR, (tostep).NdR -= (fromstep).dR,\
(fromstep).dQ) :\
((tostep).dR -= (fromstep).NdR, (tostep).NdR += (fromstep).NdR,\
(fromstep).dQ + 1))
/*
* Return the current value in a DDA.
*/
#define dda_state_current(dstate) (dstate).Q
#define dda_current(dda) dda_state_current((dda).state)
#define dda_current_fixed2int(dda)\
fixed2int_var(dda_state_current((dda).state))
/*
* Increment a DDA to the next point.
* Returns the updated current value.
*/
#define dda_state_next(dstate, dstep)\
(dstate).Q +=\
((dstate).R > (dstep).dR ?\
((dstate).R -= (dstep).dR, (dstep).dQ) :\
((dstate).R += (dstep).NdR, (dstep).dQ + 1))
#define dda_next(dda) dda_state_next((dda).state, (dda).step)
/*
* Back up a DDA to the previous point.
* Returns the updated current value.
*/
#define dda_state_previous(dstate, dstep)\
(dstate).Q -=\
((dstate).R <= (dstep).NdR ?\
((dstate).R += (dstep).dR, (dstep).dQ) :\
((dstate).R -= (dstep).NdR, (dstep).dQ + 1))
#define dda_previous(dda) dda_state_previous((dda).state, (dda).step)
/*
* Advance a DDA by an arbitrary number of steps.
* This implementation is very inefficient; we'll improve it if needed.
*/
#define dda_state_advance(dstate, dstep, nsteps)\
BEGIN\
uint n_ = (nsteps);\
(dstate).Q += (dstep).dQ * (nsteps);\
while ( n_-- )\
if ( (dstate).R > (dstep).dR ) (dstate).R -= (dstep).dR;\
else (dstate).R += (dstep).NdR, (dstate).Q++;\
END
#define dda_advance(dda, nsteps)\
dda_state_advance((dda).state, (dda).step, nsteps)
/*
* Translate the position of a DDA by a given amount.
*/
#define dda_state_translate(dstate, delta)\
((dstate).Q += (delta))
#define dda_translate(dda, delta)\
dda_state_translate((dda).state, delta)
#endif /* gxdda_INCLUDED */
|