summaryrefslogtreecommitdiff
path: root/gs/base/gscoord.c
blob: 3d9e9614d28cb2412b1894451c95c5270ebadec2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/* Copyright (C) 2001-2006 Artifex Software, Inc.
   All Rights Reserved.
  
   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/

/* $Id$ */
/* Coordinate system operators for Ghostscript library */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsccode.h"		/* for gxfont.h */
#include "gxfarith.h"
#include "gxfixed.h"
#include "gxmatrix.h"
#include "gxfont.h"		/* for char_tm */
#include "gxpath.h"		/* for gx_path_translate */
#include "gzstate.h"
#include "gxcoord.h"		/* requires gsmatrix, gsstate */
#include "gxdevice.h"

/* Choose whether to enable the rounding code in update_ctm. */
#define ROUND_CTM_FIXED 0

/* Forward declarations */
#ifdef DEBUG
#define trace_ctm(pgs) trace_matrix_fixed(&(pgs)->ctm)
static void trace_matrix_fixed(const gs_matrix_fixed *);
static void trace_matrix(const gs_matrix *);

#endif

/* Macro for ensuring ctm_inverse is valid */
#ifdef DEBUG
#  define print_inverse(pgs)\
     if ( gs_debug_c('x') )\
       dlprintf("[x]Inverting:\n"), trace_ctm(pgs), trace_matrix(&pgs->ctm_inverse)
#else
#  define print_inverse(pgs) DO_NOTHING
#endif
#define ensure_inverse_valid(pgs)\
	if ( !pgs->ctm_inverse_valid )\
	   {	int code = ctm_set_inverse(pgs);\
		if ( code < 0 ) return code;\
	   }

static int
ctm_set_inverse(gs_state * pgs)
{
    int code = gs_matrix_invert(&ctm_only(pgs), &pgs->ctm_inverse);

    print_inverse(pgs);
    if (code < 0)
	return code;
    pgs->ctm_inverse_valid = true;
    return 0;
}

/* Machinery for updating fixed version of ctm. */
/*
 * We (conditionally) adjust the floating point translation
 * so that it exactly matches the (rounded) fixed translation.
 * This avoids certain unpleasant rounding anomalies, such as
 * 0 0 moveto currentpoint not returning 0 0, and () stringwidth
 * not returning 0 0.
 */
#if ROUND_CTM_FIXED
#  define update_t_fixed(mat, t, t_fixed, v)\
    (set_float2fixed_vars((mat).t_fixed, v),\
     set_fixed2float_var((mat).t, (mat).t_fixed))
#else /* !ROUND_CTM_FIXED */
#  define update_t_fixed(mat, t, t_fixed, v)\
    ((mat).t = (v),\
     set_float2fixed_vars((mat).t_fixed, (mat).t))
#endif /* (!)ROUND_CTM_FIXED */
#define f_fits_in_fixed(f) f_fits_in_bits(f, fixed_int_bits)
#define update_matrix_fixed(mat, xt, yt)\
  ((mat).txy_fixed_valid = (f_fits_in_fixed(xt) && f_fits_in_fixed(yt) ?\
			    (update_t_fixed(mat, tx, tx_fixed, xt),\
			     update_t_fixed(mat, ty, ty_fixed, yt), true) :\
			    ((mat).tx = (xt), (mat).ty = (yt), false)))
#define update_ctm(pgs, xt, yt)\
  (pgs->ctm_inverse_valid = false,\
   pgs->char_tm_valid = false,\
   update_matrix_fixed(pgs->ctm, xt, yt))

/* ------ Coordinate system definition ------ */

int
gs_initmatrix(gs_state * pgs)
{
    gs_matrix imat;

    gs_defaultmatrix(pgs, &imat);
    update_ctm(pgs, imat.tx, imat.ty);
    set_ctm_only(pgs, imat);
#ifdef DEBUG
    if (gs_debug_c('x'))
	dlprintf("[x]initmatrix:\n"), trace_ctm(pgs);
#endif
    return 0;
}

int
gs_defaultmatrix(const gs_state * pgs, gs_matrix * pmat)
{
    gx_device *dev;

    if (pgs->ctm_default_set) {	/* set after Install */
	*pmat = pgs->ctm_default;
	return 1;
    }
    dev = gs_currentdevice_inline(pgs);
    gs_deviceinitialmatrix(dev, pmat);
    /* Add in the translation for the Margins. */
    pmat->tx += dev->Margins[0] *
	dev->HWResolution[0] / dev->MarginsHWResolution[0];
    pmat->ty += dev->Margins[1] *
	dev->HWResolution[1] / dev->MarginsHWResolution[1];
    return 0;
}

int
gs_setdefaultmatrix(gs_state * pgs, const gs_matrix * pmat)
{
    if (pmat == NULL)
	pgs->ctm_default_set = false;
    else {
	pgs->ctm_default = *pmat;
	pgs->ctm_default_set = true;
    }
    return 0;
}

int
gs_currentmatrix(const gs_state * pgs, gs_matrix * pmat)
{
    *pmat = ctm_only(pgs);
    return 0;
}

/* Set the current transformation matrix for rendering text. */
/* Note that this may be based on a font other than the current font. */
int
gs_setcharmatrix(gs_state * pgs, const gs_matrix * pmat)
{
    gs_matrix cmat;
    int code = gs_matrix_multiply(pmat, &ctm_only(pgs), &cmat);

    if (code < 0)
	return code;
    update_matrix_fixed(pgs->char_tm, cmat.tx, cmat.ty);
    char_tm_only(pgs) = cmat;
#ifdef DEBUG
    if (gs_debug_c('x'))
	dlprintf("[x]setting char_tm:"), trace_matrix_fixed(&pgs->char_tm);
#endif
    pgs->char_tm_valid = true;
    return 0;
}

/* Read (after possibly computing) the current transformation matrix */
/* for rendering text.  If force=true, update char_tm if it is invalid; */
/* if force=false, don't update char_tm, and return an error code. */
int
gs_currentcharmatrix(gs_state * pgs, gs_matrix * ptm, bool force)
{
    if (!pgs->char_tm_valid) {
	int code;

	if (!force)
	    return_error(gs_error_undefinedresult);
	code = gs_setcharmatrix(pgs, &pgs->font->FontMatrix);
	if (code < 0)
	    return code;
    }
    if (ptm != NULL)
	*ptm = char_tm_only(pgs);
    return 0;
}

int
gs_setmatrix(gs_state * pgs, const gs_matrix * pmat)
{
    update_ctm(pgs, pmat->tx, pmat->ty);
    set_ctm_only(pgs, *pmat);
#ifdef DEBUG
    if (gs_debug_c('x'))
	dlprintf("[x]setmatrix:\n"), trace_ctm(pgs);
#endif
    return 0;
}

int
gs_imager_setmatrix(gs_imager_state * pis, const gs_matrix * pmat)
{
    update_matrix_fixed(pis->ctm, pmat->tx, pmat->ty);
    set_ctm_only(pis, *pmat);
#ifdef DEBUG
    if (gs_debug_c('x'))
	dlprintf("[x]imager_setmatrix:\n"), trace_ctm(pis);
#endif
    return 0;
}

int
gs_settocharmatrix(gs_state * pgs)
{
    if (pgs->char_tm_valid) {
	pgs->ctm = pgs->char_tm;
	pgs->ctm_inverse_valid = false;
	return 0;
    } else
	return_error(gs_error_undefinedresult);
}

int
gs_translate(gs_state * pgs, floatp dx, floatp dy)
{
    gs_point pt;
    int code;

    if ((code = gs_distance_transform(dx, dy, &ctm_only(pgs), &pt)) < 0)
	return code;
    pt.x = (float)pt.x + pgs->ctm.tx;
    pt.y = (float)pt.y + pgs->ctm.ty;
    update_ctm(pgs, pt.x, pt.y);
#ifdef DEBUG
    if (gs_debug_c('x'))
	dlprintf4("[x]translate: %f %f -> %f %f\n",
		  dx, dy, pt.x, pt.y),
	    trace_ctm(pgs);
#endif
    return 0;
}

int
gs_scale(gs_state * pgs, floatp sx, floatp sy)
{
    pgs->ctm.xx *= sx;
    pgs->ctm.xy *= sx;
    pgs->ctm.yx *= sy;
    pgs->ctm.yy *= sy;
    pgs->ctm_inverse_valid = false, pgs->char_tm_valid = false;
#ifdef DEBUG
    if (gs_debug_c('x'))
	dlprintf2("[x]scale: %f %f\n", sx, sy), trace_ctm(pgs);
#endif
    return 0;
}

int
gs_rotate(gs_state * pgs, floatp ang)
{
    int code = gs_matrix_rotate(&ctm_only(pgs), ang,
				&ctm_only_writable(pgs));

    pgs->ctm_inverse_valid = false, pgs->char_tm_valid = false;
#ifdef DEBUG
    if (gs_debug_c('x'))
	dlprintf1("[x]rotate: %f\n", ang), trace_ctm(pgs);
#endif
    return code;
}

int
gs_concat(gs_state * pgs, const gs_matrix * pmat)
{
    gs_matrix cmat;
    int code = gs_matrix_multiply(pmat, &ctm_only(pgs), &cmat);

    if (code < 0)
	return code;
    update_ctm(pgs, cmat.tx, cmat.ty);
    set_ctm_only(pgs, cmat);
#ifdef DEBUG
    if (gs_debug_c('x'))
	dlprintf("[x]concat:\n"), trace_matrix(pmat), trace_ctm(pgs);
#endif
    return code;
}

/* ------ Coordinate transformation ------ */

#define is_skewed(pmat) (!(is_xxyy(pmat) || is_xyyx(pmat)))

int
gs_transform(gs_state * pgs, floatp x, floatp y, gs_point * pt)
{
    return gs_point_transform(x, y, &ctm_only(pgs), pt);
}

int
gs_dtransform(gs_state * pgs, floatp dx, floatp dy, gs_point * pt)
{
    return gs_distance_transform(dx, dy, &ctm_only(pgs), pt);
}

int
gs_itransform(gs_state * pgs, floatp x, floatp y, gs_point * pt)
{				/* If the matrix isn't skewed, we get more accurate results */
    /* by using transform_inverse than by using the inverse matrix. */
    if (!is_skewed(&pgs->ctm)) {
	return gs_point_transform_inverse(x, y, &ctm_only(pgs), pt);
    } else {
	ensure_inverse_valid(pgs);
	return gs_point_transform(x, y, &pgs->ctm_inverse, pt);
    }
}

int
gs_idtransform(gs_state * pgs, floatp dx, floatp dy, gs_point * pt)
{				/* If the matrix isn't skewed, we get more accurate results */
    /* by using transform_inverse than by using the inverse matrix. */
    if (!is_skewed(&pgs->ctm)) {
	return gs_distance_transform_inverse(dx, dy,
					     &ctm_only(pgs), pt);
    } else {
	ensure_inverse_valid(pgs);
	return gs_distance_transform(dx, dy, &pgs->ctm_inverse, pt);
    }
}

int
gs_imager_idtransform(const gs_imager_state * pis, floatp dx, floatp dy,
		      gs_point * pt)
{
    return gs_distance_transform_inverse(dx, dy, &ctm_only(pis), pt);
}

/* ------ For internal use only ------ */

/* Set the translation to a fixed value, and translate any existing path. */
/* Used by gschar.c to prepare for a BuildChar or BuildGlyph procedure. */
int
gx_translate_to_fixed(register gs_state * pgs, fixed px, fixed py)
{
    double fpx = fixed2float(px);
    double fdx = fpx - pgs->ctm.tx;
    double fpy = fixed2float(py);
    double fdy = fpy - pgs->ctm.ty;
    fixed dx, dy;
    int code;

    if (pgs->ctm.txy_fixed_valid) {
	dx = float2fixed(fdx);
	dy = float2fixed(fdy);
	code = gx_path_translate(pgs->path, dx, dy);
	if (code < 0)
	    return code;
	if (pgs->char_tm_valid && pgs->char_tm.txy_fixed_valid)
	    pgs->char_tm.tx_fixed += dx,
		pgs->char_tm.ty_fixed += dy;
    } else {
	if (!gx_path_is_null(pgs->path))
	    return_error(gs_error_limitcheck);
    }
    pgs->ctm.tx = fpx;
    pgs->ctm.tx_fixed = px;
    pgs->ctm.ty = fpy;
    pgs->ctm.ty_fixed = py;
    pgs->ctm.txy_fixed_valid = true;
    pgs->ctm_inverse_valid = false;
    if (pgs->char_tm_valid) {	/* Update char_tm now, leaving it valid. */
	pgs->char_tm.tx += fdx;
	pgs->char_tm.ty += fdy;
    }
#ifdef DEBUG
    if (gs_debug_c('x')) {
	dlprintf2("[x]translate_to_fixed %g, %g:\n",
		  fixed2float(px), fixed2float(py));
	trace_ctm(pgs);
	dlprintf("[x]   char_tm:\n");
	trace_matrix_fixed(&pgs->char_tm);
    }
#endif
    gx_setcurrentpoint(pgs, fixed2float(pgs->ctm.tx_fixed), fixed2float(pgs->ctm.ty_fixed));
    pgs->current_point_valid = true;
    return 0;
}

/* Scale the CTM and character matrix for oversampling. */
int
gx_scale_char_matrix(register gs_state * pgs, int sx, int sy)
{
#define scale_cxy(s, vx, vy)\
  if ( s != 1 )\
   {	pgs->ctm.vx *= s;\
	pgs->ctm.vy *= s;\
	pgs->ctm_inverse_valid = false;\
	if ( pgs->char_tm_valid )\
	{	pgs->char_tm.vx *= s;\
		pgs->char_tm.vy *= s;\
	}\
   }
    scale_cxy(sx, xx, yx);
    scale_cxy(sy, xy, yy);
#undef scale_cxy
    if_debug2('x', "[x]char scale: %d %d\n", sx, sy);
    return 0;
}

/* Compute the coefficients for fast fixed-point distance transformations */
/* from a transformation matrix. */
/* We should cache the coefficients with the ctm.... */
int
gx_matrix_to_fixed_coeff(const gs_matrix * pmat, register fixed_coeff * pfc,
			 int max_bits)
{
    gs_matrix ctm;
    int scale = -10000;
    int expt, shift;

    ctm = *pmat;
    pfc->skewed = 0;
    if (!is_fzero(ctm.xx)) {
	discard(frexp(ctm.xx, &scale));
    }
    if (!is_fzero(ctm.xy)) {
	discard(frexp(ctm.xy, &expt));
	if (expt > scale)
	    scale = expt;
	pfc->skewed = 1;
    }
    if (!is_fzero(ctm.yx)) {
	discard(frexp(ctm.yx, &expt));
	if (expt > scale)
	    scale = expt;
	pfc->skewed = 1;
    }
    if (!is_fzero(ctm.yy)) {
	discard(frexp(ctm.yy, &expt));
	if (expt > scale)
	    scale = expt;
    }
    /*
     * There are two multiplications in fixed_coeff_mult: one involves a
     * factor that may have max_bits significant bits, the other may have
     * fixed_fraction_bits (_fixed_shift) bits.  Ensure that neither one
     * will overflow.
     */
    if (max_bits < fixed_fraction_bits)
	max_bits = fixed_fraction_bits;
    scale = sizeof(long) * 8 - 1 - max_bits - scale;

    shift = scale - _fixed_shift;
    if (shift > 0) {
	pfc->shift = shift;
	pfc->round = (fixed) 1 << (shift - 1);
    } else {
	pfc->shift = 0;
	pfc->round = 0;
	scale -= shift;
    }
#define SET_C(c)\
  if ( is_fzero(ctm.c) ) pfc->c = 0;\
  else pfc->c = (long)ldexp(ctm.c, scale)
    SET_C(xx);
    SET_C(xy);
    SET_C(yx);
    SET_C(yy);
#undef SET_C
#ifdef DEBUG
    if (gs_debug_c('x')) {
	dlprintf6("[x]ctm: [%6g %6g %6g %6g %6g %6g]\n",
		  ctm.xx, ctm.xy, ctm.yx, ctm.yy, ctm.tx, ctm.ty);
	dlprintf6("   scale=%d fc: [0x%lx 0x%lx 0x%lx 0x%lx] shift=%d\n",
		  scale, pfc->xx, pfc->xy, pfc->yx, pfc->yy,
		  pfc->shift);
    }
#endif
    pfc->max_bits = max_bits;
    return 0;
}

/*
 * Handle the case of a large value or a value with a fraction part.
 * See gxmatrix.h for more details.
 */
fixed
fixed_coeff_mult(fixed value, long coeff, const fixed_coeff *pfc, int maxb)
{
    int shift = pfc->shift;

    /*
     * Test if the value is too large for simple long math.
     */
    if ((value + (fixed_1 << (maxb - 1))) & (-fixed_1 << maxb)) {
	/* The second argument of fixed_mult_quo must be non-negative. */
	return
	    (coeff < 0 ?
	     -fixed_mult_quo(value, -coeff, fixed_1 << shift) :
	     fixed_mult_quo(value, coeff, fixed_1 << shift));
    } else {
	/*
	 * The construction above guarantees that the multiplications
	 * won't overflow the capacity of an int.
	 */
        return (fixed)
	    arith_rshift(fixed2int_var(value) * coeff
			 + fixed2int(fixed_fraction(value) * coeff)
			 + pfc->round, shift);
    }
}

/* ------ Debugging printout ------ */

#ifdef DEBUG

/* Print a matrix */
static void
trace_matrix_fixed(const gs_matrix_fixed * pmat)
{
    trace_matrix((const gs_matrix *)pmat);
    if (pmat->txy_fixed_valid) {
	dprintf2("\t\tt_fixed: [%6g %6g]\n",
		 fixed2float(pmat->tx_fixed),
		 fixed2float(pmat->ty_fixed));
    } else {
	dputs("\t\tt_fixed not valid\n");
    }
}
static void
trace_matrix(register const gs_matrix * pmat)
{
    dlprintf6("\t[%6g %6g %6g %6g %6g %6g]\n",
	      pmat->xx, pmat->xy, pmat->yx, pmat->yy, pmat->tx, pmat->ty);
}

#endif