1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
|
/* Copyright (C) 2001-2006 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied, modified
or distributed except as expressly authorized under the terms of that
license. Refer to licensing information at http://www.artifex.com/
or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134,
San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/*$Id$ */
/* Example DeviceN process color model devices. */
#include "math_.h"
#include "string_.h"
#include "gdevprn.h"
#include "gsparam.h"
#include "gscrd.h"
#include "gscrdp.h"
#include "gxlum.h"
#include "gdevdcrd.h"
#include "gstypes.h"
#include "gxdcconv.h"
#include "gdevdevn.h"
#include "gsequivc.h"
#include "gxblend.h"
#include "gdevp14.h"
/*
* Utility routines for common DeviceN related parameters:
* SeparationColorNames, SeparationOrder, and MaxSeparations
*/
/* Convert a gray color space to DeviceN colorants. */
void
gray_cs_to_devn_cm(gx_device * dev, int * map, frac gray, frac out[])
{
int i = dev->color_info.num_components - 1;
for(; i >= 0; i--) /* Clear colors */
out[i] = frac_0;
if ((i = map[3]) != GX_DEVICE_COLOR_MAX_COMPONENTS)
out[i] = frac_1 - gray;
}
/* Convert an RGB color space to DeviceN colorants. */
void
rgb_cs_to_devn_cm(gx_device * dev, int * map,
const gs_imager_state *pis, frac r, frac g, frac b, frac out[])
{
int i = dev->color_info.num_components - 1;
frac cmyk[4];
for(; i >= 0; i--) /* Clear colors */
out[i] = frac_0;
color_rgb_to_cmyk(r, g, b, pis, cmyk, dev->memory);
if ((i = map[0]) != GX_DEVICE_COLOR_MAX_COMPONENTS)
out[i] = cmyk[0];
if ((i = map[1]) != GX_DEVICE_COLOR_MAX_COMPONENTS)
out[i] = cmyk[1];
if ((i = map[2]) != GX_DEVICE_COLOR_MAX_COMPONENTS)
out[i] = cmyk[2];
if ((i = map[3]) != GX_DEVICE_COLOR_MAX_COMPONENTS)
out[i] = cmyk[3];
}
/* Convert a CMYK color space to DeviceN colorants. */
void
cmyk_cs_to_devn_cm(gx_device * dev, int * map,
frac c, frac m, frac y, frac k, frac out[])
{
int i = dev->color_info.num_components - 1;
for(; i >= 0; i--) /* Clear colors */
out[i] = frac_0;
if ((i = map[0]) != GX_DEVICE_COLOR_MAX_COMPONENTS)
out[i] = c;
if ((i = map[1]) != GX_DEVICE_COLOR_MAX_COMPONENTS)
out[i] = m;
if ((i = map[2]) != GX_DEVICE_COLOR_MAX_COMPONENTS)
out[i] = y;
if ((i = map[3]) != GX_DEVICE_COLOR_MAX_COMPONENTS)
out[i] = k;
}
/*
* This utility routine calculates the number of bits required to store
* color information. In general the values are rounded up to an even
* byte boundary except those cases in which mulitple pixels can evenly
* into a single byte.
*
* The parameter are:
* ncomp - The number of components (colorants) for the device. Valid
* values are 1 to GX_DEVICE_COLOR_MAX_COMPONENTS
* bpc - The number of bits per component. Valid values are 1, 2, 4, 5,
* and 8.
* Input values are not tested for validity.
*/
int
bpc_to_depth(int ncomp, int bpc)
{
static const byte depths[4][8] = {
{1, 2, 0, 4, 8, 0, 0, 8},
{2, 4, 0, 8, 16, 0, 0, 16},
{4, 8, 0, 16, 16, 0, 0, 24},
{4, 8, 0, 16, 32, 0, 0, 32}
};
if (ncomp <=4 && bpc <= 8)
return depths[ncomp -1][bpc-1];
else
return (ncomp * bpc + 7) & 0xf8;
}
#define compare_color_names(name, name_size, str, str_size) \
(name_size == str_size && \
(strncmp((const char *)name, (const char *)str, name_size) == 0))
/*
* This routine will check if a name matches any item in a list of process
* color model colorant names.
*/
static bool
check_process_color_names(fixed_colorant_names_list plist,
const gs_param_string * pstring)
{
if (plist) {
uint size = pstring->size;
while( *plist) {
if (compare_color_names(*plist, strlen(*plist), pstring->data, size)) {
return true;
}
plist++;
}
}
return false;
}
/*
* This routine will check to see if the color component name match those
* of either the process color model colorants or the names on the
* SeparationColorNames list.
*
* Parameters:
* dev - pointer to device data structure.
* pname - pointer to name (zero termination not required)
* nlength - length of the name
*
* This routine returns a positive value (0 to n) which is the device colorant
* number if the name is found. It returns a negative value if not found.
*/
int
check_pcm_and_separation_names(const gx_device * dev,
const gs_devn_params * pparams, const char * pname,
int name_size, int component_type)
{
fixed_colorant_name * pcolor = pparams->std_colorant_names;
int color_component_number = 0;
int i;
/* Check if the component is in the process color model list. */
if (pcolor) {
while( *pcolor) {
if (compare_color_names(pname, name_size, *pcolor, strlen(*pcolor)))
return color_component_number;
pcolor++;
color_component_number++;
}
}
/* Check if the component is in the separation names list. */
{
const gs_separations * separations = &pparams->separations;
int num_spot = separations->num_separations;
for (i=0; i<num_spot; i++) {
if (compare_color_names((const char *)separations->names[i].data,
separations->names[i].size, pname, name_size)) {
return color_component_number;
}
color_component_number++;
}
}
return -1;
}
/*
* This routine will check to see if the color component name match those
* that are available amoung the current device's color components.
*
* Parameters:
* dev - pointer to device data structure.
* pname - pointer to name (zero termination not required)
* nlength - length of the name
* component_type - separation name or not
* pdevn_params - pointer to device's DeviceN paramters
* pequiv_colors - pointer to equivalent color structure (may be NULL)
*
* This routine returns a positive value (0 to n) which is the device colorant
* number if the name is found. It returns GX_DEVICE_COLOR_MAX_COMPONENTS if
* the color component is found but is not being used due to the
* SeparationOrder device parameter. It returns a negative value if not found.
*
* This routine will also add separations to the device if space is
* available.
*/
int
devn_get_color_comp_index(gx_device * dev, gs_devn_params * pdevn_params,
equivalent_cmyk_color_params * pequiv_colors,
const char * pname, int name_size, int component_type,
int auto_spot_colors)
{
int num_order = pdevn_params->num_separation_order_names;
int color_component_number = 0;
int max_spot_colors = GX_DEVICE_MAX_SEPARATIONS - MAX_DEVICE_PROCESS_COLORS;
/*
* Check if the component is in either the process color model list
* or in the SeparationNames list.
*/
color_component_number = check_pcm_and_separation_names(dev, pdevn_params,
pname, name_size, component_type);
/* If we have a valid component */
if (color_component_number >= 0) {
/* Check if the component is in the separation order map. */
if (num_order)
color_component_number =
pdevn_params->separation_order_map[color_component_number];
else
/*
* We can have more spot colors than we can image. We simply
* ignore the component (i.e. treat it the same as we would
* treat a component that is not in the separation order map).
* Note: Most device do not allow more spot colors than we can
* image. (See the options for auto_spot_color in gdevdevn.h.)
*/
if (color_component_number >= dev->color_info.num_components)
color_component_number = GX_DEVICE_COLOR_MAX_COMPONENTS;
return color_component_number;
}
/*
* The given name does not match any of our current components or
* separations. Check if we should add the spot color to our list.
* If the SeparationOrder parameter has been specified then we should
* already have our complete list of desired spot colorants.
*/
if (component_type != SEPARATION_NAME ||
auto_spot_colors == NO_AUTO_SPOT_COLORS ||
pdevn_params->num_separation_order_names != 0)
return -1; /* Do not add --> indicate colorant unknown. */
/*
* Check if we have room for another spot colorant.
*/
if (auto_spot_colors == ENABLE_AUTO_SPOT_COLORS)
max_spot_colors = dev->color_info.num_components -
pdevn_params->num_std_colorant_names;
if (pdevn_params->separations.num_separations < max_spot_colors) {
byte * sep_name;
gs_separations * separations = &pdevn_params->separations;
int sep_num = separations->num_separations++;
/* We have a new spot colorant - put in stable memory to avoid "restore" */
sep_name = gs_alloc_bytes(dev->memory->stable_memory,
name_size, "devn_get_color_comp_index");
memcpy(sep_name, pname, name_size);
separations->names[sep_num].size = name_size;
separations->names[sep_num].data = sep_name;
color_component_number = sep_num + pdevn_params->num_std_colorant_names;
if (color_component_number >= dev->color_info.num_components)
color_component_number = GX_DEVICE_COLOR_MAX_COMPONENTS;
else
pdevn_params->separation_order_map[color_component_number] =
color_component_number;
if (pequiv_colors != NULL) {
/* Indicate that we need to find equivalent CMYK color. */
pequiv_colors->color[sep_num].color_info_valid = false;
pequiv_colors->all_color_info_valid = false;
}
}
return color_component_number;
}
#define set_param_array(a, d, s)\
(a.data = d, a.size = s, a.persistent = false);
/* Get parameters. We provide a default CRD. */
int
devn_get_params(gx_device * pdev, gs_param_list * plist,
gs_devn_params * pdevn_params, equivalent_cmyk_color_params * pequiv_colors)
{
int code;
bool seprs = false;
gs_param_string_array scna;
gs_param_string_array sona;
set_param_array(scna, NULL, 0);
set_param_array(sona, NULL, 0);
if ( (code = sample_device_crd_get_params(pdev, plist, "CRDDefault")) < 0 ||
(code =
param_write_name_array(plist, "SeparationColorNames", &scna)) < 0 ||
(code = param_write_name_array(plist, "SeparationOrder", &sona)) < 0 ||
(code = param_write_bool(plist, "Separations", &seprs)) < 0)
return code;
return 0;
}
#undef set_param_array
#define BEGIN_ARRAY_PARAM(pread, pname, pa, psize, e)\
BEGIN\
switch (code = pread(plist, (param_name = pname), &(pa))) {\
case 0:\
if ((pa).size != psize) {\
ecode = gs_note_error(gs_error_rangecheck);\
(pa).data = 0; /* mark as not filled */\
} else
#define END_ARRAY_PARAM(pa, e)\
goto e;\
default:\
ecode = code;\
e: param_signal_error(plist, param_name, ecode);\
case 1:\
(pa).data = 0; /* mark as not filled */\
}\
END
/*
* Utility routine for handling DeviceN related parameters. This routine
* may modify the color_info, devn_params, and the equiv_cmyk_colors fields.
*
* Note: This routine does not restore values in case of a problem. This
* is left to the caller.
*/
int
devn_put_params(gx_device * pdev, gs_param_list * plist,
gs_devn_params * pdevn_params, equivalent_cmyk_color_params * pequiv_colors)
{
int code = 0, ecode;
gs_param_name param_name;
int npcmcolors = pdevn_params->num_std_colorant_names;
int num_spot = pdevn_params->separations.num_separations;
bool num_spot_changed = false;
int num_order = pdevn_params->num_separation_order_names;
int max_sep = pdevn_params->max_separations;
int page_spot_colors = pdevn_params->page_spot_colors;
gs_param_string_array scna; /* SeparationColorNames array */
gs_param_string_array sona; /* SeparationOrder names array */
/* Get the SeparationOrder names */
BEGIN_ARRAY_PARAM(param_read_name_array, "SeparationOrder",
sona, sona.size, sone)
{
break;
} END_ARRAY_PARAM(sona, sone);
if (sona.data != 0 && sona.size > GX_DEVICE_COLOR_MAX_COMPONENTS)
return_error(gs_error_rangecheck);
/* Get the SeparationColorNames */
BEGIN_ARRAY_PARAM(param_read_name_array, "SeparationColorNames",
scna, scna.size, scne)
{
break;
} END_ARRAY_PARAM(scna, scne);
if (scna.data != 0 && scna.size > GX_DEVICE_MAX_SEPARATIONS)
return_error(gs_error_rangecheck);
/* Separations are only valid with a subrtractive color model */
if (pdev->color_info.polarity == GX_CINFO_POLARITY_SUBTRACTIVE) {
/*
* Process the SeparationColorNames. Remove any names that already
* match the process color model colorant names for the device.
*/
if (scna.data != 0) {
int i;
int num_names = scna.size;
fixed_colorant_names_list pcomp_names =
pdevn_params->std_colorant_names;
for (i = num_spot = 0; i < num_names; i++) {
/* Verify that the name is not one of our process colorants */
if (!check_process_color_names(pcomp_names, &scna.data[i])) {
byte * sep_name;
int name_size = scna.data[i].size;
/* We have a new separation */
sep_name = (byte *)gs_alloc_bytes(pdev->memory,
name_size, "devicen_put_params_no_sep_order");
memcpy(sep_name, scna.data[i].data, name_size);
pdevn_params->separations.names[num_spot].size = name_size;
pdevn_params->separations.names[num_spot].data = sep_name;
if (pequiv_colors != NULL) {
/* Indicate that we need to find equivalent CMYK color. */
pequiv_colors->color[num_spot].color_info_valid = false;
pequiv_colors->all_color_info_valid = false;
}
num_spot++;
}
}
pdevn_params->separations.num_separations = num_spot;
num_spot_changed = true;
for (i = 0; i < num_spot + npcmcolors; i++)
pdevn_params->separation_order_map[i] = i;
}
/*
* Process the SeparationOrder names.
*/
if (sona.data != 0) {
int i, comp_num;
num_order = sona.size;
for (i = 0; i < num_spot + npcmcolors; i++)
pdevn_params->separation_order_map[i] =
GX_DEVICE_COLOR_MAX_COMPONENTS;
for (i = 0; i < num_order; i++) {
/*
* Check if names match either the process color model or
* SeparationColorNames. If not then error.
*/
if ((comp_num = check_pcm_and_separation_names(pdev, pdevn_params,
(const char *)sona.data[i].data, sona.data[i].size, 0)) < 0) {
return_error(gs_error_rangecheck);
}
pdevn_params->separation_order_map[comp_num] = i;
}
}
/*
* Adobe says that MaxSeparations is supposed to be 'read only'
* however we use this to allow the specification of the maximum
* number of separations. Memory is allocated for the specified
* number of separations. This allows us to then accept separation
* colors in color spaces even if they we not specified at the start
* of the image file.
*/
code = param_read_int(plist, param_name = "MaxSeparations", &max_sep);
switch (code) {
default:
param_signal_error(plist, param_name, code);
case 1:
break;
case 0:
if (max_sep < 1 || max_sep > GX_DEVICE_COLOR_MAX_COMPONENTS)
return_error(gs_error_rangecheck);
}
/*
* The PDF interpreter scans the resources for pages to try to
* determine the number of spot colors. (Unfortuneately there is
* no way to determine the number of spot colors for a PS page
* except to interpret the entire page.) The spot color count for
* a PDF page may be high since there may be spot colors in a PDF
* page's resources that are not used. However this does give us
* an upper limit on the number of spot colors. A value of -1
* indicates that the number of spot colors in unknown (a PS file).
*/
code = param_read_int(plist, param_name = "PageSpotColors",
&page_spot_colors);
switch (code) {
default:
param_signal_error(plist, param_name, code);
case 1:
break;
case 0:
if (page_spot_colors < -1)
return_error(gs_error_rangecheck);
if (page_spot_colors > GX_DEVICE_COLOR_MAX_COMPONENTS - MAX_DEVICE_PROCESS_COLORS)
page_spot_colors = GX_DEVICE_COLOR_MAX_COMPONENTS - MAX_DEVICE_PROCESS_COLORS;
/* Need to leave room for the process colors in GX_DEVICE_COLOR_MAX_COMPONENTS */
}
/*
* The DeviceN device can have zero components if nothing has been
* specified. This causes some problems so force at least one
* component until something is specified.
*/
if (!pdev->color_info.num_components)
pdev->color_info.num_components = 1;
/*
* Update the number of device components if we have changes in
* SeparationColorNames, SeparationOrder, or MaxSeparations.
*/
if (num_spot_changed || pdevn_params->max_separations != max_sep ||
pdevn_params->num_separation_order_names != num_order ||
pdevn_params->page_spot_colors != page_spot_colors) {
pdevn_params->separations.num_separations = num_spot;
pdevn_params->num_separation_order_names = num_order;
pdevn_params->max_separations = max_sep;
pdevn_params->page_spot_colors = page_spot_colors;
if (max_sep != 0)
pdev->color_info.max_components = max_sep;
/*
* If we have SeparationOrder specified then the number of
* components is given by the number of names in the list.
* Otherwise check if the MaxSeparations parameter has specified
* a value. If so then use that value, otherwise use the number
* of ProcessColorModel components plus the number of
* SeparationColorNames is used.
*/
pdev->color_info.num_components = (num_order)
? num_order
: (pdevn_params->max_separations)
? pdevn_params->max_separations
: (page_spot_colors >= 0)
? npcmcolors + num_spot + page_spot_colors
: pdev->color_info.max_components;
if (pdev->color_info.num_components >
pdev->color_info.max_components)
pdev->color_info.num_components =
pdev->color_info.max_components;
#if !USE_COMPRESSED_ENCODING
/*
* See earlier comment about the depth and non compressed
* pixel encoding.
*/
pdev->color_info.depth = bpc_to_depth(pdev->color_info.num_components,
pdevn_params->bitspercomponent);
#endif
}
}
return code;
}
/* A self referencing function to copy the color list */
static int
copy_color_list(compressed_color_list_t *src_color_list,
compressed_color_list_t *des_color_list, gs_memory_t *memory)
{
int k;
int num_sub_levels = src_color_list->num_sub_level_ptrs;
if (num_sub_levels > 0) {
for (k = 0; k < num_sub_levels; k++) {
des_color_list->u.sub_level_ptrs[k] =
alloc_compressed_color_list_elem(src_color_list->mem,
des_color_list->level_num_comp - 1);
if (des_color_list->u.sub_level_ptrs[k] == NULL) {
return gs_rethrow(-1, "copy_color_list allocation error");
}
des_color_list->u.sub_level_ptrs[k]->first_bit_map =
src_color_list->u.sub_level_ptrs[k]->first_bit_map;
des_color_list->u.sub_level_ptrs[k]->num_sub_level_ptrs =
src_color_list->u.sub_level_ptrs[k]->num_sub_level_ptrs;
copy_color_list(src_color_list->u.sub_level_ptrs[k],
des_color_list->u.sub_level_ptrs[k], memory);
}
} else {
/* Allocate and copy the data */
memcpy(&(des_color_list->u.comp_data[0]),
&(src_color_list->u.comp_data[0]),
size_of(comp_bit_map_list_t)*NUM_ENCODE_LIST_ITEMS);
}
return 0;
}
/* Free the copied deviceN parameters */
void
devn_free_params(gx_device *thread_cdev)
{
gs_devn_params *devn_params;
int k;
devn_params = dev_proc(thread_cdev, ret_devn_params)(thread_cdev);
if (devn_params == NULL) return;
for (k = 0; k < devn_params->separations.num_separations; k++) {
gs_free_object(thread_cdev->memory,
devn_params->separations.names[k].data,
"devn_free_params");
devn_params->separations.names[k].data = NULL;
}
free_compressed_color_list(devn_params->compressed_color_list);
devn_params->compressed_color_list = NULL;
for (k = 0; k < devn_params->pdf14_separations.num_separations; k++) {
gs_free_object(thread_cdev->memory,
devn_params->pdf14_separations.names[k].data,
"devn_free_params");
devn_params->pdf14_separations.names[k].data = NULL;
}
free_compressed_color_list(devn_params->pdf14_compressed_color_list);
devn_params->pdf14_compressed_color_list = NULL;
}
/* This is used to copy the deviceN parameters from the parent clist device to the
individual thread clist devices for multi-threaded rendering */
int
devn_copy_params(gx_device * psrcdev, gx_device * pdesdev)
{
gs_devn_params *src_devn_params, *des_devn_params;
int code = 0;
int k;
compressed_color_list_t *src_color_list, *des_color_list;
/* Get pointers to the parameters */
src_devn_params = dev_proc(psrcdev, ret_devn_params)(psrcdev);
des_devn_params = dev_proc(pdesdev, ret_devn_params)(pdesdev);
/* First the easy items */
des_devn_params->bitspercomponent = src_devn_params->bitspercomponent;
des_devn_params->max_separations = src_devn_params->max_separations;
des_devn_params->num_separation_order_names =
src_devn_params->num_separation_order_names;
des_devn_params->num_std_colorant_names =
src_devn_params->num_std_colorant_names;
des_devn_params->page_spot_colors = src_devn_params->page_spot_colors;
des_devn_params->std_colorant_names = src_devn_params->std_colorant_names;
des_devn_params->separations.num_separations
= src_devn_params->separations.num_separations;
/* Now the more complex structures */
/* Spot color names */
for (k = 0; k < des_devn_params->separations.num_separations; k++) {
byte * sep_name;
int name_size = src_devn_params->separations.names[k].size;
sep_name = (byte *)gs_alloc_bytes(pdesdev->memory->stable_memory,
name_size, "devn_copy_params");
memcpy(sep_name, src_devn_params->separations.names[k].data, name_size);
des_devn_params->separations.names[k].size = name_size;
des_devn_params->separations.names[k].data = sep_name;
}
/* Order map */
memcpy(des_devn_params->separation_order_map,
src_devn_params->separation_order_map, sizeof(gs_separation_map));
/* Compressed color list. A messy structure that has a union that
includes a linked list item */
src_color_list = src_devn_params->compressed_color_list;
if (src_color_list != NULL) {
/* Take care of the initial one. Others are done recursively */
des_color_list = alloc_compressed_color_list_elem(src_color_list->mem,
TOP_ENCODED_LEVEL);
des_color_list->first_bit_map = src_color_list->first_bit_map;
des_color_list->num_sub_level_ptrs = src_color_list->num_sub_level_ptrs;
code = copy_color_list(src_color_list, des_color_list, pdesdev->memory);
des_devn_params->compressed_color_list = des_color_list;
} else {
des_devn_params->compressed_color_list = NULL;
}
/* Handle the PDF14 items if they are there */
des_devn_params->pdf14_separations.num_separations
= src_devn_params->pdf14_separations.num_separations;
for (k = 0; k < des_devn_params->pdf14_separations.num_separations; k++) {
byte * sep_name;
int name_size = src_devn_params->pdf14_separations.names[k].size;
sep_name = (byte *)gs_alloc_bytes(pdesdev->memory->stable_memory,
name_size, "devn_copy_params");
memcpy(sep_name, src_devn_params->pdf14_separations.names[k].data,
name_size);
des_devn_params->pdf14_separations.names[k].size = name_size;
des_devn_params->pdf14_separations.names[k].data = sep_name;
}
src_color_list = src_devn_params->pdf14_compressed_color_list;
if (src_color_list != NULL) {
/* Take care of the initial one. Others are done recursively */
des_color_list = alloc_compressed_color_list_elem(src_color_list->mem,
TOP_ENCODED_LEVEL);
des_color_list->first_bit_map = src_color_list->first_bit_map;
des_color_list->num_sub_level_ptrs = src_color_list->num_sub_level_ptrs;
code = copy_color_list(src_color_list, des_color_list, pdesdev->memory);
des_devn_params->pdf14_compressed_color_list = des_color_list;
} else {
des_devn_params->pdf14_compressed_color_list = NULL;
}
return code;
}
static int
compare_equivalent_cmyk_color_params(const equivalent_cmyk_color_params *pequiv_colors1, const equivalent_cmyk_color_params *pequiv_colors2)
{
int i;
if (pequiv_colors1->all_color_info_valid != pequiv_colors2->all_color_info_valid)
return(1);
for (i=0; i<GX_DEVICE_MAX_SEPARATIONS; i++) {
if (pequiv_colors1->color[i].color_info_valid != pequiv_colors2->color[i].color_info_valid)
return(1);
if (pequiv_colors1->color[i].c != pequiv_colors2->color[i].c )
return(1);
if (pequiv_colors1->color[i].m != pequiv_colors2->color[i].m )
return(1);
if (pequiv_colors1->color[i].y != pequiv_colors2->color[i].y )
return(1);
if (pequiv_colors1->color[i].k != pequiv_colors2->color[i].k )
return(1);
}
return(0);
}
/*
* Utility routine for handling DeviceN related parameters in a
* standard raster printer type device.
*/
int
devn_printer_put_params(gx_device * pdev, gs_param_list * plist,
gs_devn_params * pdevn_params, equivalent_cmyk_color_params * pequiv_colors)
{
int code;
/* Save current data in case we have a problem */
gx_device_color_info save_info = pdev->color_info;
gs_devn_params saved_devn_params = *pdevn_params;
equivalent_cmyk_color_params saved_equiv_colors;
if (pequiv_colors != NULL)
saved_equiv_colors = *pequiv_colors;
/* Use utility routine to handle parameters */
code = devn_put_params(pdev, plist, pdevn_params, pequiv_colors);
/* Check for default printer parameters */
if (code >= 0)
code = gdev_prn_put_params(pdev, plist);
/* If we have an error then restore original data. */
if (code < 0) {
pdev->color_info = save_info;
*pdevn_params = saved_devn_params;
if (pequiv_colors != NULL)
*pequiv_colors = saved_equiv_colors;
return code;
}
/* If anything changed, then close the device, etc. */
if (memcmp(&pdev->color_info, &save_info, sizeof(gx_device_color_info)) ||
memcmp(pdevn_params, &saved_devn_params,
sizeof(gs_devn_params)) ||
(pequiv_colors != NULL &&
compare_equivalent_cmyk_color_params(pequiv_colors, &saved_equiv_colors))) {
gs_closedevice(pdev);
/* Reset the sparable and linear shift, masks, bits. */
set_linear_color_bits_mask_shift(pdev);
}
/*
* Also check for parameters which are being passed from the PDF 1.4
* compositior clist write device. This device needs to pass info
* to the PDF 1.4 compositor clist reader device. However this device
* is not crated until the clist is being read. Thus we have to buffer
* this info in the output device. (This is only needed for devices
* which support spot colors.)
*/
code = pdf14_put_devn_params(pdev, pdevn_params, plist);
return code;
}
/*
* The following routines are for compressing colorant values into a 64 bit
* gx_color_index value. This is needed since Ghostscript uses an integer type
* (usually 64 bit long long) as the representation for a pixel. This is a
* problem for handling output devices which support spot colors. Ideally these
* devices should be able to handle any number of colorants. This would require
* an arbitrarily large number of bits to represent a pixel.
*
* See comments before devn_encode_compressed_color for more information.
*/
/* GC procedures */
static
ENUM_PTRS_WITH(compressed_color_list_enum_ptrs, compressed_color_list_t *plist)
{
if (index < plist->num_sub_level_ptrs)
ENUM_RETURN(plist->u.sub_level_ptrs[index]);
return 0;
}
ENUM_PTRS_END
static RELOC_PTRS_WITH(compressed_color_list_reloc_ptrs, compressed_color_list_t *plist)
{
int i;
for (i = 0; i < plist->num_sub_level_ptrs; i++) {
RELOC_PTR(compressed_color_list_t, u.sub_level_ptrs[i]);
}
}
RELOC_PTRS_END
gs_private_st_composite(st_compressed_color_list, compressed_color_list_t,
"encode color list", compressed_color_list_enum_ptrs,
compressed_color_list_reloc_ptrs);
/*
* A routine for debugging the encoded color colorant list. This routine
* dumps the contents of the list.
*/
void
print_compressed_color_list(compressed_color_list_t * pcomp_list, int num_comp)
{
int i, j, comp_num, comp;
comp_bit_map_list_t * pcomp_bit_map;
if (pcomp_list == NULL)
return;
/* Indent our print out for sub levels */
for (i = TOP_ENCODED_LEVEL - pcomp_list->level_num_comp; i > 0; i--)
dlprintf(" ");
dlprintf1("List level = %d\n", pcomp_list->level_num_comp);
/*
* Print the colorant bit maps for this level.
*/
for (i = NUM_ENCODE_LIST_ITEMS - 1; i >= pcomp_list->first_bit_map; i--) {
pcomp_bit_map = &(pcomp_list->u.comp_data[i]);
/* Indent our print out for sub levels */
for (j = TOP_ENCODED_LEVEL - pcomp_list->level_num_comp; j > 0; j--)
dlprintf(" ");
dlprintf4("%3d%4d%4d %d ", i, pcomp_bit_map->num_comp,
pcomp_bit_map->num_non_solid_comp, pcomp_bit_map->solid_not_100);
for (comp_num = num_comp - 1; comp_num >= 0; comp_num--) {
comp = colorant_present(pcomp_bit_map, colorants, comp_num);
dlprintf1("%d", comp);
if ((comp_num & 7) == 0) /* Separate into groups of 8 bits */
dlprintf(" ");
}
dlprintf(" ");
for (comp_num = num_comp - 1; comp_num >= 0; comp_num--) {
comp = colorant_present(pcomp_bit_map, solid_colorants, comp_num);
dlprintf1("%d", comp);
if ((comp_num & 7) == 0) /* Separate into groups of 8 bits */
dlprintf(" ");
}
dlprintf("\n");
}
/*
* Print the sub levels.
*/
for (i = 0; i < pcomp_list->num_sub_level_ptrs; i++)
print_compressed_color_list(pcomp_list->u.sub_level_ptrs[i], num_comp);
return;
}
/*
* Allocate an list level element for our encode color list.
*/
compressed_color_list_t *
alloc_compressed_color_list_elem(gs_memory_t * mem, int num_comps)
{
compressed_color_list_t * plist =
gs_alloc_struct(mem->stable_memory, compressed_color_list_t,
&st_compressed_color_list, "alloc_compressed_color_list");
if (plist != NULL) {
/* Initialize the data in the element. */
memset(plist, 0, size_of(*plist));
plist->mem = mem->stable_memory;
plist->level_num_comp = num_comps;
plist->first_bit_map = NUM_ENCODE_LIST_ITEMS;
}
return plist;
}
/*
* Free the elements of a compressed color list.
*/
void
free_compressed_color_list(compressed_color_list_t * pcomp_list)
{
int i;
if (pcomp_list == NULL)
return;
/* Discard the sub levels. */
/* Allocation for this object is done in stable memory. Make sure
that is done here too */
for (i = 0; i < pcomp_list->num_sub_level_ptrs; i++) {
free_compressed_color_list(pcomp_list->u.sub_level_ptrs[i]);
pcomp_list->u.sub_level_ptrs[i] = NULL;
}
gs_free_object(pcomp_list->mem->stable_memory, pcomp_list, "free_compressed_color_list");
return;
}
/*
* Free a set of separation names
*/
void
free_separation_names(gs_memory_t * mem,
gs_separations * pseparation)
{
int i;
/* Discard the sub levels. */
for (i = 0; i < pseparation->num_separations; i++)
gs_free_object(mem->stable_memory, pseparation->names[i].data,
"free_separation_names");
pseparation->num_separations = 0;
return;
}
/*
* Add a new set of bit mapped colorant lists to our list of encoded color
* colorants.
*/
static bool
sub_level_add_compressed_color_list(gs_memory_t * mem,
comp_bit_map_list_t * pnew_comp_bit_map,
compressed_color_list_t * pcomp_list, gx_color_index * plist_index)
{
int i, entry_num;
int num_non_solid_comp = pnew_comp_bit_map->num_non_solid_comp;
bool status;
/*
* Check if this is the level for the specified number of entries. If so
* then add the bit map to this level (if we have room).
*/
if (num_non_solid_comp >= pcomp_list->level_num_comp) {
entry_num = pcomp_list->first_bit_map - 1;
if (entry_num > pcomp_list->num_sub_level_ptrs) {
memcpy(&(pcomp_list->u.comp_data[entry_num]), pnew_comp_bit_map,
size_of(comp_bit_map_list_t));
pcomp_list->first_bit_map = entry_num;
*plist_index =
((gx_color_index) entry_num) << (NUM_GX_COLOR_INDEX_BITS - 8);
return true;
}
return false;
}
/*
* Try to insert the bit map into the sub levels.
*/
for (i = 0; i < pcomp_list->num_sub_level_ptrs; i++) {
status = sub_level_add_compressed_color_list(mem, pnew_comp_bit_map,
pcomp_list->u.sub_level_ptrs[i], plist_index);
if (status) {
*plist_index = (((gx_color_index) i) << (NUM_GX_COLOR_INDEX_BITS - 8))
+ (*plist_index >> 8);
return true;
}
}
/*
* If we did not add this bit map into a sub level then create a new sub
* level and insert it there.
*/
entry_num = pcomp_list->num_sub_level_ptrs;
if (entry_num < pcomp_list->first_bit_map) {
pcomp_list->u.sub_level_ptrs[entry_num] =
alloc_compressed_color_list_elem(pcomp_list->mem, pcomp_list->level_num_comp - 1);
if (pcomp_list->u.sub_level_ptrs[entry_num] != NULL) {
pcomp_list->num_sub_level_ptrs++;
status = sub_level_add_compressed_color_list(mem, pnew_comp_bit_map,
pcomp_list->u.sub_level_ptrs[entry_num], plist_index);
if (status) {
*plist_index = (((gx_color_index) i) << (NUM_GX_COLOR_INDEX_BITS - 8))
+ (*plist_index >> 8);
return true;
}
}
}
/*
* If we get to here then there was no space available in this list element.
*/
return false;
}
/*
* Add a new bit mapped colorant list to our list of encoded color colorants.
*
* Our simple linear search for entries gets very inefficient if we have many
* entries. So we are doing two things to minimize the number of entries.
* We need separate entries for each combination of solid colorants. if we
* do not have many non solid colorants, we use non solid colorants even for
* solid colorants. For small numbers of colorants, we add more colorants
* to try to create an entry that can be used for more situations. We add extra
* process color colorants since these are the ones most likely to be mixed
* with spot colors.
*/
static bool
add_compressed_color_list(gs_memory_t * mem,
comp_bit_map_list_t * pnew_comp_bit_map,
compressed_color_list_t * pcomp_list, gx_color_index * plist_index)
{
int num_comp = pnew_comp_bit_map->num_comp;
int num_non_solid = pnew_comp_bit_map->num_non_solid_comp;
int num_solid = num_comp - num_non_solid;
int comp_num = 0;
/*
* If we have room for more 'non solid' colorants then convert some of
* the solid colorants to using the non solid encodings.
*/
while (num_non_solid < MIN_ENCODED_COMPONENTS && num_solid > 0) {
if (colorant_present(pnew_comp_bit_map, solid_colorants, comp_num)) {
clear_colorant_present(pnew_comp_bit_map,
solid_colorants, comp_num);
num_solid--;
num_non_solid++;
}
comp_num++;
}
if (num_non_solid < MIN_ENCODED_COMPONENTS) {
/*
* For small numbers of colorants, we add more colorants to try to
* create an entry that can be used for more situations.
*/
for (comp_num = 0; num_comp < MIN_ENCODED_COMPONENTS; comp_num++) {
if ((colorant_present(pnew_comp_bit_map, colorants, comp_num)) == 0) {
set_colorant_present(pnew_comp_bit_map, colorants, comp_num);
num_non_solid++;
num_comp++;
}
}
}
pnew_comp_bit_map->num_comp = num_comp;
pnew_comp_bit_map->num_non_solid_comp = num_non_solid;
return sub_level_add_compressed_color_list(mem, pnew_comp_bit_map,
pcomp_list, plist_index);
}
/*
* Initialize our encode color list. When we initialize the list, we add two
* initial colorant maps. The first one is good for any image that uses zeven
* or fewer colorants. The second is good for any image which uses seven spot
* colors (or less) and no process colors. These are placed at the start of
* the list to minimize the add and search times for these common situations.
*/
static compressed_color_list_t *
init_compressed_color_list(gs_memory_t *mem)
{
/*
* Create our first list element.
*/
compressed_color_list_t * plist =
alloc_compressed_color_list_elem(mem, TOP_ENCODED_LEVEL);
/*
* Add a first colorant bit map to the list. This bit map covers the first
* TOP_ENCODED_LEVEL colorants. Typically this covers CMYK plus the
* first three spot colors. This bit map should handle many situations.
*/
if (plist != NULL) {
int comp_num;
comp_bit_map_list_t comp_bit_map;
gx_color_index temp;
/*
* Add a first colorant bit map to the list. This bit map covers the
* first TOP_ENCODED_LEVEL colorants. Typically this covers CMYK plus
* the first three spot colors. This bit map should handle many
* situations.
*/
memset(&comp_bit_map, 0, size_of(comp_bit_map));
for (comp_num = 0; comp_num < TOP_ENCODED_LEVEL; comp_num++)
set_colorant_present(&comp_bit_map, colorants, comp_num);
comp_bit_map.num_comp =
comp_bit_map.num_non_solid_comp = TOP_ENCODED_LEVEL;
add_compressed_color_list(mem, &comp_bit_map, plist, &temp);
/*
* Add a second colorant bit map to the list. This bit map covers the
* first TOP_ENCODED_LEVEL colorants after the first four colorants.
* Typically this covers the first seven spot colors. This bit map is
* being placed to cover images that use only spot colors.
*/
memset(&comp_bit_map, 0, size_of(comp_bit_map));
for (comp_num = 4; comp_num < TOP_ENCODED_LEVEL + 4; comp_num++)
set_colorant_present(&comp_bit_map, colorants, comp_num);
comp_bit_map.num_comp =
comp_bit_map.num_non_solid_comp = TOP_ENCODED_LEVEL;
add_compressed_color_list(mem, &comp_bit_map, plist, &temp);
}
return plist;
}
/*
* For most combinations of colorants we use 8 bits for saving the colorant
* value. However if we get above 7 colorants (in a pixel, not total) we use
* fewer bits. The constraint is that the size of the index value plus the
* the number of colorants being used times size of the colorant value saved
* must fit into a gx_color_index value.
*/
int num_comp_bits[MAX_ENCODED_COMPONENTS + 1] = {
8, /* 0 colorants - not used */
8, /* 1 colorants */
8, /* 2 colorants */
8, /* 3 colorants */
8, /* 4 colorants */
8, /* 5 colorants */
8, /* 6 colorants */
8, /* 7 colorants */
7, /* 8 colorants */
6, /* 9 colorants */
5, /* 10 colorants */
5, /* 11 colorants */
4, /* 12 colorants */
4, /* 13 colorants */
4 /* 14 colorants */
};
/*
* Values used to decompressed the colorants in our encoded values back into
* a gx_color value. The color value will be (comp_bits * entry) >> 8
* The number of bits in comp_bits are defined in the num_comp_bits table.
* These values are chosen to expand these bit combinations back to 16 bit values
* (after shifting right 8 bits).
*/
#define gx_color_value_factor(num_bits) \
((gx_max_color_value << 8) + 0xff) / ((1 << num_bits) - 1)
int comp_bit_factor[MAX_ENCODED_COMPONENTS + 1] = {
gx_color_value_factor(8), /* 0 colorants (8 bits) */
gx_color_value_factor(8), /* 1 colorants (8 bits) */
gx_color_value_factor(8), /* 2 colorants (8 bits) */
gx_color_value_factor(8), /* 3 colorants (8 bits) */
gx_color_value_factor(8), /* 4 colorants (8 bits) */
gx_color_value_factor(8), /* 5 colorants (8 bits) */
gx_color_value_factor(8), /* 6 colorants (8 bits) */
gx_color_value_factor(8), /* 7 colorants (8 bits) */
gx_color_value_factor(7), /* 8 colorants (7 bits) */
gx_color_value_factor(6), /* 9 colorants (6 bits) */
gx_color_value_factor(5), /* 10 colorants (5 bits) */
gx_color_value_factor(5), /* 11 colorants (5 bits) */
gx_color_value_factor(4), /* 12 colorants (4 bits) */
gx_color_value_factor(4), /* 13 colorants (4 bits) */
gx_color_value_factor(4) /* 14 colorants (4 bits) */
};
#undef gx_color_value_factor
/*
* Find a given colorant bit map is the list of encoded colorant bit map.
*
* Note: This routine is called recursively to search sub levels of the
* list.
*
* The parameters are:
* num_comp - The number of colorants for the device.
* pcomp_list - The current list of encoded colorants.
* pnew_comp_bit_map - Pointer to the bit map found to be encoded.
* plist_index - Pointer to 'encode bits' (return value)
* pcomp_bit_map - Pointer to pointer to the actual bit map found
* (return value).
* returns true if the bit map is found.
*/
static bool
search_compressed_color_list(int num_comp, compressed_color_list_t * pcomp_list,
comp_bit_map_list_t * pnew_comp_bit_map, gx_color_index * plist_index,
comp_bit_map_list_t * * pcomp_bit_map)
{
int i;
#if DEVN_ENCODE_COLOR_USING_BIT_MAP_ARRAY
int j, num_bit_map_elem;
#endif
bool found;
/*
* Search the colorant bit maps for this level of the map.
*/
#if DEVN_ENCODE_COLOR_USING_BIT_MAP_ARRAY
num_bit_map_elem = (num_comp + BITS_PER_COMP_BIT_MAP_ELEM - 1) /
BITS_PER_COMP_BIT_MAP_ELEM;
#endif
for (i = NUM_ENCODE_LIST_ITEMS - 1; i >= pcomp_list->first_bit_map; i--) {
*pcomp_bit_map = &(pcomp_list->u.comp_data[i]);
/*
* Do not try to match if one entry uses a 'solid' set of colorants
* that is not really solid (i.e. not 100%) and the other is. It is
* possible to work if different but it would make some of the logic
* more difficult.
*/
if (pnew_comp_bit_map->solid_not_100 !=
(*pcomp_bit_map)->solid_not_100)
continue;
/*
* It is a match if the new colorant bit map is a subset of the one
* in the list and the solid colorants for new map is a super set of
* the solid colorants for the one in the list. I.e. we can use
* the non solid part of the entry for either zero or solid colorants.
*/
#if DEVN_ENCODE_COLOR_USING_BIT_MAP_ARRAY
for (j = 0; j < num_bit_map_elem; j++) {
if ((pnew_comp_bit_map->colorants[j] &
(*pcomp_bit_map)->colorants[j]) !=
pnew_comp_bit_map->colorants[j])
break; /* No match if a colorant is missing. */
if ((pnew_comp_bit_map->solid_colorants[j] &
(*pcomp_bit_map)->solid_colorants[j]) !=
(*pcomp_bit_map)->solid_colorants[j])
break; /* No match if extra solid colorants */
}
if (j == num_bit_map_elem) {
#else
if (((pnew_comp_bit_map->colorants &
(*pcomp_bit_map)->colorants) ==
pnew_comp_bit_map->colorants) &&
((pnew_comp_bit_map->solid_colorants &
(*pcomp_bit_map)->solid_colorants) ==
(*pcomp_bit_map)->solid_colorants)) {
#endif
/*
* To prevent possible loss of accuracy, ignore matches in which the
* packing will use fewer bits in the encoded colorant values than
* is possible for the given number of colorants.
*/
if (num_comp_bits[pnew_comp_bit_map->num_comp] >
num_comp_bits[(*pcomp_bit_map)->num_comp])
break;
/*
* We have a match. Put our object number into the top eight
* bits of the encoded gx_color_index and exit.
*/
*plist_index = ((gx_color_index) i) << (NUM_GX_COLOR_INDEX_BITS - 8);
return true;
}
}
/*
* Search the lower levels (i.e. with fewer colorants to see if we
* can find a match.
*/
if (pcomp_list->level_num_comp <= pnew_comp_bit_map->num_non_solid_comp)
return false; /* Exit if not enough colorants in the sub levels */
for (i = 0; i < pcomp_list->num_sub_level_ptrs; i++) {
found = search_compressed_color_list(num_comp,
pcomp_list->u.sub_level_ptrs[i],
pnew_comp_bit_map, plist_index, pcomp_bit_map);
if (found) {
/*
* We have a match. Combine the encode index for the sub level
* with our index for this level.
*/
*plist_index = (((gx_color_index) i) << (NUM_GX_COLOR_INDEX_BITS - 8))
+ (*plist_index >> 8);
return true;
}
}
return false;
}
/*
* Encode a list of colorant values into a gx_color_index_value.
*
* This routine is designed to pack more than eight 8 bit colorant values into
* a 64 bit gx_color_index value. It does this piece of magic by keeping a list
* of which colorant combinations are actualy used (i.e. which colorants are non
* zero). The non zero colorant values and and an 'index' value are packed into
* the output gx_color_index value.
*
* The the different combinations of used colorants are saved into a table
* defined by the comp_bit_map_list_t structure type. This table is kept as
* a list with 256 elements. Each element can be either a pair of bit maps which
* indicates the combination of colorants being used or a pointer to a sub list
* for the next lower level of combinations. There are two bit maps to indicate
* which colorants are specified by the 'index' value. One bit map indicates
* which colorants are used. The second bit map is used to indicate a group of
* colorants with the same value. Normally this second bit map is used to
* indicate which colorants are 'solid' (i.e. 100% and the 'solid_not_100 flag
* is set to false). However if there is a larger group of colorants with the
* same value (and not solid) then the 'solid_not_100' flag is set to true and
* second bit map is used to indicate the colorants in this group. In this
* case, the value of the colorant group is stored in the first colorant entry
* in the gx_color_index.
*
* The number of bits allocated to storing the 'index' and the number of bits
* allocated to storing colorant values depends upon the number of colorant
* being used.
*
* Number of non zero colorant Index bits Bits per colorant
* 0 to 5 24 8
* 6 16 8
* 7 8 8
* 8 8 7
* 9 8 6
* 10 8 5
* 11 8 5
* 12 8 4
* 13 8 4
* 14 8 4
* More than 14 Not encodeable
*
* The 'index' bits can be logically divided into groups of 8 bits. The
* first (upper) group of 8 bits is used to select either one of 256
* combinations of 7 or more colorant or to select a pointer to a sub
* level. If a sub level pointer is specified, then the next group of 8
* index bits is used to select either one of 256 combinations of 6 colorants
* of a sub level pointer. A sub level pointer points to one of 256
* combinations of 5 colorants. If we have fewer than 5 colorants being
* used, we add extra componnents to bring the total up to 5 colorants.
* This is done to prevent having a bunch of 1 or two colorant combinations.
*/
gx_color_index
devn_encode_compressed_color(gx_device *pdev, const gx_color_value colors[],
gs_devn_params * pdevn_params)
{
int num_comp = pdev->color_info.num_components;
int comp_num, comp_count = 0, solid_comp_count = 0, bit_pos = 0;
int bit_count, group = 0;
int color_resolution = gx_max_color_value / STD_ENCODED_VALUE;
bool found, added;
comp_bit_map_list_t new_comp_bit_map = {0};
comp_bit_map_list_t * pbit_map;
gx_color_index color = 0, list_index;
COLROUND_VARS;
/*
* Determine what colorants are being used (non zero). We bit pack
* this info. Note: We treat any colorant value which is less than
* 256 as zero. Color values are 16 bits and we only keep the top
* eight bits. Likewise for solid (100%) colors.
*/
for (comp_num = 0; comp_num < num_comp; comp_num++) {
if (colors[comp_num] > color_resolution) {
set_colorant_present(&new_comp_bit_map, colorants, comp_num);
comp_count++;
/* Check if the color is solid */
if (colors[comp_num] > (gx_max_color_value - color_resolution)) {
set_colorant_present(&new_comp_bit_map,
solid_colorants, comp_num);
solid_comp_count++;
}
}
}
new_comp_bit_map.num_comp = comp_count;
new_comp_bit_map.num_non_solid_comp = comp_count - solid_comp_count;
/*
* We may get less loss of accuracy if instead of checking for zero and
* 100% colorant values, we look for a group of colorants with the same
* colorant value.
*/
if (new_comp_bit_map.num_non_solid_comp > TOP_ENCODED_LEVEL &&
solid_comp_count < (comp_count / 2)) {
short group_size[(gx_max_color_value / STD_ENCODED_VALUE) + 1] = {0};
int value, largest_group_size = 0;
/* Scan to determine the size of the largest group */
for (comp_num = 0; comp_num < num_comp; comp_num++) {
value = colors[comp_num] / STD_ENCODED_VALUE;
group_size[value]++;
if (group_size[value] > largest_group_size) {
largest_group_size = group_size[value];
group = value;
}
}
/*
* If using this group instead of the solid colorants will improve
* our situation, then switch to using this group.
*/
if (largest_group_size > (solid_comp_count + 1) &&
(comp_count - largest_group_size) < MAX_ENCODED_COMPONENTS) {
/* Setup the colorant description to use this group */
memset(&(new_comp_bit_map.solid_colorants), 0,
size_of(comp_bit_map_t));
for (comp_num = 0; comp_num < num_comp; comp_num++) {
value = colors[comp_num] / STD_ENCODED_VALUE;
if (value == group) {
set_colorant_present(&new_comp_bit_map,
solid_colorants, comp_num);
}
}
new_comp_bit_map.solid_not_100 = true;
new_comp_bit_map.num_non_solid_comp =
comp_count - largest_group_size + 1;
}
}
/* Our encoding scheme cannot handle too many non solid colorants. */
if (new_comp_bit_map.num_non_solid_comp > MAX_ENCODED_COMPONENTS)
return NON_ENCODEABLE_COLOR;
/*
* We keep a list of which colorant combinations we have used. Make
* sure that this list has been initialized. Alloc in stable_memory
* to make it immune to restore.
*/
if (pdevn_params->compressed_color_list == NULL) {
pdevn_params->compressed_color_list =
init_compressed_color_list(pdev->memory->stable_memory);
if (pdevn_params->compressed_color_list == NULL)
return NON_ENCODEABLE_COLOR; /* Unable to initialize list */
}
/*
* Check our list of colorant combinations to see if we already have a
* combination that is useable. I.e. a combination that includes all of our
* non zero colorants.
*/
found = search_compressed_color_list(num_comp,
pdevn_params->compressed_color_list,
&new_comp_bit_map, &list_index, &pbit_map);
/*
* If our new colorant list was not found then add it to our encode color
* list. This needs to be in stable_memory to be immune to 'restore'.
*/
if (!found) {
added = add_compressed_color_list(pdev->memory->stable_memory,
&new_comp_bit_map,
pdevn_params->compressed_color_list,
&list_index);
if (!added)
return NON_ENCODEABLE_COLOR;
pbit_map = &new_comp_bit_map;
}
/*
* Form the encoded color gx_color_index value. This is a combination
* of the bits that encode which colorants are used (non zero) and the
* colorant values.
*/
bit_count = num_comp_bits[pbit_map->num_non_solid_comp];
if (pbit_map->solid_not_100) {
color = group >> (8 - bit_count);
bit_pos += bit_count;
}
COLROUND_SETUP(bit_count);
for (comp_num = 0; comp_num < num_comp; comp_num++) {
if (colorant_present(pbit_map, colorants, comp_num) &&
!colorant_present(pbit_map, solid_colorants, comp_num)) {
color |= COLROUND_ROUND(colors[comp_num]) << bit_pos;
bit_pos += bit_count;
}
}
color |= list_index;
/*
* Make sure that our color index does not match one of the reserved
* values.
*/
if (color == NON_ENCODEABLE_COLOR)
color -= 1;
else if (color == gx_no_color_index)
color -= 2;
return color;
}
/*
* Find the bit map for given bit map index.
*/
comp_bit_map_list_t *
find_bit_map(gx_color_index index, compressed_color_list_t * pcomp_list)
{
int loc = (int)(index >> (NUM_GX_COLOR_INDEX_BITS - 8));
/*
* Search for the level which contains the bit map. If our index
* for this level is less than the number of sub level pointers for
* this level then we need to go down another level.
*/
while (loc < pcomp_list->num_sub_level_ptrs) {
pcomp_list = pcomp_list->u.sub_level_ptrs[loc];
index <<= 8;
loc = (int)(index >> (NUM_GX_COLOR_INDEX_BITS - 8));
}
return &(pcomp_list->u.comp_data[loc]);
}
/*
* Decode a gx_color_index value back to a list of colorant values. This
* routine assumes that the gx_color_index value is 'encoded' as described
* for devn_encode_compressed_color.
*
* See comments preceding devn_encode_compressed_color for more information
* about the way that we are compressing colorant values in a gx_color_index.
*/
int
devn_decode_compressed_color(gx_device * dev, gx_color_index color,
gx_color_value * out, gs_devn_params * pdevn_params)
{
int comp_num = 0;
int factor, bit_count, bit_mask;
int ncomp = dev->color_info.num_components;
comp_bit_map_list_t * pbitmap;
gx_color_value solid_color = gx_max_color_value;
/*
* Set all colorants to max if we get a non encodeable color. We set the
* values to a max since this will represent another non encodeable color.
* Thus if we have a non decodable color, it will continue to propogate.
*/
if (color == NON_ENCODEABLE_COLOR) {
for (; comp_num < ncomp; comp_num++)
out[comp_num] = gx_max_color_value;
return 0;
}
pbitmap = find_bit_map(color, pdevn_params->compressed_color_list);
bit_count = num_comp_bits[pbitmap->num_non_solid_comp];
bit_mask = (1 << bit_count) - 1;
factor = comp_bit_factor[pbitmap->num_non_solid_comp];
if (pbitmap->solid_not_100) {
solid_color = (factor * ((int)color & bit_mask)) >> 8;
color >>= bit_count;
}
for (; comp_num < ncomp; comp_num++) {
if (colorant_present(pbitmap, colorants, comp_num)) {
if (colorant_present(pbitmap, solid_colorants, comp_num))
out[comp_num] = solid_color;
else {
out[comp_num] = (factor * ((int)color & bit_mask)) >> 8;
color >>= bit_count;
}
}
else
out[comp_num] = 0;
}
return 0;
}
/*
* Unpack a row of 'compressed color' values. These values are encoded as
* described for the devn_encode_compressed_color routine.
*
* The routine takes a raster line of data and expands each pixel into a buffer
* of 8 bit values for each colorant.
*
* See comments preceding devn_encode_compressed_color for more information
* about the way that we are encoding colorant values in a gx_color_index.
*
* Note: For simplicity of coding the calling routines, this routine will also
* handle 'uncompressed' bit maps.
*/
int
devn_unpack_row(gx_device * dev, int num_comp, gs_devn_params * pdevn_params,
int width, byte * in, byte * out)
{
int i, comp_num, pixel_num;
if (pdevn_params->compressed_color_list == NULL) {
int bytes_pp = dev->color_info.depth >> 3;
/*
* For 'uncompressed' data, the number of bytes per pixel in the input
* raster line is defined by the device depth. This may be more than
* the number of actual device components.
*/
for (pixel_num = 0; pixel_num < width; pixel_num++) {
for (i = 0; i < num_comp; i++)
*out++ = *in++;
in += bytes_pp - num_comp;
}
return 0;
}
else {
int non_encodeable_count = 0;
int factor, bit_count, bit_mask;
comp_bit_map_list_t * pbitmap;
gx_color_index color;
for (pixel_num = 0; pixel_num < width; pixel_num++) {
gx_color_value solid_color = gx_max_color_value;
/*
* Get the encoded color value.
*/
color = ((gx_color_index)(*in++)) << (NUM_GX_COLOR_INDEX_BITS - 8);
for (i = NUM_GX_COLOR_INDEX_BITS - 16; i >= 0; i -= 8)
color |= ((gx_color_index)(*in++)) << i;
/*
* Set all colorants to zero if we get a non encodeable color.
*/
if (color == NON_ENCODEABLE_COLOR) {
for (comp_num = 0; comp_num < num_comp; comp_num++)
*out++ = 0;
non_encodeable_count++;
}
else {
pbitmap = find_bit_map(color,
pdevn_params->compressed_color_list);
bit_count = num_comp_bits[pbitmap->num_non_solid_comp];
bit_mask = (1 << bit_count) - 1;
factor = comp_bit_factor[pbitmap->num_non_solid_comp];
if (pbitmap->solid_not_100) {
solid_color = (factor * ((int)color & bit_mask)) >> 8;
color >>= bit_count;
}
for (comp_num = 0; comp_num < num_comp; comp_num++) {
if (colorant_present(pbitmap, colorants, comp_num)) {
if (colorant_present(pbitmap,
solid_colorants, comp_num))
*out++ = solid_color >> 8;
else {
*out++ = (factor * ((int)color & bit_mask)) >> 16;
color >>= bit_count;
}
}
else
*out++ = 0;
}
}
}
return non_encodeable_count;
}
}
/* ***************** The spotcmyk and devicen devices ***************** */
/* Define the device parameters. */
#ifndef X_DPI
# define X_DPI 72
#endif
#ifndef Y_DPI
# define Y_DPI 72
#endif
/* The device descriptor */
static dev_proc_open_device(spotcmyk_prn_open);
static dev_proc_get_params(spotcmyk_get_params);
static dev_proc_put_params(spotcmyk_put_params);
static dev_proc_print_page(spotcmyk_print_page);
static dev_proc_get_color_mapping_procs(get_spotcmyk_color_mapping_procs);
static dev_proc_get_color_mapping_procs(get_devicen_color_mapping_procs);
static dev_proc_get_color_comp_index(spotcmyk_get_color_comp_index);
static dev_proc_encode_color(spotcmyk_encode_color);
static dev_proc_decode_color(spotcmyk_decode_color);
/*
* A structure definition for a DeviceN type device
*/
typedef struct spotcmyk_device_s {
gx_device_common;
gx_prn_device_common;
gs_devn_params devn_params;
} spotcmyk_device;
/* GC procedures */
static
ENUM_PTRS_WITH(spotcmyk_device_enum_ptrs, spotcmyk_device *pdev)
{
if (index < pdev->devn_params.separations.num_separations)
ENUM_RETURN(pdev->devn_params.separations.names[index].data);
ENUM_PREFIX(st_device_printer,
pdev->devn_params.separations.num_separations);
}
ENUM_PTRS_END
static RELOC_PTRS_WITH(spotcmyk_device_reloc_ptrs, spotcmyk_device *pdev)
{
RELOC_PREFIX(st_device_printer);
{
int i;
for (i = 0; i < pdev->devn_params.separations.num_separations; ++i) {
RELOC_PTR(spotcmyk_device, devn_params.separations.names[i].data);
}
}
}
RELOC_PTRS_END
/* Even though spotcmyk_device_finalize is the same as gx_device_finalize, */
/* we need to implement it separately because st_composite_final */
/* declares all 3 procedures as private. */
static void
spotcmyk_device_finalize(const gs_memory_t *cmem, void *vpdev)
{
gx_device_finalize(cmem, vpdev);
}
gs_private_st_composite_final(st_spotcmyk_device, spotcmyk_device,
"spotcmyk_device", spotcmyk_device_enum_ptrs, spotcmyk_device_reloc_ptrs,
spotcmyk_device_finalize);
/*
* Macro definition for DeviceN procedures
*/
#define device_procs(get_color_mapping_procs)\
{ spotcmyk_prn_open,\
gx_default_get_initial_matrix,\
NULL, /* sync_output */\
gdev_prn_output_page, /* output_page */\
gdev_prn_close, /* close */\
NULL, /* map_rgb_color - not used */\
NULL, /* map_color_rgb - not used */\
NULL, /* fill_rectangle */\
NULL, /* tile_rectangle */\
NULL, /* copy_mono */\
NULL, /* copy_color */\
NULL, /* draw_line */\
NULL, /* get_bits */\
spotcmyk_get_params, /* get_params */\
spotcmyk_put_params, /* put_params */\
NULL, /* map_cmyk_color - not used */\
NULL, /* get_xfont_procs */\
NULL, /* get_xfont_device */\
NULL, /* map_rgb_alpha_color */\
gx_page_device_get_page_device, /* get_page_device */\
NULL, /* get_alpha_bits */\
NULL, /* copy_alpha */\
NULL, /* get_band */\
NULL, /* copy_rop */\
NULL, /* fill_path */\
NULL, /* stroke_path */\
NULL, /* fill_mask */\
NULL, /* fill_trapezoid */\
NULL, /* fill_parallelogram */\
NULL, /* fill_triangle */\
NULL, /* draw_thin_line */\
NULL, /* begin_image */\
NULL, /* image_data */\
NULL, /* end_image */\
NULL, /* strip_tile_rectangle */\
NULL, /* strip_copy_rop */\
NULL, /* get_clipping_box */\
NULL, /* begin_typed_image */\
NULL, /* get_bits_rectangle */\
NULL, /* map_color_rgb_alpha */\
NULL, /* create_compositor */\
NULL, /* get_hardware_params */\
NULL, /* text_begin */\
NULL, /* finish_copydevice */\
NULL, /* begin_transparency_group */\
NULL, /* end_transparency_group */\
NULL, /* begin_transparency_mask */\
NULL, /* end_transparency_mask */\
NULL, /* discard_transparency_layer */\
get_color_mapping_procs, /* get_color_mapping_procs */\
spotcmyk_get_color_comp_index, /* get_color_comp_index */\
spotcmyk_encode_color, /* encode_color */\
spotcmyk_decode_color, /* decode_color */\
NULL, /* pattern_manage */\
NULL /* fill_rectangle_hl_color */\
}
fixed_colorant_name DeviceCMYKComponents[] = {
"Cyan",
"Magenta",
"Yellow",
"Black",
0 /* List terminator */
};
#define spotcmyk_device_body(procs, dname, ncomp, pol, depth, mg, mc, cn)\
std_device_full_body_type_extended(spotcmyk_device, &procs, dname,\
&st_spotcmyk_device,\
(int)((long)(DEFAULT_WIDTH_10THS) * (X_DPI) / 10),\
(int)((long)(DEFAULT_HEIGHT_10THS) * (Y_DPI) / 10),\
X_DPI, Y_DPI,\
GX_DEVICE_COLOR_MAX_COMPONENTS, /* MaxComponents */\
ncomp, /* NumComp */\
pol, /* Polarity */\
depth, 0, /* Depth, GrayIndex */\
mg, mc, /* MaxGray, MaxColor */\
mg + 1, mc + 1, /* DitherGray, DitherColor */\
GX_CINFO_SEP_LIN, /* Linear & Separable */\
cn, /* Process color model name */\
0, 0, /* offsets */\
0, 0, 0, 0 /* margins */\
),\
prn_device_body_rest_(spotcmyk_print_page)
/*
* Example device with CMYK and spot color support
*/
static const gx_device_procs spot_cmyk_procs = device_procs(get_spotcmyk_color_mapping_procs);
const spotcmyk_device gs_spotcmyk_device =
{
spotcmyk_device_body(spot_cmyk_procs, "spotcmyk", 4, GX_CINFO_POLARITY_SUBTRACTIVE, 4, 1, 1, "DeviceCMYK"),
/* DeviceN device specific parameters */
{ 1, /* Bits per color - must match ncomp, depth, etc. above */
DeviceCMYKComponents, /* Names of color model colorants */
4, /* Number colorants for CMYK */
0, /* MaxSeparations has not been specified */
-1, /* PageSpotColors has not been specified */
{0}, /* SeparationNames */
0, /* SeparationOrder names */
{0, 1, 2, 3, 4, 5, 6, 7 } /* Initial component SeparationOrder */
}
};
/*
* Example DeviceN color device
*/
static const gx_device_procs devicen_procs = device_procs(get_devicen_color_mapping_procs);
const spotcmyk_device gs_devicen_device =
{
spotcmyk_device_body(devicen_procs, "devicen", 4, GX_CINFO_POLARITY_SUBTRACTIVE, 32, 255, 255, "DeviceCMYK"),
/* DeviceN device specific parameters */
{ 8, /* Bits per color - must match ncomp, depth, etc. above */
NULL, /* No names for standard DeviceN color model */
0, /* No standard colorants for DeviceN */
0, /* MaxSeparations has not been specified */
-1, /* PageSpotColors has not been specified */
{0}, /* SeparationNames */
0, /* SeparationOrder names */
{0, 1, 2, 3, 4, 5, 6, 7 } /* Initial component SeparationOrder */
}
};
/* Open the psd devices */
int
spotcmyk_prn_open(gx_device * pdev)
{
int code = gdev_prn_open(pdev);
set_linear_color_bits_mask_shift(pdev);
pdev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
return code;
}
/* Color mapping routines for the spotcmyk device */
static void
gray_cs_to_spotcmyk_cm(gx_device * dev, frac gray, frac out[])
{
int * map = ((spotcmyk_device *) dev)->devn_params.separation_order_map;
gray_cs_to_devn_cm(dev, map, gray, out);
}
static void
rgb_cs_to_spotcmyk_cm(gx_device * dev, const gs_imager_state *pis,
frac r, frac g, frac b, frac out[])
{
int * map = ((spotcmyk_device *) dev)->devn_params.separation_order_map;
rgb_cs_to_devn_cm(dev, map, pis, r, g, b, out);
}
static void
cmyk_cs_to_spotcmyk_cm(gx_device * dev, frac c, frac m, frac y, frac k, frac out[])
{
int * map = ((spotcmyk_device *) dev)->devn_params.separation_order_map;
cmyk_cs_to_devn_cm(dev, map, c, m, y, k, out);
}
static const gx_cm_color_map_procs spotCMYK_procs = {
gray_cs_to_spotcmyk_cm, rgb_cs_to_spotcmyk_cm, cmyk_cs_to_spotcmyk_cm
};
static const gx_cm_color_map_procs *
get_spotcmyk_color_mapping_procs(const gx_device * dev)
{
return &spotCMYK_procs;
}
/* Also use the spotcmyk procs for the devicen device. */
static const gx_cm_color_map_procs *
get_devicen_color_mapping_procs(const gx_device * dev)
{
return &spotCMYK_procs;
}
/*
* Encode a list of colorant values into a gx_color_index_value.
*/
static gx_color_index
spotcmyk_encode_color(gx_device *dev, const gx_color_value colors[])
{
int bpc = ((spotcmyk_device *)dev)->devn_params.bitspercomponent;
gx_color_index color = 0;
int i = 0;
int ncomp = dev->color_info.num_components;
COLROUND_VARS;
COLROUND_SETUP(bpc);
for (; i<ncomp; i++) {
color <<= bpc;
color |= COLROUND_ROUND(colors[i]);
}
return (color == gx_no_color_index ? color ^ 1 : color);
}
/*
* Decode a gx_color_index value back to a list of colorant values.
*/
static int
spotcmyk_decode_color(gx_device * dev, gx_color_index color, gx_color_value * out)
{
int bpc = ((spotcmyk_device *)dev)->devn_params.bitspercomponent;
int mask = (1 << bpc) - 1;
int i = 0;
int ncomp = dev->color_info.num_components;
COLDUP_VARS;
COLDUP_SETUP(bpc);
for (; i<ncomp; i++) {
out[ncomp - i - 1] = COLDUP_DUP(color & mask);
color >>= bpc;
}
return 0;
}
/* Get parameters. */
static int
spotcmyk_get_params(gx_device * pdev, gs_param_list * plist)
{
int code = gdev_prn_get_params(pdev, plist);
if (code < 0)
return code;
return devn_get_params(pdev, plist,
&(((spotcmyk_device *)pdev)->devn_params), NULL);
}
/* Set parameters. */
static int
spotcmyk_put_params(gx_device * pdev, gs_param_list * plist)
{
return devn_printer_put_params(pdev, plist,
&(((spotcmyk_device *)pdev)->devn_params), NULL);
}
/*
* This routine will check to see if the color component name match those
* that are available amoung the current device's color components.
*
* Parameters:
* dev - pointer to device data structure.
* pname - pointer to name (zero termination not required)
* nlength - length of the name
*
* This routine returns a positive value (0 to n) which is the device colorant
* number if the name is found. It returns GX_DEVICE_COLOR_MAX_COMPONENTS if
* the colorant is not being used due to a SeparationOrder device parameter.
* It returns a negative value if not found.
*/
static int
spotcmyk_get_color_comp_index(gx_device * dev, const char * pname,
int name_size, int component_type)
{
return devn_get_color_comp_index(dev,
&(((spotcmyk_device *)dev)->devn_params), NULL,
pname, name_size, component_type, ENABLE_AUTO_SPOT_COLORS);
}
/*
* This routine will extract a specified set of bits from a buffer and pack
* them into a given buffer.
*
* Parameters:
* source - The source of the data
* dest - The destination for the data
* depth - The size of the bits per pixel - must be a multiple of 8
* first_bit - The location of the first data bit (LSB).
* bit_width - The number of bits to be extracted.
* npixel - The number of pixels.
*
* Returns:
* Length of the output line (in bytes)
* Data in dest.
*/
int
repack_data(byte * source, byte * dest, int depth, int first_bit,
int bit_width, int npixel)
{
int in_nbyte = depth >> 3; /* Number of bytes per input pixel */
int out_nbyte = bit_width >> 3; /* Number of bytes per output pixel */
gx_color_index mask = 1;
gx_color_index data;
int i, j, length = 0;
byte temp;
byte * out = dest;
int in_bit_start = 8 - depth;
int out_bit_start = 8 - bit_width;
int in_byte_loc = in_bit_start, out_byte_loc = out_bit_start;
mask = (mask << bit_width) - 1;
for (i=0; i<npixel; i++) {
/* Get the pixel data */
if (!in_nbyte) { /* Multiple pixels per byte */
data = *source;
data >>= in_byte_loc;
in_byte_loc -= depth;
if (in_byte_loc < 0) { /* If finished with byte */
in_byte_loc = in_bit_start;
source++;
}
}
else { /* One or more bytes per pixel */
data = *source++;
for (j=1; j<in_nbyte; j++)
data = (data << 8) + *source++;
}
data >>= first_bit;
data &= mask;
/* Put the output data */
if (!out_nbyte) { /* Multiple pixels per byte */
temp = (byte)(*out & ~(mask << out_byte_loc));
*out = (byte)(temp | (data << out_byte_loc));
out_byte_loc -= bit_width;
if (out_byte_loc < 0) { /* If finished with byte */
out_byte_loc = out_bit_start;
out++;
}
}
else { /* One or more bytes per pixel */
*out++ = (byte)(data >> ((out_nbyte - 1) * 8));
for (j=1; j<out_nbyte; j++) {
*out++ = (byte)(data >> ((out_nbyte - 1 - j) * 8));
}
}
}
/* Return the number of bytes in the destination buffer. */
if (out_byte_loc != out_bit_start) { /* If partially filled last byte */
*out = *out & ((~0) << out_byte_loc); /* Mask unused part of last byte */
out++;
}
length = out - dest;
return length;
}
static int devn_write_pcx_file(gx_device_printer * pdev, char * filename, int ncomp,
int bpc, int pcmlinelength);
/*
* This is an example print page routine for a DeviceN device. This routine
* will handle a DeviceN, a CMYK with spot colors, or an RGB process color model.
*
* This routine creates several output files. If the process color model is
* RGB or CMYK then a bit image file is created which contains the data for the
* process color model data. This data is put into the given file stream.
* I.e. into the output file specified by the user. This file is not created
* for the DeviceN process color model. A separate bit image file is created
* is created for the data for each of the given spot colors. The names for
* these files are created by taking the given output file name and appending
* "sn" (where n is the spot color number 0 to ...) to the output file name.
* The results are unknown if the output file is stdout etc.
*
* After the bit image files are created, then a set of PCX format files are
* created from the bit image files. This files have a ".pcx" appended to the
* end of the files. Thus a CMYK process color model with two spot colors
* would end up with a total of six files being created. (xxx, xxxs0, xxxs1,
* xxx.pcx, xxxs0.pcx, and xxxs1.pcx).
*
* I do not assume that any users will actually want to create all of these
* different files. However I wanted to show an example of how each of the
* spot * colorants could be unpacked from the process color model colorants.
* The bit images files are an easy way to show this without the complication
* of trying to put the data into a specific format. However I do not have a
* tool which will display the bit image data directly so I needed to convert
* it to a form which I can view. Thus the PCX format files are being created.
* Note: The PCX implementation is not complete. There are many (most)
* combinations of bits per pixel and number of colorants that are not supported.
*/
static int
spotcmyk_print_page(gx_device_printer * pdev, FILE * prn_stream)
{
int line_size = gdev_mem_bytes_per_scan_line((gx_device *) pdev);
byte *in = gs_alloc_bytes(pdev->memory, line_size, "spotcmyk_print_page(in)");
byte *buf = gs_alloc_bytes(pdev->memory, line_size + 3, "spotcmyk_print_page(buf)");
const spotcmyk_device * pdevn = (spotcmyk_device *) pdev;
int npcmcolors = pdevn->devn_params.num_std_colorant_names;
int ncomp = pdevn->color_info.num_components;
int depth = pdevn->color_info.depth;
int nspot = pdevn->devn_params.separations.num_separations;
int bpc = pdevn->devn_params.bitspercomponent;
int lnum = 0, bottom = pdev->height;
int width = pdev->width;
FILE * spot_file[GX_DEVICE_COLOR_MAX_COMPONENTS] = {0};
int i, code = 0;
int first_bit;
int pcmlinelength = 0; /* Initialize against indeterminizm in case of pdev->height == 0. */
int linelength[GX_DEVICE_COLOR_MAX_COMPONENTS];
byte *data;
char spotname[gp_file_name_sizeof];
if (in == NULL || buf == NULL) {
code = gs_error_VMerror;
goto prn_done;
}
/*
* Check if the SeparationOrder list has changed the order of the process
* color model colorants. If so then we will treat all colorants as if they
* are spot colors.
*/
for (i = 0; i < npcmcolors; i++)
if (pdevn->devn_params.separation_order_map[i] != i)
break;
if (i < npcmcolors || ncomp < npcmcolors) {
nspot = ncomp;
npcmcolors = 0;
}
/* Open the output files for the spot colors */
for(i = 0; i < nspot; i++) {
sprintf(spotname, "%ss%d", pdevn->fname, i);
spot_file[i] = gp_fopen(spotname, "wb");
if (spot_file[i] == NULL) {
code = gs_error_VMerror;
goto prn_done;
}
}
/* Now create the output bit image files */
for (; lnum < bottom; ++lnum) {
gdev_prn_get_bits(pdev, lnum, in, &data);
/* Now put the pcm data into the output file */
if (npcmcolors) {
first_bit = bpc * (ncomp - npcmcolors);
pcmlinelength = repack_data(data, buf, depth, first_bit, bpc * npcmcolors, width);
fwrite(buf, 1, pcmlinelength, prn_stream);
}
/* Put spot color data into the output files */
for (i = 0; i < nspot; i++) {
first_bit = bpc * (nspot - 1 - i);
linelength[i] = repack_data(data, buf, depth, first_bit, bpc, width);
fwrite(buf, 1, linelength[i], spot_file[i]);
}
}
/* Close the bit image files */
for(i = 0; i < nspot; i++) {
fclose(spot_file[i]);
spot_file[i] = NULL;
}
/* Now convert the bit image files into PCX files */
if (npcmcolors) {
code = devn_write_pcx_file(pdev, (char *) &pdevn->fname,
npcmcolors, bpc, pcmlinelength);
if (code < 0)
return code;
}
for(i = 0; i < nspot; i++) {
sprintf(spotname, "%ss%d", pdevn->fname, i);
code = devn_write_pcx_file(pdev, spotname, 1, bpc, linelength[i]);
if (code < 0)
return code;
}
/* Clean up and exit */
prn_done:
for(i = 0; i < nspot; i++) {
if (spot_file[i] != NULL)
fclose(spot_file[i]);
}
if (in != NULL)
gs_free_object(pdev->memory, in, "spotcmyk_print_page(in)");
if (buf != NULL)
gs_free_object(pdev->memory, buf, "spotcmyk_print_page(buf)");
return code;
}
/*
* We are using the PCX output format. This is done for simplicity.
* Much of the following code was copied from gdevpcx.c.
*/
/* ------ Private definitions ------ */
/* All two-byte quantities are stored LSB-first! */
#if arch_is_big_endian
# define assign_ushort(a,v) a = ((v) >> 8) + ((v) << 8)
#else
# define assign_ushort(a,v) a = (v)
#endif
typedef struct pcx_header_s {
byte manuf; /* always 0x0a */
byte version;
#define version_2_5 0
#define version_2_8_with_palette 2
#define version_2_8_without_palette 3
#define version_3_0 /* with palette */ 5
byte encoding; /* 1=RLE */
byte bpp; /* bits per pixel per plane */
ushort x1; /* X of upper left corner */
ushort y1; /* Y of upper left corner */
ushort x2; /* x1 + width - 1 */
ushort y2; /* y1 + height - 1 */
ushort hres; /* horz. resolution (dots per inch) */
ushort vres; /* vert. resolution (dots per inch) */
byte palette[16 * 3]; /* color palette */
byte reserved;
byte nplanes; /* number of color planes */
ushort bpl; /* number of bytes per line (uncompressed) */
ushort palinfo;
#define palinfo_color 1
#define palinfo_gray 2
byte xtra[58]; /* fill out header to 128 bytes */
} pcx_header;
/* Define the prototype header. */
static const pcx_header pcx_header_prototype =
{
10, /* manuf */
0, /* version (variable) */
1, /* encoding */
0, /* bpp (variable) */
00, 00, /* x1, y1 */
00, 00, /* x2, y2 (variable) */
00, 00, /* hres, vres (variable) */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* palette (variable) */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
0, /* reserved */
0, /* nplanes (variable) */
00, /* bpl (variable) */
00, /* palinfo (variable) */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* xtra */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
};
/* Forward declarations */
static void devn_pcx_write_rle(const byte *, const byte *, int, FILE *);
static int devn_pcx_write_page(gx_device_printer * pdev, FILE * infile,
int linesize, FILE * outfile, pcx_header * phdr, bool planar, int depth);
static const byte pcx_cmyk_palette[16 * 3] =
{
0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0x0f, 0x0f, 0x00,
0xff, 0x00, 0xff, 0x0f, 0x00, 0x0f, 0xff, 0x00, 0x00, 0x0f, 0x00, 0x00,
0x00, 0xff, 0xff, 0x00, 0x0f, 0x0f, 0x00, 0xff, 0x00, 0x00, 0x0f, 0x00,
0x00, 0x00, 0xff, 0x00, 0x00, 0x0f, 0x1f, 0x1f, 0x1f, 0x0f, 0x0f, 0x0f,
};
static const byte pcx_ega_palette[16 * 3] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0xaa, 0x00, 0xaa, 0x00, 0x00, 0xaa, 0xaa,
0xaa, 0x00, 0x00, 0xaa, 0x00, 0xaa, 0xaa, 0xaa, 0x00, 0xaa, 0xaa, 0xaa,
0x55, 0x55, 0x55, 0x55, 0x55, 0xff, 0x55, 0xff, 0x55, 0x55, 0xff, 0xff,
0xff, 0x55, 0x55, 0xff, 0x55, 0xff, 0xff, 0xff, 0x55, 0xff, 0xff, 0xff
};
/*
* This routine will set up the revision and palatte for the output
* file.
*
* Please note that this routine does not currently handle all possible
* combinations of bits and planes.
*
* Input parameters:
* pdev - Pointer to device data structure
* file - output file
* header - The header structure to hold the data.
* bits_per_plane - The number of bits per plane.
* num_planes - The number of planes.
*/
static bool
devn_setup_pcx_header(gx_device_printer * pdev, pcx_header * phdr, int num_planes, int bits_per_plane)
{
bool planar = true; /* Invalid cases could cause an indeterminizm. */
*phdr = pcx_header_prototype;
phdr->bpp = bits_per_plane;
phdr->nplanes = num_planes;
switch (num_planes) {
case 1:
switch (bits_per_plane) {
case 1:
phdr->version = version_2_8_with_palette;
assign_ushort(phdr->palinfo, palinfo_gray);
memcpy((byte *) phdr->palette, "\000\000\000\377\377\377", 6);
planar = false;
break;
case 2: /* Not defined */
break;
case 4:
phdr->version = version_2_8_with_palette;
memcpy((byte *) phdr->palette, pcx_ega_palette, sizeof(pcx_ega_palette));
planar = true;
break;
case 5: /* Not defined */
break;
case 8:
phdr->version = version_3_0;
assign_ushort(phdr->palinfo, palinfo_gray);
planar = false;
break;
case 16: /* Not defined */
break;
}
break;
case 2:
switch (bits_per_plane) {
case 1: /* Not defined */
break;
case 2: /* Not defined */
break;
case 4: /* Not defined */
break;
case 5: /* Not defined */
break;
case 8: /* Not defined */
break;
case 16: /* Not defined */
break;
}
break;
case 3:
switch (bits_per_plane) {
case 1: /* Not defined */
break;
case 2: /* Not defined */
break;
case 4: /* Not defined */
break;
case 5: /* Not defined */
break;
case 8:
phdr->version = version_3_0;
assign_ushort(phdr->palinfo, palinfo_color);
planar = true;
break;
case 16: /* Not defined */
break;
}
break;
case 4:
switch (bits_per_plane) {
case 1:
phdr->version = 2;
memcpy((byte *) phdr->palette, pcx_cmyk_palette,
sizeof(pcx_cmyk_palette));
planar = false;
phdr->bpp = 4;
phdr->nplanes = 1;
break;
case 2: /* Not defined */
break;
case 4: /* Not defined */
break;
case 5: /* Not defined */
break;
case 8: /* Not defined */
break;
case 16: /* Not defined */
break;
}
break;
}
return planar;
}
/* Write a palette on a file. */
static int
pc_write_mono_palette(gx_device * dev, uint max_index, FILE * file)
{
uint i, c;
gx_color_value rgb[3];
for (i = 0; i < max_index; i++) {
rgb[0] = rgb[1] = rgb[2] = i << 8;
for (c = 0; c < 3; c++) {
byte b = gx_color_value_to_byte(rgb[c]);
fputc(b, file);
}
}
return 0;
}
/*
* This routine will send any output data required at the end of a file
* for a particular combination of planes and bits per plane.
*
* Please note that most combinations do not require anything at the end
* of a data file.
*
* Input parameters:
* pdev - Pointer to device data structure
* file - output file
* header - The header structure to hold the data.
* bits_per_plane - The number of bits per plane.
* num_planes - The number of planes.
*/
static int
devn_finish_pcx_file(gx_device_printer * pdev, FILE * file, pcx_header * header, int num_planes, int bits_per_plane)
{
switch (num_planes) {
case 1:
switch (bits_per_plane) {
case 1: /* Do nothing */
break;
case 2: /* Not defined */
break;
case 4: /* Do nothing */
break;
case 5: /* Not defined */
break;
case 8:
fputc(0x0c, file);
return pc_write_mono_palette((gx_device *) pdev, 256, file);
case 16: /* Not defined */
break;
}
break;
case 2:
switch (bits_per_plane) {
case 1: /* Not defined */
break;
case 2: /* Not defined */
break;
case 4: /* Not defined */
break;
case 5: /* Not defined */
break;
case 8: /* Not defined */
break;
case 16: /* Not defined */
break;
}
break;
case 3:
switch (bits_per_plane) {
case 1: /* Not defined */
break;
case 2: /* Not defined */
break;
case 4: /* Not defined */
break;
case 5: /* Not defined */
break;
case 8: /* Do nothing */
break;
case 16: /* Not defined */
break;
}
break;
case 4:
switch (bits_per_plane) {
case 1: /* Do nothing */
break;
case 2: /* Not defined */
break;
case 4: /* Not defined */
break;
case 5: /* Not defined */
break;
case 8: /* Not defined */
break;
case 16: /* Not defined */
break;
}
break;
}
return 0;
}
/* Send the page to the printer. */
static int
devn_write_pcx_file(gx_device_printer * pdev, char * filename, int ncomp,
int bpc, int linesize)
{
pcx_header header;
int code;
bool planar;
char outname[gp_file_name_sizeof];
FILE * in;
FILE * out;
int depth = bpc_to_depth(ncomp, bpc);
in = gp_fopen(filename, "rb");
if (!in)
return_error(gs_error_invalidfileaccess);
sprintf(outname, "%s.pcx", filename);
out = gp_fopen(outname, "wb");
if (!out) {
fclose(in);
return_error(gs_error_invalidfileaccess);
}
planar = devn_setup_pcx_header(pdev, &header, ncomp, bpc);
code = devn_pcx_write_page(pdev, in, linesize, out, &header, planar, depth);
if (code >= 0)
code = devn_finish_pcx_file(pdev, out, &header, ncomp, bpc);
fclose(in);
fclose(out);
return code;
}
/* Write out a page in PCX format. */
/* This routine is used for all formats. */
/* The caller has set header->bpp, nplanes, and palette. */
static int
devn_pcx_write_page(gx_device_printer * pdev, FILE * infile, int linesize, FILE * outfile,
pcx_header * phdr, bool planar, int depth)
{
int raster = linesize;
uint rsize = ROUND_UP((pdev->width * phdr->bpp + 7) >> 3, 2); /* PCX format requires even */
int height = pdev->height;
uint lsize = raster + rsize;
byte *line = gs_alloc_bytes(pdev->memory, lsize, "pcx file buffer");
byte *plane = line + raster;
int y;
int code = 0; /* return code */
if (line == 0) /* can't allocate line buffer */
return_error(gs_error_VMerror);
/* Fill in the other variable entries in the header struct. */
assign_ushort(phdr->x2, pdev->width - 1);
assign_ushort(phdr->y2, height - 1);
assign_ushort(phdr->hres, (int)pdev->x_pixels_per_inch);
assign_ushort(phdr->vres, (int)pdev->y_pixels_per_inch);
assign_ushort(phdr->bpl, (planar || depth == 1 ? rsize :
raster + (raster & 1)));
/* Write the header. */
if (fwrite((const char *)phdr, 1, 128, outfile) < 128) {
code = gs_error_ioerror;
goto pcx_done;
}
/* Write the contents of the image. */
for (y = 0; y < height; y++) {
byte *row = line;
byte *end;
code = fread(line, sizeof(byte), linesize, infile);
if (code < 0)
break;
end = row + raster;
if (!planar) { /* Just write the bits. */
if (raster & 1) { /* Round to even, with predictable padding. */
*end = end[-1];
++end;
}
devn_pcx_write_rle(row, end, 1, outfile);
} else
switch (depth) {
case 4:
{
byte *pend = plane + rsize;
int shift;
for (shift = 0; shift < 4; shift++) {
register byte *from, *to;
register int bright = 1 << shift;
register int bleft = bright << 4;
for (from = row, to = plane;
from < end; from += 4
) {
*to++ =
(from[0] & bleft ? 0x80 : 0) |
(from[0] & bright ? 0x40 : 0) |
(from[1] & bleft ? 0x20 : 0) |
(from[1] & bright ? 0x10 : 0) |
(from[2] & bleft ? 0x08 : 0) |
(from[2] & bright ? 0x04 : 0) |
(from[3] & bleft ? 0x02 : 0) |
(from[3] & bright ? 0x01 : 0);
}
/* We might be one byte short of rsize. */
if (to < pend)
*to = to[-1];
devn_pcx_write_rle(plane, pend, 1, outfile);
}
}
break;
case 24:
{
int pnum;
for (pnum = 0; pnum < 3; ++pnum) {
devn_pcx_write_rle(row + pnum, row + raster, 3, outfile);
if (pdev->width & 1)
fputc(0, outfile); /* pad to even */
}
}
break;
default:
code = gs_note_error(gs_error_rangecheck);
goto pcx_done;
}
code = 0;
}
pcx_done:
gs_free_object(pdev->memory, line, "pcx file buffer");
return code;
}
/* ------ Internal routines ------ */
/* Write one line in PCX run-length-encoded format. */
static void
devn_pcx_write_rle(const byte * from, const byte * end, int step, FILE * file)
{ /*
* The PCX format theoretically allows encoding runs of 63
* identical bytes, but some readers can't handle repetition
* counts greater than 15.
*/
#define MAX_RUN_COUNT 15
int max_run = step * MAX_RUN_COUNT;
while (from < end) {
byte data = *from;
from += step;
if (data != *from || from == end) {
if (data >= 0xc0)
putc(0xc1, file);
} else {
const byte *start = from;
while ((from < end) && (*from == data))
from += step;
/* Now (from - start) / step + 1 is the run length. */
while (from - start >= max_run) {
putc(0xc0 + MAX_RUN_COUNT, file);
putc(data, file);
start += max_run;
}
if (from > start || data >= 0xc0)
putc((from - start) / step + 0xc1, file);
}
putc(data, file);
}
#undef MAX_RUN_COUNT
}
|