1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
/* Copyright (C) 2001-2006 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied, modified
or distributed except as expressly authorized under the terms of that
license. Refer to licensing information at http://www.artifex.com/
or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134,
San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* $Id$ */
/* Bounded Huffman code filters */
#include "memory_.h"
#include "stdio_.h"
#include "gdebug.h"
#include "strimpl.h"
#include "sbhc.h"
#include "shcgen.h"
/* ------ BoundedHuffmanEncode ------ */
private_st_BHCE_state();
/* Initialize BoundedHuffmanEncode filter. */
static int
s_BHCE_reinit(stream_state * st)
{
stream_BHCE_state *const ss = (stream_BHCE_state *) st;
ss->encode.count = ss->definition.num_values;
s_bhce_init_inline(ss);
return 0;
}
static int
s_BHCE_init(register stream_state * st)
{
stream_BHCE_state *const ss = (stream_BHCE_state *) st;
hce_code *encode = ss->encode.codes =
(hce_code *) gs_alloc_byte_array(st->memory,
ss->definition.num_values,
sizeof(hce_code), "BHCE encode");
if (encode == 0)
return ERRC;
/****** WRONG ******/
hc_make_encoding(encode, &ss->definition);
return s_BHCE_reinit(st);
}
/* Release the filter. */
static void
s_BHCE_release(stream_state * st)
{
stream_BHCE_state *const ss = (stream_BHCE_state *) st;
gs_free_object(st->memory, ss->encode.codes, "BHCE encode");
}
/* Process a buffer. */
static int
s_BHCE_process(stream_state * st, stream_cursor_read * pr,
stream_cursor_write * pw, bool last)
{
stream_BHCE_state *const ss = (stream_BHCE_state *) st;
const byte *p = pr->ptr;
const byte *rlimit = pr->limit;
byte *q = pw->ptr;
byte *wlimit = pw->limit - (hc_bits_size >> 3);
const hce_code *encode = ss->encode.codes;
uint num_values = ss->definition.num_values;
uint zero_runs = ss->EncodeZeroRuns;
uint zero_max = num_values - zero_runs + (ss->EndOfData ? 0 : 1);
uint zero_value = (zero_max > 1 ? 0 : 0x100);
int zeros = ss->zeros;
int status = 0;
hce_declare_state;
hce_load_state();
while (p < rlimit && q < wlimit) {
uint value = *++p;
const hce_code *cp;
if (value >= num_values) {
status = ERRC;
break;
}
if (value == zero_value) { /* Accumulate a run of zeros. */
++zeros;
if (zeros != zero_max)
continue;
/* We've scanned the longest run we can encode. */
cp = &encode[zeros - 2 + zero_runs];
zeros = 0;
hc_put_code((stream_hc_state *) ss, q, cp);
continue;
}
/* Check whether we need to put out a zero run. */
if (zeros > 0) {
--p;
cp = (zeros == 1 ? &encode[0] :
&encode[zeros - 2 + zero_runs]);
zeros = 0;
hc_put_code((stream_hc_state *) ss, q, cp);
continue;
}
cp = &encode[value];
hc_put_code((stream_hc_state *) ss, q, cp);
}
if (q >= wlimit)
status = 1;
wlimit = pw->limit;
if (last && status == 0) {
if (zeros > 0) { /* Put out a final run of zeros. */
const hce_code *cp = (zeros == 1 ? &encode[0] :
&encode[zeros - 2 + zero_runs]);
if (!hce_bits_available(cp->code_length))
status = 1;
else {
hc_put_code((stream_hc_state *) ss, q, cp);
zeros = 0;
}
}
if (ss->EndOfData) { /* Put out the EOD code if we have room. */
const hce_code *cp = &encode[num_values - 1];
if (!hce_bits_available(cp->code_length))
status = 1;
else
hc_put_code((stream_hc_state *) ss, q, cp);
} else {
if (q >= wlimit)
status = 1;
}
if (!status) {
q = hc_put_last_bits((stream_hc_state *) ss, q);
goto ns;
}
}
hce_store_state();
ns:pr->ptr = p;
pw->ptr = q;
ss->zeros = zeros;
return (p == rlimit ? 0 : 1);
}
/* Stream template */
const stream_template s_BHCE_template =
{&st_BHCE_state, s_BHCE_init, s_BHCE_process,
1, hc_bits_size >> 3, s_BHCE_release, NULL, s_BHCE_reinit
};
/* ------ BoundedHuffmanDecode ------ */
private_st_BHCD_state();
#define hcd_initial_bits 7 /* arbitrary, >= 1 and <= 8 */
/* Initialize BoundedHuffmanDecode filter. */
static int
s_BHCD_reinit(stream_state * st)
{
stream_BHCD_state *const ss = (stream_BHCD_state *) st;
ss->decode.count = ss->definition.num_values;
s_bhcd_init_inline(ss);
return 0;
}
static int
s_BHCD_init(register stream_state * st)
{
stream_BHCD_state *const ss = (stream_BHCD_state *) st;
uint initial_bits = ss->decode.initial_bits =
min(hcd_initial_bits, ss->definition.num_counts);
uint dsize = hc_sizeof_decoding(&ss->definition, initial_bits);
hcd_code *decode = ss->decode.codes =
(hcd_code *) gs_alloc_byte_array(st->memory, dsize,
sizeof(hcd_code), "BHCD decode");
if (decode == 0)
return ERRC;
/****** WRONG ******/
hc_make_decoding(decode, &ss->definition, initial_bits);
st->min_left = 1;
return s_BHCD_reinit(st);
}
/* Release the filter. */
static void
s_BHCD_release(stream_state * st)
{
stream_BHCD_state *const ss = (stream_BHCD_state *) st;
gs_free_object(st->memory, ss->decode.codes, "BHCD decode");
}
/* Process a buffer. */
static int
s_BHCD_process(stream_state * st, stream_cursor_read * pr,
stream_cursor_write * pw, bool last)
{
stream_BHCD_state *const ss = (stream_BHCD_state *) st;
bhcd_declare_state;
byte *q = pw->ptr;
byte *wlimit = pw->limit;
const hcd_code *decode = ss->decode.codes;
uint initial_bits = ss->decode.initial_bits;
uint zero_runs = ss->EncodeZeroRuns;
int status = 0;
int eod = (ss->EndOfData ? ss->definition.num_values - 1 : -1);
bhcd_load_state();
z:for (; zeros > 0; --zeros) {
if (q >= wlimit) {
status = 1;
goto out;
}
*++q = 0;
}
for (;;) {
const hcd_code *cp;
int clen;
hcd_ensure_bits(initial_bits, x1);
cp = &decode[hcd_peek_var_bits(initial_bits)];
w1:if (q >= wlimit) {
status = 1;
break;
}
if ((clen = cp->code_length) > initial_bits) {
if (!hcd_bits_available(clen)) { /* We don't have enough bits for */
/* all possible codes that begin this way, */
/* but we might have enough for */
/* the next code. */
/****** NOT IMPLEMENTED YET ******/
break;
}
clen -= initial_bits;
hcd_skip_bits(initial_bits);
hcd_ensure_bits(clen, out); /* can't exit */
cp = &decode[cp->value + hcd_peek_var_bits(clen)];
hcd_skip_bits(cp->code_length);
} else {
hcd_skip_bits(clen);
}
if (cp->value >= zero_runs) {
if (cp->value == eod) {
status = EOFC;
goto out;
}
/* This code represents a run of zeros, */
/* not a single output value. */
zeros = cp->value - zero_runs + 2;
goto z;
}
*++q = cp->value;
continue;
/* We don't have enough bits for all possible */
/* codes, but we might have enough for */
/* the next code. */
x1:cp = &decode[(bits & ((1 << bits_left) - 1)) <<
(initial_bits - bits_left)];
if ((clen = cp->code_length) <= bits_left)
goto w1;
break;
}
out:bhcd_store_state();
pw->ptr = q;
return status;
}
/* Stream template */
const stream_template s_BHCD_template =
{&st_BHCD_state, s_BHCD_init, s_BHCD_process, 1, 1, s_BHCD_release,
NULL, s_BHCD_reinit
};
|