1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
/* Copyright (C) 1996, 1997, 1998 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/*Id: gsimage.c */
/* Image setup procedures for Ghostscript library */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gscspace.h"
#include "gsmatrix.h" /* for gsiparam.h */
#include "gsimage.h"
#include "gxarith.h" /* for igcd */
#include "gxdevice.h"
#include "gxiparam.h"
#include "gzstate.h"
/* Define the enumeration state for this interface layer. */
/*typedef struct gs_image_enum_s gs_image_enum; *//* in gsimage.h */
struct gs_image_enum_s {
/* The following are set at initialization time. */
gs_memory_t *memory;
gx_device *dev; /* if 0, just skip over the data */
gx_image_enum_common_t *info; /* driver bookkeeping structure */
int num_planes;
int width, height;
uint raster; /* bytes per row (per plane), no padding */
/* The following are updated dynamically. */
int plane_index; /* index of next plane of data */
int y;
uint pos; /* byte position within the scan line */
gs_const_string sources[gs_image_max_components]; /* source data */
gs_string rows[gs_image_max_components]; /* row buffers */
bool error;
};
gs_private_st_composite(st_gs_image_enum, gs_image_enum, "gs_image_enum",
gs_image_enum_enum_ptrs, gs_image_enum_reloc_ptrs);
#define gs_image_enum_num_ptrs 2
/* GC procedures */
#define eptr ((gs_image_enum *)vptr)
private
ENUM_PTRS_BEGIN(gs_image_enum_enum_ptrs)
{
/* Enumerate the data planes. */
index -= gs_image_enum_num_ptrs;
if (index < eptr->plane_index)
ENUM_RETURN_STRING_PTR(gs_image_enum, sources[index]);
index -= eptr->plane_index;
if (index < eptr->num_planes)
ENUM_RETURN_STRING_PTR(gs_image_enum, rows[index]);
return 0;
}
ENUM_PTR(0, gs_image_enum, dev);
ENUM_PTR(1, gs_image_enum, info);
ENUM_PTRS_END
private RELOC_PTRS_BEGIN(gs_image_enum_reloc_ptrs)
{
int i;
RELOC_PTR(gs_image_enum, dev);
RELOC_PTR(gs_image_enum, info);
for (i = 0; i < eptr->plane_index; i++)
RELOC_CONST_STRING_PTR(gs_image_enum, sources[i]);
for (i = 0; i < eptr->num_planes; i++)
RELOC_STRING_PTR(gs_image_enum, rows[i]);
}
RELOC_PTRS_END
#undef eptr
/* Create an image enumerator given image parameters and a graphics state. */
int
gs_image_begin_typed(const gs_image_common_t * pic, gs_state * pgs,
bool uses_color, gx_image_enum_common_t ** ppie)
{
gx_device *dev = gs_currentdevice(pgs);
if (uses_color)
gx_set_dev_color(pgs);
return gx_device_begin_typed_image(dev, (const gs_imager_state *)pgs,
NULL, pic, NULL,
pgs->dev_color, pgs->clip_path, pgs->memory, ppie);
}
/* Allocate an image enumerator. */
private void
image_enum_init(gs_image_enum * penum)
{ /* Clean pointers for GC. */
int i;
penum->info = 0;
penum->dev = 0;
for (i = 0; i < countof(penum->sources); ++i) {
penum->sources[i].data = 0, penum->sources[i].size = 0;
penum->rows[i].data = 0, penum->rows[i].size = 0;
}
}
gs_image_enum *
gs_image_enum_alloc(gs_memory_t * mem, client_name_t cname)
{
gs_image_enum *penum =
gs_alloc_struct(mem, gs_image_enum, &st_gs_image_enum, cname);
if (penum != 0) {
penum->memory = mem;
image_enum_init(penum);
}
return penum;
}
/* Start processing an ImageType 1 image. */
int
gs_image_init(gs_image_enum * penum, const gs_image_t * pim, bool multi,
gs_state * pgs)
{
gs_image_t image;
gx_image_enum_common_t *pie;
int code;
image = *pim;
if (image.ImageMask) {
image.ColorSpace = NULL;
if (pgs->in_cachedevice <= 1)
image.adjust = false;
} else {
if (pgs->in_cachedevice)
return_error(gs_error_undefined);
if (image.ColorSpace == NULL)
image.ColorSpace =
gs_cspace_DeviceGray((const gs_imager_state *)pgs);
}
code = gs_image_begin_typed((const gs_image_common_t *)&image, pgs,
image.ImageMask | image.CombineWithColor,
&pie);
if (code < 0)
return code;
return gs_image_common_init(penum, pie,
(const gs_data_image_t *)&image,
pgs->memory,
(pgs->in_charpath ? NULL :
gs_currentdevice_inline(pgs)));
}
/* Start processing a general image. */
int
gs_image_common_init(gs_image_enum * penum, gx_image_enum_common_t * pie,
const gs_data_image_t * pim, gs_memory_t * mem, gx_device * dev)
{
if (pim->Width == 0 || pim->Height == 0)
return 1;
image_enum_init(penum);
penum->memory = mem;
penum->dev = dev;
penum->info = pie;
penum->num_planes = pie->num_planes;
penum->width = pim->Width;
penum->height = pim->Height;
/****** ALL PLANES MUST HAVE SAME DEPTH FOR NOW ******/
penum->raster = (pim->Width * pie->plane_depths[0] + 7) >> 3;
/* Initialize the dynamic part of the state. */
penum->plane_index = 0;
penum->y = 0;
penum->pos = 0;
penum->error = false;
return 0;
}
/*
* Return the number of bytes of data per row per plane.
*/
uint
gs_image_bytes_per_plane_row(const gs_image_enum * penum, int plane)
{
/****** IGNORE PLANE FOR NOW ******/
return penum->raster;
}
/* Process the next piece of an image. */
private int
copy_planes(gx_device * dev, gs_image_enum * penum, const byte ** planes, int h)
{
int code =
(penum->dev == 0 ? (penum->y + h < penum->height ? 0 : 1) :
gx_device_image_data(dev, penum->info, planes, 0, penum->raster, h));
if (code < 0)
penum->error = true;
return code;
}
int
gs_image_next(gs_image_enum * penum, const byte * dbytes, uint dsize,
uint * pused)
{
gx_device *dev;
uint left;
int num_planes;
uint raster;
uint pos;
int code;
/*
* Handle the following differences between gs_image_next and
* the device image_data procedure:
*
* - image_data requires an array of planes; gs_image_next
* expects planes in successive calls.
*
* - image_data requires that each call pass entire rows;
* gs_image_next allows arbitrary amounts of data.
*/
if (penum->plane_index != 0)
if (dsize != penum->sources[0].size)
return_error(gs_error_rangecheck);
penum->sources[penum->plane_index].data = dbytes;
penum->sources[penum->plane_index].size = dsize;
if (++(penum->plane_index) != penum->num_planes)
return 0;
/* We have a full set of planes. */
dev = penum->dev;
left = dsize;
num_planes = penum->num_planes;
raster = penum->raster;
pos = penum->pos;
code = 0;
while (left && penum->y < penum->height) {
const byte *planes[gs_image_max_components];
int i;
for (i = 0; i < num_planes; ++i)
planes[i] = penum->sources[i].data + dsize - left;
if (pos == 0 && left >= raster) { /* Pass (a) row(s) directly from the source. */
int h = left / raster;
if (h > penum->height - penum->y)
h = penum->height - penum->y;
code = copy_planes(dev, penum, planes, h);
if (code < 0)
break;
left -= raster * h;
penum->y += h;
} else { /* Buffer a partial row. */
uint count = min(left, raster - pos);
if (penum->rows[0].data == 0) { /* Allocate the row buffers. */
for (i = 0; i < num_planes; ++i) {
byte *row = gs_alloc_string(penum->memory, raster,
"gs_image_next(row)");
if (row == 0) {
code = gs_note_error(gs_error_VMerror);
while (--i >= 0) {
gs_free_string(penum->memory, penum->rows[i].data,
raster, "gs_image_next(row)");
penum->rows[i].data = 0;
penum->rows[i].size = 0;
}
break;
}
penum->rows[i].data = row;
penum->rows[i].size = raster;
}
if (code < 0)
break;
}
for (i = 0; i < num_planes; ++i)
memcpy(penum->rows[i].data + pos, planes[i], count);
pos += count;
left -= count;
if (pos == raster) {
for (i = 0; i < num_planes; ++i)
planes[i] = penum->rows[i].data;
code = copy_planes(dev, penum, planes, 1);
if (code < 0)
break;
pos = 0;
penum->y++;
}
}
}
penum->pos = pos;
penum->plane_index = 0;
*pused = dsize - left;
return code;
}
/* Clean up after processing an image. */
void
gs_image_cleanup(gs_image_enum * penum)
{
gx_device *dev = penum->dev;
int i;
for (i = 0; i < penum->num_planes; ++i)
gs_free_string(penum->memory, penum->rows[i].data,
penum->rows[i].size, "gs_image_cleanup(row)");
if (penum->dev != 0)
gx_device_end_image(dev, penum->info, !penum->error);
/* Don't free the local enumerator -- the client does that. */
}
|