/* Copyright (C) 2001-2006 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at http://www.artifex.com/ or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information. */ /* $Id$ */ /* Matrix operators for Ghostscript library */ #include "math_.h" #include "memory_.h" #include "gx.h" #include "gserrors.h" #include "gxfarith.h" #include "gxfixed.h" #include "gxmatrix.h" #include "stream.h" /* The identity matrix */ static const gs_matrix gs_identity_matrix = {identity_matrix_body}; /* ------ Matrix creation ------ */ /* Create an identity matrix */ void gs_make_identity(gs_matrix * pmat) { *pmat = gs_identity_matrix; } /* Create a translation matrix */ int gs_make_translation(floatp dx, floatp dy, gs_matrix * pmat) { *pmat = gs_identity_matrix; pmat->tx = dx; pmat->ty = dy; return 0; } /* Create a scaling matrix */ int gs_make_scaling(floatp sx, floatp sy, gs_matrix * pmat) { *pmat = gs_identity_matrix; pmat->xx = sx; pmat->yy = sy; return 0; } /* Create a rotation matrix. */ /* The angle is in degrees. */ int gs_make_rotation(floatp ang, gs_matrix * pmat) { gs_sincos_t sincos; gs_sincos_degrees(ang, &sincos); pmat->yy = pmat->xx = sincos.cos; pmat->xy = sincos.sin; pmat->yx = -sincos.sin; pmat->tx = pmat->ty = 0.0; return 0; } /* ------ Matrix arithmetic ------ */ /* Multiply two matrices. We should check for floating exceptions, */ /* but for the moment it's just too awkward. */ /* Since this is used heavily, we check for shortcuts. */ int gs_matrix_multiply(const gs_matrix * pm1, const gs_matrix * pm2, gs_matrix * pmr) { double xx1 = pm1->xx, yy1 = pm1->yy; double tx1 = pm1->tx, ty1 = pm1->ty; double xx2 = pm2->xx, yy2 = pm2->yy; double xy2 = pm2->xy, yx2 = pm2->yx; if (is_xxyy(pm1)) { pmr->tx = tx1 * xx2 + pm2->tx; pmr->ty = ty1 * yy2 + pm2->ty; if (is_fzero(xy2)) pmr->xy = 0; else pmr->xy = xx1 * xy2, pmr->ty += tx1 * xy2; pmr->xx = xx1 * xx2; if (is_fzero(yx2)) pmr->yx = 0; else pmr->yx = yy1 * yx2, pmr->tx += ty1 * yx2; pmr->yy = yy1 * yy2; } else { double xy1 = pm1->xy, yx1 = pm1->yx; pmr->xx = xx1 * xx2 + xy1 * yx2; pmr->xy = xx1 * xy2 + xy1 * yy2; pmr->yy = yx1 * xy2 + yy1 * yy2; pmr->yx = yx1 * xx2 + yy1 * yx2; pmr->tx = tx1 * xx2 + ty1 * yx2 + pm2->tx; pmr->ty = tx1 * xy2 + ty1 * yy2 + pm2->ty; } return 0; } int gs_matrix_multiply_double(const gs_matrix_double * pm1, const gs_matrix * pm2, gs_matrix_double * pmr) { double xx1 = pm1->xx, yy1 = pm1->yy; double tx1 = pm1->tx, ty1 = pm1->ty; double xx2 = pm2->xx, yy2 = pm2->yy; double xy2 = pm2->xy, yx2 = pm2->yx; if (is_xxyy(pm1)) { pmr->tx = tx1 * xx2 + pm2->tx; pmr->ty = ty1 * yy2 + pm2->ty; if (is_fzero(xy2)) pmr->xy = 0; else pmr->xy = xx1 * xy2, pmr->ty += tx1 * xy2; pmr->xx = xx1 * xx2; if (is_fzero(yx2)) pmr->yx = 0; else pmr->yx = yy1 * yx2, pmr->tx += ty1 * yx2; pmr->yy = yy1 * yy2; } else { double xy1 = pm1->xy, yx1 = pm1->yx; pmr->xx = xx1 * xx2 + xy1 * yx2; pmr->xy = xx1 * xy2 + xy1 * yy2; pmr->yy = yx1 * xy2 + yy1 * yy2; pmr->yx = yx1 * xx2 + yy1 * yx2; pmr->tx = tx1 * xx2 + ty1 * yx2 + pm2->tx; pmr->ty = tx1 * xy2 + ty1 * yy2 + pm2->ty; } return 0; } /* Invert a matrix. Return gs_error_undefinedresult if not invertible. */ int gs_matrix_invert(const gs_matrix * pm, gs_matrix * pmr) { /* We have to be careful about fetch/store order, */ /* because pm might be the same as pmr. */ if (is_xxyy(pm)) { if (is_fzero(pm->xx) || is_fzero(pm->yy)) return_error(gs_error_undefinedresult); pmr->tx = -(pmr->xx = 1.0 / pm->xx) * pm->tx; pmr->xy = 0.0; pmr->yx = 0.0; pmr->ty = -(pmr->yy = 1.0 / pm->yy) * pm->ty; } else { float mxx = pm->xx, myy = pm->yy, mxy = pm->xy, myx = pm->yx; float mtx = pm->tx, mty = pm->ty; /* we declare det as double since on at least some computer (i.e. peeves) declaring it as a float results in different values for pmr depending on whether or not optimization is turned on. I believe this is caused by the compiler keeping the det value in an internal register when optimization is enable. As evidence of this if you add a debugging statement to print out det the optimized code acts the same as the unoptimized code. declearing det as double does not change the CET 10-09.ps output. */ double det = (float)(mxx * myy) - (float)(mxy * myx); /* * We are doing the math as floats instead of doubles to reproduce * the results in page 1 of CET 10-09.ps */ if (det == 0) return_error(gs_error_undefinedresult); pmr->xx = myy / det; pmr->xy = -mxy / det; pmr->yx = -myx / det; pmr->yy = mxx / det; pmr->tx = (((float)(mty * myx) - (float)(mtx * myy))) / det; pmr->ty = (((float)(mtx * mxy) - (float)(mty * mxx))) / det; } return 0; } int gs_matrix_invert_to_double(const gs_matrix * pm, gs_matrix_double * pmr) { /* We have to be careful about fetch/store order, */ /* because pm might be the same as pmr. */ if (is_xxyy(pm)) { if (is_fzero(pm->xx) || is_fzero(pm->yy)) return_error(gs_error_undefinedresult); pmr->tx = -(pmr->xx = 1.0 / pm->xx) * pm->tx; pmr->xy = 0.0; pmr->yx = 0.0; pmr->ty = -(pmr->yy = 1.0 / pm->yy) * pm->ty; } else { double mxx = pm->xx, myy = pm->yy, mxy = pm->xy, myx = pm->yx; double mtx = pm->tx, mty = pm->ty; double det = (mxx * myy) - (mxy * myx); /* * We are doing the math as floats instead of doubles to reproduce * the results in page 1 of CET 10-09.ps */ if (det == 0) return_error(gs_error_undefinedresult); pmr->xx = myy / det; pmr->xy = -mxy / det; pmr->yx = -myx / det; pmr->yy = mxx / det; pmr->tx = (((mty * myx) - (mtx * myy))) / det; pmr->ty = (((mtx * mxy) - (mty * mxx))) / det; } return 0; } /* Translate a matrix, possibly in place. */ int gs_matrix_translate(const gs_matrix * pm, floatp dx, floatp dy, gs_matrix * pmr) { gs_point trans; int code = gs_distance_transform(dx, dy, pm, &trans); if (code < 0) return code; if (pmr != pm) *pmr = *pm; pmr->tx += trans.x; pmr->ty += trans.y; return 0; } /* Scale a matrix, possibly in place. */ int gs_matrix_scale(const gs_matrix * pm, floatp sx, floatp sy, gs_matrix * pmr) { pmr->xx = pm->xx * sx; pmr->xy = pm->xy * sx; pmr->yx = pm->yx * sy; pmr->yy = pm->yy * sy; if (pmr != pm) { pmr->tx = pm->tx; pmr->ty = pm->ty; } return 0; } /* Rotate a matrix, possibly in place. The angle is in degrees. */ int gs_matrix_rotate(const gs_matrix * pm, floatp ang, gs_matrix * pmr) { double mxx, mxy; gs_sincos_t sincos; gs_sincos_degrees(ang, &sincos); mxx = pm->xx, mxy = pm->xy; pmr->xx = sincos.cos * mxx + sincos.sin * pm->yx; pmr->xy = sincos.cos * mxy + sincos.sin * pm->yy; pmr->yx = sincos.cos * pm->yx - sincos.sin * mxx; pmr->yy = sincos.cos * pm->yy - sincos.sin * mxy; if (pmr != pm) { pmr->tx = pm->tx; pmr->ty = pm->ty; } return 0; } /* ------ Coordinate transformations (floating point) ------ */ /* Note that all the transformation routines take separate */ /* x and y arguments, but return their result in a point. */ /* Transform a point. */ int gs_point_transform(floatp x, floatp y, const gs_matrix * pmat, gs_point * ppt) { /* * The float casts are there to reproduce results in CET 10-01.ps * page 4. */ ppt->x = (float)(x * pmat->xx) + pmat->tx; ppt->y = (float)(y * pmat->yy) + pmat->ty; if (!is_fzero(pmat->yx)) ppt->x += (float)(y * pmat->yx); if (!is_fzero(pmat->xy)) ppt->y += (float)(x * pmat->xy); return 0; } /* Inverse-transform a point. */ /* Return gs_error_undefinedresult if the matrix is not invertible. */ int gs_point_transform_inverse(floatp x, floatp y, const gs_matrix * pmat, gs_point * ppt) { if (is_xxyy(pmat)) { if (is_fzero(pmat->xx) || is_fzero(pmat->yy)) return_error(gs_error_undefinedresult); ppt->x = (x - pmat->tx) / pmat->xx; ppt->y = (y - pmat->ty) / pmat->yy; return 0; } else if (is_xyyx(pmat)) { if (is_fzero(pmat->xy) || is_fzero(pmat->yx)) return_error(gs_error_undefinedresult); ppt->x = (y - pmat->ty) / pmat->xy; ppt->y = (x - pmat->tx) / pmat->yx; return 0; } else { /* There are faster ways to do this, */ /* but we won't implement one unless we have to. */ gs_matrix imat; int code = gs_matrix_invert(pmat, &imat); if (code < 0) return code; return gs_point_transform(x, y, &imat, ppt); } } /* Transform a distance. */ int gs_distance_transform(floatp dx, floatp dy, const gs_matrix * pmat, gs_point * pdpt) { pdpt->x = dx * pmat->xx; pdpt->y = dy * pmat->yy; if (!is_fzero(pmat->yx)) pdpt->x += dy * pmat->yx; if (!is_fzero(pmat->xy)) pdpt->y += dx * pmat->xy; return 0; } /* Inverse-transform a distance. */ /* Return gs_error_undefinedresult if the matrix is not invertible. */ int gs_distance_transform_inverse(floatp dx, floatp dy, const gs_matrix * pmat, gs_point * pdpt) { if (is_xxyy(pmat)) { if (is_fzero(pmat->xx) || is_fzero(pmat->yy)) return_error(gs_error_undefinedresult); pdpt->x = dx / pmat->xx; pdpt->y = dy / pmat->yy; } else if (is_xyyx(pmat)) { if (is_fzero(pmat->xy) || is_fzero(pmat->yx)) return_error(gs_error_undefinedresult); pdpt->x = dy / pmat->xy; pdpt->y = dx / pmat->yx; } else { double det = pmat->xx * pmat->yy - pmat->xy * pmat->yx; if (det == 0) return_error(gs_error_undefinedresult); pdpt->x = (dx * pmat->yy - dy * pmat->yx) / det; pdpt->y = (dy * pmat->xx - dx * pmat->xy) / det; } return 0; } /* Compute the bounding box of 4 points. */ int gs_points_bbox(const gs_point pts[4], gs_rect * pbox) { #define assign_min_max(vmin, vmax, v0, v1)\ if ( v0 < v1 ) vmin = v0, vmax = v1; else vmin = v1, vmax = v0 #define assign_min_max_4(vmin, vmax, v0, v1, v2, v3)\ { double min01, max01, min23, max23;\ assign_min_max(min01, max01, v0, v1);\ assign_min_max(min23, max23, v2, v3);\ vmin = min(min01, min23);\ vmax = max(max01, max23);\ } assign_min_max_4(pbox->p.x, pbox->q.x, pts[0].x, pts[1].x, pts[2].x, pts[3].x); assign_min_max_4(pbox->p.y, pbox->q.y, pts[0].y, pts[1].y, pts[2].y, pts[3].y); #undef assign_min_max #undef assign_min_max_4 return 0; } /* Transform or inverse-transform a bounding box. */ /* Return gs_error_undefinedresult if the matrix is not invertible. */ static int bbox_transform_either_only(const gs_rect * pbox_in, const gs_matrix * pmat, gs_point pts[4], int (*point_xform) (floatp, floatp, const gs_matrix *, gs_point *)) { int code; if ((code = (*point_xform) (pbox_in->p.x, pbox_in->p.y, pmat, &pts[0])) < 0 || (code = (*point_xform) (pbox_in->p.x, pbox_in->q.y, pmat, &pts[1])) < 0 || (code = (*point_xform) (pbox_in->q.x, pbox_in->p.y, pmat, &pts[2])) < 0 || (code = (*point_xform) (pbox_in->q.x, pbox_in->q.y, pmat, &pts[3])) < 0 ) DO_NOTHING; return code; } static int bbox_transform_either(const gs_rect * pbox_in, const gs_matrix * pmat, gs_rect * pbox_out, int (*point_xform) (floatp, floatp, const gs_matrix *, gs_point *)) { int code; /* * In principle, we could transform only one point and two * distance vectors; however, because of rounding, we will only * get fully consistent results if we transform all 4 points. * We must compute the max and min after transforming, * since a rotation may be involved. */ gs_point pts[4]; if ((code = bbox_transform_either_only(pbox_in, pmat, pts, point_xform)) < 0) return code; return gs_points_bbox(pts, pbox_out); } int gs_bbox_transform(const gs_rect * pbox_in, const gs_matrix * pmat, gs_rect * pbox_out) { return bbox_transform_either(pbox_in, pmat, pbox_out, gs_point_transform); } int gs_bbox_transform_only(const gs_rect * pbox_in, const gs_matrix * pmat, gs_point points[4]) { return bbox_transform_either_only(pbox_in, pmat, points, gs_point_transform); } int gs_bbox_transform_inverse(const gs_rect * pbox_in, const gs_matrix * pmat, gs_rect * pbox_out) { return bbox_transform_either(pbox_in, pmat, pbox_out, gs_point_transform_inverse); } /* ------ Coordinate transformations (to fixed point) ------ */ #define f_fits_in_fixed(f) f_fits_in_bits(f, fixed_int_bits) /* Make a gs_matrix_fixed from a gs_matrix. */ int gs_matrix_fixed_from_matrix(gs_matrix_fixed *pfmat, const gs_matrix *pmat) { *(gs_matrix *)pfmat = *pmat; if (f_fits_in_fixed(pmat->tx) && f_fits_in_fixed(pmat->ty)) { pfmat->tx = fixed2float(pfmat->tx_fixed = float2fixed(pmat->tx)); pfmat->ty = fixed2float(pfmat->ty_fixed = float2fixed(pmat->ty)); pfmat->txy_fixed_valid = true; } else { pfmat->txy_fixed_valid = false; } return 0; } /* Transform a point with a fixed-point result. */ int gs_point_transform2fixed(const gs_matrix_fixed * pmat, floatp x, floatp y, gs_fixed_point * ppt) { fixed px, py, t; double xtemp, ytemp; int code; if (!pmat->txy_fixed_valid) { /* The translation is out of range. Do the */ /* computation in floating point, and convert to */ /* fixed at the end. */ gs_point fpt; gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt); if (!(f_fits_in_fixed(fpt.x) && f_fits_in_fixed(fpt.y))) return_error(gs_error_limitcheck); ppt->x = float2fixed(fpt.x); ppt->y = float2fixed(fpt.y); return 0; } if (!is_fzero(pmat->xy)) { /* Hope for 90 degree rotation */ if ((code = CHECK_DFMUL2FIXED_VARS(px, y, pmat->yx, xtemp)) < 0 || (code = CHECK_DFMUL2FIXED_VARS(py, x, pmat->xy, ytemp)) < 0 ) return code; FINISH_DFMUL2FIXED_VARS(px, xtemp); FINISH_DFMUL2FIXED_VARS(py, ytemp); if (!is_fzero(pmat->xx)) { if ((code = CHECK_DFMUL2FIXED_VARS(t, x, pmat->xx, xtemp)) < 0) return code; FINISH_DFMUL2FIXED_VARS(t, xtemp); if ((code = CHECK_SET_FIXED_SUM(px, px, t)) < 0) return code; } if (!is_fzero(pmat->yy)) { if ((code = CHECK_DFMUL2FIXED_VARS(t, y, pmat->yy, ytemp)) < 0) return code; FINISH_DFMUL2FIXED_VARS(t, ytemp); if ((code = CHECK_SET_FIXED_SUM(py, py, t)) < 0) return code; } } else { if ((code = CHECK_DFMUL2FIXED_VARS(px, x, pmat->xx, xtemp)) < 0 || (code = CHECK_DFMUL2FIXED_VARS(py, y, pmat->yy, ytemp)) < 0 ) return code; FINISH_DFMUL2FIXED_VARS(px, xtemp); FINISH_DFMUL2FIXED_VARS(py, ytemp); if (!is_fzero(pmat->yx)) { if ((code = CHECK_DFMUL2FIXED_VARS(t, y, pmat->yx, ytemp)) < 0) return code; FINISH_DFMUL2FIXED_VARS(t, ytemp); if ((code = CHECK_SET_FIXED_SUM(px, px, t)) < 0) return code; } } if (((code = CHECK_SET_FIXED_SUM(ppt->x, px, pmat->tx_fixed)) < 0) || ((code = CHECK_SET_FIXED_SUM(ppt->y, py, pmat->ty_fixed)) < 0) ) return code; return 0; } #if PRECISE_CURRENTPOINT /* Transform a point with a fixed-point result. */ /* Used for the best precision of the current point, see comment in clamp_point_aux. */ int gs_point_transform2fixed_rounding(const gs_matrix_fixed * pmat, floatp x, floatp y, gs_fixed_point * ppt) { gs_point fpt; gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt); if (!(f_fits_in_fixed(fpt.x) && f_fits_in_fixed(fpt.y))) return_error(gs_error_limitcheck); ppt->x = float2fixed_rounded(fpt.x); ppt->y = float2fixed_rounded(fpt.y); return 0; } #endif /* Transform a distance with a fixed-point result. */ int gs_distance_transform2fixed(const gs_matrix_fixed * pmat, floatp dx, floatp dy, gs_fixed_point * ppt) { fixed px, py, t; double xtemp, ytemp; int code; if ((code = CHECK_DFMUL2FIXED_VARS(px, dx, pmat->xx, xtemp)) < 0 || (code = CHECK_DFMUL2FIXED_VARS(py, dy, pmat->yy, ytemp)) < 0 ) return code; FINISH_DFMUL2FIXED_VARS(px, xtemp); FINISH_DFMUL2FIXED_VARS(py, ytemp); if (!is_fzero(pmat->yx)) { if ((code = CHECK_DFMUL2FIXED_VARS(t, dy, pmat->yx, ytemp)) < 0) return code; FINISH_DFMUL2FIXED_VARS(t, ytemp); if ((code = CHECK_SET_FIXED_SUM(px, px, t)) < 0) return code; } if (!is_fzero(pmat->xy)) { if ((code = CHECK_DFMUL2FIXED_VARS(t, dx, pmat->xy, xtemp)) < 0) return code; FINISH_DFMUL2FIXED_VARS(t, xtemp); if ((code = CHECK_SET_FIXED_SUM(py, py, t)) < 0) return code; } ppt->x = px; ppt->y = py; return 0; } /* ------ Serialization ------ */ /* * For maximum conciseness in band lists, we write a matrix as a control * byte followed by 0 to 6 values. The control byte has the format * AABBCD00. AA and BB control (xx,yy) and (xy,yx) as follows: * 00 = values are (0.0, 0.0) * 01 = values are (V, V) [1 value follows] * 10 = values are (V, -V) [1 value follows] * 11 = values are (U, V) [2 values follow] * C and D control tx and ty as follows: * 0 = value is 0.0 * 1 = value follows * The following code is the only place that knows this representation. */ /* Put a matrix on a stream. */ int sput_matrix(stream *s, const gs_matrix *pmat) { byte buf[1 + 6 * sizeof(float)]; byte *cp = buf + 1; byte b = 0; float coeff[6]; int i; uint ignore; coeff[0] = pmat->xx; coeff[1] = pmat->xy; coeff[2] = pmat->yx; coeff[3] = pmat->yy; coeff[4] = pmat->tx; coeff[5] = pmat->ty; for (i = 0; i < 4; i += 2) { float u = coeff[i], v = coeff[i ^ 3]; b <<= 2; if (u != 0 || v != 0) { memcpy(cp, &u, sizeof(float)); cp += sizeof(float); if (v == u) b += 1; else if (v == -u) b += 2; else { b += 3; memcpy(cp, &v, sizeof(float)); cp += sizeof(float); } } } for (; i < 6; ++i) { float v = coeff[i]; b <<= 1; if (v != 0) { ++b; memcpy(cp, &v, sizeof(float)); cp += sizeof(float); } } buf[0] = b << 2; return sputs(s, buf, cp - buf, &ignore); } /* Get a matrix from a stream. */ int sget_matrix(stream *s, gs_matrix *pmat) { int b = sgetc(s); float coeff[6]; int i; int status; uint nread; if (b < 0) return b; for (i = 0; i < 4; i += 2, b <<= 2) if (!(b & 0xc0)) coeff[i] = coeff[i ^ 3] = 0.0; else { float value; status = sgets(s, (byte *)&value, sizeof(value), &nread); if (status < 0 && status != EOFC) return_error(gs_error_ioerror); coeff[i] = value; switch ((b >> 6) & 3) { case 1: coeff[i ^ 3] = value; break; case 2: coeff[i ^ 3] = -value; break; case 3: status = sgets(s, (byte *)&coeff[i ^ 3], sizeof(coeff[0]), &nread); if (status < 0 && status != EOFC) return_error(gs_error_ioerror); } } for (; i < 6; ++i, b <<= 1) if (b & 0x80) { status = sgets(s, (byte *)&coeff[i], sizeof(coeff[0]), &nread); if (status < 0 && status != EOFC) return_error(gs_error_ioerror); } else coeff[i] = 0.0; pmat->xx = coeff[0]; pmat->xy = coeff[1]; pmat->yx = coeff[2]; pmat->yy = coeff[3]; pmat->tx = coeff[4]; pmat->ty = coeff[5]; return 0; }