1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
|
/* Copyright (C) 1997, 2000 Aladdin Enterprises. All rights reserved.
This file is part of AFPL Ghostscript.
AFPL Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author or
distributor accepts any responsibility for the consequences of using it, or
for whether it serves any particular purpose or works at all, unless he or
she says so in writing. Refer to the Aladdin Free Public License (the
"License") for full details.
Every copy of AFPL Ghostscript must include a copy of the License, normally
in a plain ASCII text file named PUBLIC. The License grants you the right
to copy, modify and redistribute AFPL Ghostscript, but only under certain
conditions described in the License. Among other things, the License
requires that the copyright notice and this notice be preserved on all
copies.
*/
/*$Id$ */
/* Implementation of FunctionType 0 (Sampled) Functions */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsfunc0.h"
#include "gsparam.h"
#include "gxfarith.h"
#include "gxfunc.h"
typedef struct gs_function_Sd_s {
gs_function_head_t head;
gs_function_Sd_params_t params;
} gs_function_Sd_t;
/* GC descriptor */
private_st_function_Sd();
private
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
{
index -= 3;
if (index < st_data_source_max_ptrs)
return ENUM_USING(st_data_source, &pfn->params.DataSource,
sizeof(pfn->params.DataSource), index);
return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
}
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
ENUM_PTRS_END
private
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
{
RELOC_PREFIX(st_function);
RELOC_USING(st_data_source, &pfn->params.DataSource,
sizeof(pfn->params.DataSource));
RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
}
RELOC_PTRS_END
/* Define the maximum plausible number of inputs and outputs */
/* for a Sampled function. */
#define max_Sd_m 16
#define max_Sd_n 16
/* Get one set of sample values. */
#define SETUP_SAMPLES(bps, nbytes)\
int n = pfn->params.n;\
byte buf[max_Sd_n * ((bps + 7) >> 3)];\
const byte *p;\
int i;\
\
data_source_access(&pfn->params.DataSource, offset >> 3,\
nbytes, buf, &p)
private int
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
for (i = 0; i < n; ++i) {
samples[i] = (*p >> (~offset & 7)) & 1;
if (!(++offset & 7))
p++;
}
return 0;
}
private int
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
for (i = 0; i < n; ++i) {
samples[i] = (*p >> (6 - (offset & 7))) & 3;
if (!((offset += 2) & 7))
p++;
}
return 0;
}
private int
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
for (i = 0; i < n; ++i) {
samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
}
return 0;
}
private int
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(8, n);
for (i = 0; i < n; ++i) {
samples[i] = *p++;
}
return 0;
}
private int
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
for (i = 0; i < n; ++i) {
if (offset & 4)
samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
else
samples[i] = (*p << 4) + (p[1] >> 4), p++;
offset ^= 4;
}
return 0;
}
private int
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(16, n * 2);
for (i = 0; i < n; ++i) {
samples[i] = (*p << 8) + p[1];
p += 2;
}
return 0;
}
private int
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(24, n * 3);
for (i = 0; i < n; ++i) {
samples[i] = (*p << 16) + (p[1] << 8) + p[2];
p += 3;
}
return 0;
}
private int
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
SETUP_SAMPLES(32, n * 4);
for (i = 0; i < n; ++i) {
samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
p += 4;
}
return 0;
}
private int (*const fn_get_samples[]) (P3(const gs_function_Sd_t * pfn,
ulong offset, uint * samples)) =
{
0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
fn_gets_32
};
/*
* Compute a value by cubic interpolation.
* f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
* The formula is derived from those presented in
* http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
* (thanks to Raph Levien for the reference).
*/
private double
interpolate_cubic(floatp x, floatp f0, floatp f1, floatp f2, floatp f3)
{
/*
* The parameter 'a' affects the contribution of the high-frequency
* components. The abovementioned source suggests a = -0.5.
*/
#define a (-0.5)
#define SQR(v) ((v) * (v))
#define CUBE(v) ((v) * (v) * (v))
const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
const double c =
(a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
(a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
f0, f1, f2, f3, x, c);
return c;
#undef a
#undef SQR
#undef CUBE
}
/*
* Compute a value by quadratic interpolation.
* f[] = f(0), f(1), f(2); 0 < x < 1.
*
* We used to use a quadratic formula for this, derived from
* f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
* match what we believe is Acrobat Reader's behavior.
*/
inline private double
interpolate_quadratic(floatp x, floatp f0, floatp f1, floatp f2)
{
return interpolate_cubic(x + 1, f0, f0, f1, f2);
}
/* Calculate a result by multicubic interpolation. */
private void
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
const int *iparts, const ulong *factors,
float *samples, ulong offset, int m)
{
int j;
top:
if (m == 0) {
uint sdata[max_Sd_n];
(*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] = sdata[j];
} else {
float fpart = *fparts++;
int ipart = *iparts++;
ulong delta = *factors++;
int size = pfn->params.Size[pfn->params.m - m];
float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
--m;
if (is_fzero(fpart))
goto top;
fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
offset, m);
fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
offset + delta, m);
/* Ensure we don't try to access out of bounds. */
/*
* If size == 1, the only possible value for ipart and fpart is
* 0, so we've already handled this case.
*/
if (size == 2) { /* ipart = 0 */
/* Use linear interpolation. */
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] += (samples1[j] - samples[j]) * fpart;
return;
}
if (ipart == 0) {
/* Use quadratic interpolation. */
fn_interpolate_cubic(pfn, fparts, iparts, factors,
samples2, offset + delta * 2, m);
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] =
interpolate_quadratic(fpart, samples[j],
samples1[j], samples2[j]);
return;
}
/* At this point we know ipart > 0, size >= 3. */
fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
offset - delta, m);
if (ipart == size - 2) {
/* Use quadratic interpolation. */
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] =
interpolate_quadratic(1 - fpart, samples1[j],
samples[j], samplesm1[j]);
return;
}
/* Now we know 0 < ipart < size - 2, size > 3. */
fn_interpolate_cubic(pfn, fparts, iparts, factors,
samples2, offset + delta * 2, m);
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] =
interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
samples1[j], samples2[j]);
}
}
/* Calculate a result by multilinear interpolation. */
private void
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
const ulong *factors, float *samples, ulong offset, int m)
{
int j;
top:
if (m == 0) {
uint sdata[max_Sd_n];
(*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] = sdata[j];
} else {
float fpart = *fparts++;
float samples1[max_Sd_n];
if (is_fzero(fpart)) {
++factors;
--m;
goto top;
}
fn_interpolate_linear(pfn, fparts, factors + 1, samples,
offset, m - 1);
fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
offset + *factors, m - 1);
for (j = pfn->params.n - 1; j >= 0; --j)
samples[j] += (samples1[j] - samples[j]) * fpart;
}
}
/* Evaluate a Sampled function. */
private int
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
{
const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
int bps = pfn->params.BitsPerSample;
ulong offset = 0;
int i;
float encoded[max_Sd_m];
int iparts[max_Sd_m]; /* only needed for cubic interpolation */
ulong factors[max_Sd_m];
float samples[max_Sd_n];
/* Encode the input values. */
for (i = 0; i < pfn->params.m; ++i) {
float d0 = pfn->params.Domain[2 * i],
d1 = pfn->params.Domain[2 * i + 1];
float arg = in[i], enc;
if (arg < d0)
arg = d0;
else if (arg > d1)
arg = d1;
if (pfn->params.Encode) {
float e0 = pfn->params.Encode[2 * i];
float e1 = pfn->params.Encode[2 * i + 1];
enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
if (enc < 0)
encoded[i] = 0;
else if (enc >= pfn->params.Size[i] - 1)
encoded[i] = pfn->params.Size[i] - 1;
else
encoded[i] = enc;
} else {
/* arg is guaranteed to be in bounds, ergo so is enc */
encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
}
}
/* Look up and interpolate the output values. */
{
ulong factor = bps * pfn->params.n;
for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
int ipart = (int)encoded[i];
offset += (factors[i] = factor) * ipart;
iparts[i] = ipart; /* only needed for cubic interpolation */
encoded[i] -= ipart;
}
}
if (pfn->params.Order == 3)
fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
offset, pfn->params.m);
else
fn_interpolate_linear(pfn, encoded, factors, samples, offset,
pfn->params.m);
/* Encode the output values. */
for (i = 0; i < pfn->params.n; ++i) {
float d0, d1, r0, r1, value;
if (pfn->params.Range)
r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
else
r0 = 0, r1 = (1 << bps) - 1;
if (pfn->params.Decode)
d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
else
d0 = r0, d1 = r1;
value = samples[i] * (d1 - d0) / ((1 << bps) - 1) + d0;
if (value < r0)
out[i] = r0;
else if (value > r1)
out[i] = r1;
else
out[i] = value;
}
return 0;
}
/* Test whether a Sampled function is monotonic. */
private int
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
const float *lower, const float *upper,
gs_function_effort_t effort)
{
const gs_function_Sd_t *const pfn =
(const gs_function_Sd_t *)pfn_common;
float d0 = pfn->params.Domain[0], d1 = pfn->params.Domain[1];
float v0 = lower[0], v1 = upper[0];
float e0, e1, w0, w1;
float r0[max_Sd_n], r1[max_Sd_n];
int code, i, result;
/*
* Testing this in general is very time-consuming, so we don't bother.
* However, we do implement it correctly for one special case that is
* important in practice: for 1-input functions when the lower and
* upper values are in the same sample cell.
*/
if (pfn->params.m > 1)
return gs_error_undefined;
if (lower[0] > pfn->params.Domain[1] ||
upper[0] < pfn->params.Domain[0]
)
return gs_error_rangecheck;
if (pfn->params.n > sizeof(int) * 4 - 1)
return 0; /* can't represent result */
if (pfn->params.Encode)
e0 = pfn->params.Encode[0], e1 = pfn->params.Encode[1];
else
e0 = 0, e1 = pfn->params.Size[0];
w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
if (w0 < 0)
w0 = 0;
else if (w0 >= pfn->params.Size[0] - 1)
w0 = pfn->params.Size[0] - 1;
w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
if (w1 < 0)
w1 = 0;
else if (w1 >= pfn->params.Size[0] - 1)
w1 = pfn->params.Size[0] - 1;
if ((int)w0 != (int)w1)
return gs_error_undefined; /* not in the same sample */
code = gs_function_evaluate(pfn_common, lower, r0);
if (code < 0)
return code;
gs_function_evaluate(pfn_common, upper, r1);
if (code < 0)
return code;
for (i = 0, result = 0; i < pfn->params.n; ++i) {
double diff = r1[i] - r0[i];
result |=
(diff < 0 ? FN_MONOTONIC_DECREASING :
diff > 0 ? FN_MONOTONIC_INCREASING :
FN_MONOTONIC_DECREASING | FN_MONOTONIC_INCREASING) <<
(2 * i);
}
return result;
}
/* Return Sampled function information. */
private void
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
{
const gs_function_Sd_t *const pfn =
(const gs_function_Sd_t *)pfn_common;
long size;
int i;
gs_function_get_info_default(pfn_common, pfi);
pfi->DataSource = &pfn->params.DataSource;
for (i = 0, size = 1; i < pfn->params.m; ++i)
size *= pfn->params.Size[i];
pfi->data_size =
(size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
}
/* Write Sampled function parameters on a parameter list. */
private int
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
{
const gs_function_Sd_t *const pfn =
(const gs_function_Sd_t *)pfn_common;
int ecode = fn_common_get_params(pfn_common, plist);
int code;
if (pfn->params.Order != 1) {
if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
ecode = code;
}
if ((code = param_write_int(plist, "BitsPerSample",
&pfn->params.BitsPerSample)) < 0)
ecode = code;
if (pfn->params.Encode) {
if ((code = param_write_float_values(plist, "Encode",
pfn->params.Encode,
2 * pfn->params.m, false)) < 0)
ecode = code;
}
if (pfn->params.Decode) {
if ((code = param_write_float_values(plist, "Decode",
pfn->params.Decode,
2 * pfn->params.n, false)) < 0)
ecode = code;
}
if (pfn->params.Size) {
if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
pfn->params.m, false)) < 0)
ecode = code;
}
return ecode;
}
/* Free the parameters of a Sampled function. */
void
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
{
gs_free_const_object(mem, params->Size, "Size");
gs_free_const_object(mem, params->Decode, "Decode");
gs_free_const_object(mem, params->Encode, "Encode");
fn_common_free_params((gs_function_params_t *) params, mem);
}
/* Allocate and initialize a Sampled function. */
int
gs_function_Sd_init(gs_function_t ** ppfn,
const gs_function_Sd_params_t * params, gs_memory_t * mem)
{
static const gs_function_head_t function_Sd_head = {
function_type_Sampled,
{
(fn_evaluate_proc_t) fn_Sd_evaluate,
(fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
(fn_get_info_proc_t) fn_Sd_get_info,
(fn_get_params_proc_t) fn_Sd_get_params,
(fn_free_params_proc_t) gs_function_Sd_free_params,
fn_common_free
}
};
int code;
int i;
*ppfn = 0; /* in case of error */
code = fn_check_mnDR((const gs_function_params_t *)params,
params->m, params->n);
if (code < 0)
return code;
if (params->m > max_Sd_m)
return_error(gs_error_limitcheck);
switch (params->Order) {
case 0: /* use default */
case 1:
case 3:
break;
default:
return_error(gs_error_rangecheck);
}
switch (params->BitsPerSample) {
case 1:
case 2:
case 4:
case 8:
case 12:
case 16:
case 24:
case 32:
break;
default:
return_error(gs_error_rangecheck);
}
for (i = 0; i < params->m; ++i)
if (params->Size[i] <= 0)
return_error(gs_error_rangecheck);
{
gs_function_Sd_t *pfn =
gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
"gs_function_Sd_init");
if (pfn == 0)
return_error(gs_error_VMerror);
pfn->params = *params;
if (params->Order == 0)
pfn->params.Order = 1; /* default */
pfn->head = function_Sd_head;
pfn->head.is_monotonic =
fn_domain_is_monotonic((gs_function_t *)pfn, EFFORT_MODERATE);
*ppfn = (gs_function_t *) pfn;
}
return 0;
}
|