summaryrefslogtreecommitdiff
path: root/gs/src/gshtscr.c
blob: ac69c90a2b219c1d228ec02ff9f22b3434c67a71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
/* Copyright (C) 1993, 1996, 1997, 1998, 1999 Aladdin Enterprises.  All rights reserved.

   This file is part of Aladdin Ghostscript.

   Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND.  No author
   or distributor accepts any responsibility for the consequences of using it,
   or for whether it serves any particular purpose or works at all, unless he
   or she says so in writing.  Refer to the Aladdin Ghostscript Free Public
   License (the "License") for full details.

   Every copy of Aladdin Ghostscript must include a copy of the License,
   normally in a plain ASCII text file named PUBLIC.  The License grants you
   the right to copy, modify and redistribute Aladdin Ghostscript, but only
   under certain conditions described in the License.  Among other things, the
   License requires that the copyright notice and this notice be preserved on
   all copies.
 */


/* Screen (Type 1) halftone processing for Ghostscript library */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gxarith.h"
#include "gzstate.h"
#include "gxdevice.h"		/* for gzht.h */
#include "gzht.h"

/* Define whether to force all halftones to be strip halftones, */
/* for debugging. */
static bool FORCE_STRIP_HALFTONES = false;

/* Structure descriptors */
private_st_gs_screen_enum();

/* GC procedures */
#define eptr ((gs_screen_enum *)vptr)

private 
ENUM_PTRS_BEGIN(screen_enum_enum_ptrs)
{
    if (index < 1 + st_ht_order_max_ptrs) {
	gs_ptr_type_t ret =
	    ENUM_USING(st_ht_order, &eptr->order, sizeof(eptr->order),
		       index - 1);

	if (ret == 0)		/* don't stop early */
	    ENUM_RETURN(0);
	return ret;
    }
    return ENUM_USING(st_halftone, &eptr->halftone, sizeof(eptr->halftone),
		      index - (1 + st_ht_order_max_ptrs));
}
ENUM_PTR(0, gs_screen_enum, pgs);
ENUM_PTRS_END

private RELOC_PTRS_BEGIN(screen_enum_reloc_ptrs)
{
    RELOC_PTR(gs_screen_enum, pgs);
    RELOC_USING(st_halftone, &eptr->halftone, sizeof(gs_halftone));
    RELOC_USING(st_ht_order, &eptr->order, sizeof(gx_ht_order));
}
RELOC_PTRS_END

#undef eptr

/* Define the default value of AccurateScreens that affects */
/* setscreen and setcolorscreen. */
private bool screen_accurate_screens;

/* Default AccurateScreens control */
void
gs_setaccuratescreens(bool accurate)
{
    screen_accurate_screens = accurate;
}
bool
gs_currentaccuratescreens(void)
{
    return screen_accurate_screens;
}

/* Define the MinScreenLevels user parameter similarly. */
private uint screen_min_screen_levels;

void
gs_setminscreenlevels(uint levels)
{
    screen_min_screen_levels = levels;
}
uint
gs_currentminscreenlevels(void)
{
    return screen_min_screen_levels;
}

/* Initialize the screen control statics at startup. */
void
gs_gshtscr_init(gs_memory_t *mem)
{
    gs_setaccuratescreens(false);
    gs_setminscreenlevels(1);
}

/*
 * The following implementation notes complement the general discussion of
 * halftone tiles found in gxdht.h.
 *
 * Currently we allow R(') > 1 (i.e., multiple basic cells per multi-cell)
 * only if AccurateScreens is true or if B (the number of pixels in a basic
 * cell) < MinScreenLevels; if AccurateScreens is false and B >=
 * MinScreenLevels, multi-cells and basic cells are the same.
 *
 * To find the smallest super-cell for a given multi-cell size, i.e., the
 * smallest (absolute value) coordinates where the corners of multi-cells
 * lie on the coordinate axes, we compute the values of i and j that give
 * the minimum value of W by:
 *      D = gcd(abs(M'), abs(N)), i = M'/D, j = N/D, W = C / D,
 * and similarly
 *      D' = gcd(abs(M), abs(N')), i' = N'/D', j' = M/D', W' = C / D'.
 */

/* Compute the derived values of a halftone tile. */
void
gx_compute_cell_values(gx_ht_cell_params_t * phcp)
{
    const int M = phcp->M, N = phcp->N, M1 = phcp->M1, N1 = phcp->N1;
    const uint m = any_abs(M), n = any_abs(N);
    const uint m1 = any_abs(M1), n1 = any_abs(N1);
    const ulong C = phcp->C = (ulong)m * m1 + (ulong)n * n1;
    const int D = phcp->D = igcd(m1, n);
    const int D1 = phcp->D1 = igcd(m, n1);

    phcp->W = C / D, phcp->W1 = C / D1;
    /* Compute the shift value. */
    /* If M1 or N is zero, the shift is zero. */
    if (M1 && N) {
	int h = 0, k = 0, dy = 0;
	int shift;

	/*
	 * There may be a faster way to do this: see Knuth vol. 2,
	 * section 4.5.2, Algorithm X (p. 302) and exercise 15
	 * (p. 315, solution p. 523).
	 */
	while (dy != D)
	    if (dy > D) {
		if (M1 > 0)
		    ++k;
		else
		    --k;
		dy -= m1;
	    } else {
		if (N > 0)
		    ++h;
		else
		    --h;
		dy += n;
	    }
	shift = h * M + k * N1;
	/* We just computed what amounts to a right shift; */
	/* what we want is a left shift. */
	phcp->S = imod(-shift, phcp->W);
    } else
	phcp->S = 0;
    if_debug12('h', "[h]MNR=(%d,%d)/%d, M'N'R'=(%d,%d)/%d => C=%lu, D=%d, D'=%d, W=%u, W'=%u, S=%d\n",
	       M, N, phcp->R, M1, N1, phcp->R1,
	       C, D, D1, phcp->W, phcp->W1, phcp->S);
}

/* Forward references */
private int pick_cell_size(P6(gs_screen_halftone * ph,
     const gs_matrix * pmat, ulong max_size, uint min_levels, bool accurate,
			      gx_ht_cell_params_t * phcp));

/* Allocate a screen enumerator. */
gs_screen_enum *
gs_screen_enum_alloc(gs_memory_t * mem, client_name_t cname)
{
    return gs_alloc_struct(mem, gs_screen_enum, &st_gs_screen_enum, cname);
}

/* Set up for halftone sampling. */
int
gs_screen_init(gs_screen_enum * penum, gs_state * pgs,
	       gs_screen_halftone * phsp)
{
    return gs_screen_init_accurate(penum, pgs, phsp,
				   screen_accurate_screens);
}
int
gs_screen_init_memory(gs_screen_enum * penum, gs_state * pgs,
		gs_screen_halftone * phsp, bool accurate, gs_memory_t * mem)
{
    int code =
    gs_screen_order_init_memory(&penum->order, pgs, phsp, accurate, mem);

    if (code < 0)
	return code;
    return
	gs_screen_enum_init_memory(penum, &penum->order, pgs, phsp, mem);
}

/* Allocate and initialize a spot screen. */
/* This is the first half of gs_screen_init_accurate. */
int
gs_screen_order_init_memory(gx_ht_order * porder, const gs_state * pgs,
		gs_screen_halftone * phsp, bool accurate, gs_memory_t * mem)
{
    gs_matrix imat;
    ulong max_size = pgs->ht_cache->bits_size;
    uint num_levels;
    int code;

    if (phsp->frequency < 0.1)
	return_error(gs_error_rangecheck);
    gs_deviceinitialmatrix(gs_currentdevice(pgs), &imat);
    code = pick_cell_size(phsp, &imat, max_size,
			  screen_min_screen_levels, accurate,
			  &porder->params);
    if (code < 0)
	return code;
    gx_compute_cell_values(&porder->params);
    num_levels = porder->params.W * porder->params.D;
    if (!FORCE_STRIP_HALFTONES &&
	((ulong)porder->params.W1 * bitmap_raster(porder->params.W) +
	   num_levels * sizeof(*porder->levels) +
	   porder->params.W * porder->params.W1 * sizeof(gx_ht_bit)) <=
	max_size) {
	/*
	 * Allocate an order for the entire tile, but only sample one
	 * strip.  Note that this causes the order parameters to be
	 * self-inconsistent until gx_ht_construct_spot_order fixes them
	 * up: see gxdht.h for more information.
	 */
	code = gx_ht_alloc_order(porder, porder->params.W,
				 porder->params.W1, 0,
				 num_levels, mem);
	porder->height = porder->orig_height = porder->params.D;
	porder->shift = porder->orig_shift = porder->params.S;
    } else {
	/* Just allocate the order for a single strip. */
	code = gx_ht_alloc_order(porder, porder->params.W,
				 porder->params.D, porder->params.S,
				 num_levels, mem);
    }
    if (code < 0)
	return code;
    return 0;
}

/*
 * Given a desired frequency, angle, and minimum number of levels, a maximum
 * cell size, and an AccurateScreens flag, pick values for M('), N('), and
 * R(').  We want to get a good fit to the requested frequency and angle,
 * provide at least the requested minimum number of levels, and keep
 * rendering as fast as possible; trading these criteria off against each
 * other is what makes the code complicated.
 *
 * We compute trial values u and v from the original values of F and A.
 * Normally these will not be integers.  We then examine the 4 pairs of
 * integers obtained by rounding each of u and v independently up or down,
 * and pick the pair U, V that yields the closest match to the requested
 * F and A values and doesn't require more than max_size storage for a
 * single tile.  If no pair
 * yields an acceptably small W, we divide both u and v by 2 and try again.
 * Then we run the equations backward to obtain the actual F and A.
 * This is fairly easy given that we require either xx = yy = 0 or
 * xy = yx = 0.  In the former case, we have
 *      U = (72 / F * xx) * cos(A);
 *      V = (72 / F * yy) * sin(A);
 * from which immediately
 *      A = arctan((V / yy) / (U / xx)),
 * or equivalently
 *      A = arctan((V * xx) / (U * yy)).
 * We can then obtain F as
 *      F = (72 * xx / U) * cos(A),
 * or equivalently
 *      F = (72 * yy / V) * sin(A).
 * For landscape devices, we replace xx by yx, yy by xy, and interchange
 * sin and cos, resulting in
 *      A = arctan((U * xy) / (V * yx))
 * and
 *      F = (72 * yx / U) * sin(A)
 * or
 *      F = (72 * xy / V) * cos(A).
 */
/* ph->frequency and ph->angle are input parameters; */
/* the routine sets ph->actual_frequency and ph->actual_angle. */
private int
pick_cell_size(gs_screen_halftone * ph, const gs_matrix * pmat, ulong max_size,
	       uint min_levels, bool accurate, gx_ht_cell_params_t * phcp)
{
    const bool landscape = (pmat->xy != 0.0 || pmat->yx != 0.0);

    /* Account for a possibly reflected coordinate system. */
    /* See gxstroke.c for the algorithm. */
    const bool reflected = pmat->xy * pmat->yx > pmat->xx * pmat->yy;
    const int reflection = (reflected ? -1 : 1);
    const int rotation =
    (landscape ? (pmat->yx < 0 ? 90 : -90) : pmat->xx < 0 ? 180 : 0);
    const double f0 = ph->frequency, a0 = ph->angle;
    const double T =
    fabs((landscape ? pmat->yx / pmat->xy : pmat->xx / pmat->yy));
    gs_point uv0;

#define u0 uv0.x
#define v0 uv0.y
    int rt = 1;
    double f = 0, a = 0;
    double e_best = 1000;
    bool better;

    /*
     * We need to find a vector in device space whose length is
     * 1 inch / ph->frequency and whose angle is ph->angle.
     * Because device pixels may not be square, we can't simply
     * map the length to device space and then rotate it;
     * instead, since we know that user space is uniform in X and Y,
     * we calculate the correct angle in user space before rotation.
     */

    /* Compute trial values of u and v. */

    {
	gs_matrix rmat;

	gs_make_rotation(a0 * reflection + rotation, &rmat);
	gs_distance_transform(72.0 / f0, 0.0, &rmat, &uv0);
	gs_distance_transform(u0, v0, pmat, &uv0);
	if_debug10('h', "[h]Requested: f=%g a=%g mat=[%g %g %g %g] max_size=%lu min_levels=%u =>\n     u=%g v=%g\n",
		   ph->frequency, ph->angle,
		   pmat->xx, pmat->xy, pmat->yx, pmat->yy,
		   max_size, min_levels, u0, v0);
    }

    /* Adjust u and v to reasonable values. */

    if (u0 == 0 && v0 == 0)
	return_error(gs_error_rangecheck);
    while ((fabs(u0) + fabs(v0)) * rt < 4)
	++rt;
  try_size:
    better = false;
    {
	int m0 = (int)floor(u0 * rt + 0.0001);
	int n0 = (int)floor(v0 * rt + 0.0001);
	gx_ht_cell_params_t p;

	p.R = p.R1 = rt;
	for (p.M = m0 + 1; p.M >= m0; p.M--)
	    for (p.N = n0 + 1; p.N >= n0; p.N--) {
		long raster, wt, wt_size;
		double fr, ar, ft, at, f_diff, a_diff, f_err, a_err;

		p.M1 = (int)floor(p.M / T + 0.5);
		p.N1 = (int)floor(p.N * T + 0.5);
		gx_compute_cell_values(&p);
		if_debug3('h', "[h]trying m=%d, n=%d, r=%d\n", p.M, p.N, rt);
		wt = p.W;
		if (wt >= max_short)
		    continue;
		/* Check the strip size, not the full tile size, */
		/* against max_size. */
		raster = bitmap_raster(wt);
		if (raster > max_size / p.D || raster > max_long / wt)
		    continue;
		wt_size = raster * wt;

		/* Compute the corresponding values of F and A. */

		if (landscape)
		    ar = atan2(p.M * pmat->xy, p.N * pmat->yx),
			fr = 72.0 * (p.M == 0 ? pmat->xy / p.N * cos(ar) :
				     pmat->yx / p.M * sin(ar));
		else
		    ar = atan2(p.N * pmat->xx, p.M * pmat->yy),
			fr = 72.0 * (p.M == 0 ? pmat->yy / p.N * sin(ar) :
				     pmat->xx / p.M * cos(ar));
		ft = fabs(fr) * rt;
		/* Normalize the angle to the requested quadrant. */
		at = (ar * radians_to_degrees - rotation) * reflection;
		at -= floor(at / 180.0) * 180.0;
		at += floor(a0 / 180.0) * 180.0;
		f_diff = fabs(ft - f0);
		a_diff = fabs(at - a0);
		f_err = f_diff / fabs(f0);
		/*
		 * We used to compute the percentage difference here:
		 *      a_err = (a0 == 0 ? a_diff : a_diff / fabs(a0));
		 * but using the angle difference makes more sense:
		 */
		a_err = a_diff;

		if_debug5('h', " ==> d=%d, wt=%ld, wt_size=%ld, f=%g, a=%g\n",
			  p.D, wt, bitmap_raster(wt) * wt, ft, at);

		/*
		 * Minimize angle and frequency error within the
		 * permitted maximum super-cell size.
		 */

		{
		    double err = f_err * a_err;

		    if (err > e_best)
			continue;
		    e_best = err;
		}
		*phcp = p;
		f = ft, a = at;
		better = true;
		if_debug3('h', "*** best wt_size=%ld, f_diff=%g, a_diff=%g\n",
			  wt_size, f_diff, a_diff);
		/*
		 * We want a maximum relative frequency error of 1% and a
		 * maximum angle error of 1% (of 90 degrees).
		 */
		if (f_err <= 0.01 && a_err <= 0.9 /*degrees*/)
		    goto done;
	    }
    }
    if (phcp->C < min_levels) {	/* We don't have enough levels yet.  Keep going. */
	++rt;
	goto try_size;
    }
    if (better) {		/* If we want accurate screens, continue till we fail. */
	if (accurate) {
	    ++rt;
	    goto try_size;
	}
    } else {			/*
				 * We couldn't find an acceptable M and N.  If R > 1,
				 * take what we've got; if R = 1, give up.
				 */
	if (rt == 1)
	    return_error(gs_error_rangecheck);
    }

    /* Deliver the results. */
  done:
    if_debug5('h', "[h]Chosen: f=%g a=%g M=%d N=%d R=%d\n",
	      f, a, phcp->M, phcp->N, phcp->R);
    ph->actual_frequency = f;
    ph->actual_angle = a;
    return 0;
#undef u0
#undef v0
}

/* Prepare to sample a spot screen. */
/* This is the second half of gs_screen_init_accurate. */
int
gs_screen_enum_init_memory(gs_screen_enum * penum, const gx_ht_order * porder,
	       gs_state * pgs, gs_screen_halftone * phsp, gs_memory_t * mem)
{
    penum->pgs = pgs;		/* ensure clean for GC */
    penum->order = *porder;
    penum->halftone.rc.memory = mem;
    penum->halftone.type = ht_type_screen;
    penum->halftone.params.screen = *phsp;
    penum->x = penum->y = 0;
    penum->strip = porder->num_levels / porder->width;
    penum->shift = porder->shift;
    /*
     * We want a transformation matrix that maps the parallelogram
     * (0,0), (U,V), (U-V',V+U'), (-V',U') to the square (+/-1, +/-1).
     * If the coefficients are [a b c d e f] and we let
     *      u = U = M/R, v = V = N/R,
     *      r = -V' = -N'/R', s = U' = M'/R',
     * then we just need to solve the equations:
     *      a*0 + c*0 + e = -1      b*0 + d*0 + f = -1
     *      a*u + c*v + e = 1       b*u + d*v + f = 1
     *      a*r + c*s + e = -1      b*r + d*s + f = 1
     * This has the following solution:
     *      Q = 2 / (M*M' + N*N')
     *      a = Q * R * M'
     *      b = -Q * R' * N
     *      c = Q * R * N'
     *      d = Q * R' * M
     *      e = -1
     *      f = -1
     */
    {
	const int M = porder->params.M, N = porder->params.N, R = porder->params.R;
	const int M1 = porder->params.M1, N1 = porder->params.N1, R1 = porder->params.R1;
	double Q = 2.0 / ((long)M * M1 + (long)N * N1);

	penum->mat.xx = Q * (R * M1);
	penum->mat.xy = Q * (-R1 * N);
	penum->mat.yx = Q * (R * N1);
	penum->mat.yy = Q * (R1 * M);
	penum->mat.tx = -1.0;
	penum->mat.ty = -1.0;
    }
    if_debug7('h', "[h]Screen: (%dx%d)/%d [%f %f %f %f]\n",
	      porder->width, porder->height, porder->params.R,
	      penum->mat.xx, penum->mat.xy,
	      penum->mat.yx, penum->mat.yy);
    return 0;
}

/* Report current point for sampling */
int
gs_screen_currentpoint(gs_screen_enum * penum, gs_point * ppt)
{
    gs_point pt;
    int code;

    if (penum->y >= penum->strip) {	/* all done */
	gx_ht_construct_spot_order(&penum->order);
	return 1;
    }
    /* We displace the sampled coordinates very slightly */
    /* in order to reduce the likely number of points */
    /* for which the spot function returns the same value. */
    if ((code = gs_point_transform(penum->x + 0.501, penum->y + 0.498, &penum->mat, &pt)) < 0)
	return code;
    if (pt.x < -1.0)
	pt.x += ((int)(-ceil(pt.x)) + 1) & ~1;
    else if (pt.x >= 1.0)
	pt.x -= ((int)pt.x + 1) & ~1;
    if (pt.y < -1.0)
	pt.y += ((int)(-ceil(pt.y)) + 1) & ~1;
    else if (pt.y >= 1.0)
	pt.y -= ((int)pt.y + 1) & ~1;
    *ppt = pt;
    return 0;
}

/* Record next halftone sample */
int
gs_screen_next(gs_screen_enum * penum, floatp value)
{
    ht_sample_t sample;
    int width = penum->order.width;
    gx_ht_bit *bits = (gx_ht_bit *)penum->order.bit_data;

    if (value < -1.0 || value > 1.0)
	return_error(gs_error_rangecheck);
    /* The following statement was split into two */
    /* to work around a bug in the Siemens C compiler. */
    sample = (ht_sample_t) (value * max_ht_sample);
    sample += max_ht_sample;	/* convert from signed to biased */
#ifdef DEBUG
    if (gs_debug_c('H')) {
	gs_point pt;

	gs_screen_currentpoint(penum, &pt);
	dlprintf6("[H]sample x=%d y=%d (%f,%f): %f -> %u\n",
		  penum->x, penum->y, pt.x, pt.y, value, sample);
    }
#endif
    bits[penum->y * width + penum->x].mask = sample;
    if (++(penum->x) >= width)
	penum->x = 0, ++(penum->y);
    return 0;
}

/* Install a fully constructed screen in the gstate. */
int
gs_screen_install(gs_screen_enum * penum)
{
    gx_device_halftone dev_ht;

    dev_ht.rc.memory = penum->halftone.rc.memory;
    dev_ht.order = penum->order;
    dev_ht.components = 0;
    return gx_ht_install(penum->pgs, &penum->halftone, &dev_ht);
}