/* Copyright (C) 2001-2006 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at http://www.artifex.com/ or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information. */ /* $Id$ */ /* Coordinate system operators for Ghostscript library */ #include "math_.h" #include "gx.h" #include "gserrors.h" #include "gsccode.h" /* for gxfont.h */ #include "gxfarith.h" #include "gxfixed.h" #include "gxmatrix.h" #include "gxfont.h" /* for char_tm */ #include "gxpath.h" /* for gx_path_translate */ #include "gzstate.h" #include "gxcoord.h" /* requires gsmatrix, gsstate */ #include "gxdevice.h" /* Choose whether to enable the rounding code in update_ctm. */ #define ROUND_CTM_FIXED 0 /* Forward declarations */ #ifdef DEBUG #define trace_ctm(pgs) trace_matrix_fixed(&(pgs)->ctm) static void trace_matrix_fixed(const gs_matrix_fixed *); static void trace_matrix(const gs_matrix *); #endif /* Macro for ensuring ctm_inverse is valid */ #ifdef DEBUG # define print_inverse(pgs)\ if ( gs_debug_c('x') )\ dlprintf("[x]Inverting:\n"), trace_ctm(pgs), trace_matrix(&pgs->ctm_inverse) #else # define print_inverse(pgs) DO_NOTHING #endif #define ensure_inverse_valid(pgs)\ if ( !pgs->ctm_inverse_valid )\ { int code = ctm_set_inverse(pgs);\ if ( code < 0 ) return code;\ } static int ctm_set_inverse(gs_state * pgs) { int code = gs_matrix_invert(&ctm_only(pgs), &pgs->ctm_inverse); print_inverse(pgs); if (code < 0) return code; pgs->ctm_inverse_valid = true; return 0; } /* Machinery for updating fixed version of ctm. */ /* * We (conditionally) adjust the floating point translation * so that it exactly matches the (rounded) fixed translation. * This avoids certain unpleasant rounding anomalies, such as * 0 0 moveto currentpoint not returning 0 0, and () stringwidth * not returning 0 0. */ #if ROUND_CTM_FIXED # define update_t_fixed(mat, t, t_fixed, v)\ (set_float2fixed_vars((mat).t_fixed, v),\ set_fixed2float_var((mat).t, (mat).t_fixed)) #else /* !ROUND_CTM_FIXED */ # define update_t_fixed(mat, t, t_fixed, v)\ ((mat).t = (v),\ set_float2fixed_vars((mat).t_fixed, (mat).t)) #endif /* (!)ROUND_CTM_FIXED */ #define f_fits_in_fixed(f) f_fits_in_bits(f, fixed_int_bits) #define update_matrix_fixed(mat, xt, yt)\ ((mat).txy_fixed_valid = (f_fits_in_fixed(xt) && f_fits_in_fixed(yt) ?\ (update_t_fixed(mat, tx, tx_fixed, xt),\ update_t_fixed(mat, ty, ty_fixed, yt), true) :\ ((mat).tx = (xt), (mat).ty = (yt), false))) #define update_ctm(pgs, xt, yt)\ (pgs->ctm_inverse_valid = false,\ pgs->char_tm_valid = false,\ update_matrix_fixed(pgs->ctm, xt, yt)) /* ------ Coordinate system definition ------ */ int gs_initmatrix(gs_state * pgs) { gs_matrix imat; gs_defaultmatrix(pgs, &imat); update_ctm(pgs, imat.tx, imat.ty); set_ctm_only(pgs, imat); #ifdef DEBUG if (gs_debug_c('x')) dlprintf("[x]initmatrix:\n"), trace_ctm(pgs); #endif return 0; } int gs_defaultmatrix(const gs_state * pgs, gs_matrix * pmat) { gx_device *dev; if (pgs->ctm_default_set) { /* set after Install */ *pmat = pgs->ctm_default; return 1; } dev = gs_currentdevice_inline(pgs); gs_deviceinitialmatrix(dev, pmat); /* Add in the translation for the Margins. */ pmat->tx += dev->Margins[0] * dev->HWResolution[0] / dev->MarginsHWResolution[0]; pmat->ty += dev->Margins[1] * dev->HWResolution[1] / dev->MarginsHWResolution[1]; return 0; } int gs_setdefaultmatrix(gs_state * pgs, const gs_matrix * pmat) { if (pmat == NULL) pgs->ctm_default_set = false; else { pgs->ctm_default = *pmat; pgs->ctm_default_set = true; } return 0; } int gs_currentmatrix(const gs_state * pgs, gs_matrix * pmat) { *pmat = ctm_only(pgs); return 0; } /* Set the current transformation matrix for rendering text. */ /* Note that this may be based on a font other than the current font. */ int gs_setcharmatrix(gs_state * pgs, const gs_matrix * pmat) { gs_matrix cmat; int code = gs_matrix_multiply(pmat, &ctm_only(pgs), &cmat); if (code < 0) return code; update_matrix_fixed(pgs->char_tm, cmat.tx, cmat.ty); char_tm_only(pgs) = cmat; #ifdef DEBUG if (gs_debug_c('x')) dlprintf("[x]setting char_tm:"), trace_matrix_fixed(&pgs->char_tm); #endif pgs->char_tm_valid = true; return 0; } /* Read (after possibly computing) the current transformation matrix */ /* for rendering text. If force=true, update char_tm if it is invalid; */ /* if force=false, don't update char_tm, and return an error code. */ int gs_currentcharmatrix(gs_state * pgs, gs_matrix * ptm, bool force) { if (!pgs->char_tm_valid) { int code; if (!force) return_error(gs_error_undefinedresult); code = gs_setcharmatrix(pgs, &pgs->font->FontMatrix); if (code < 0) return code; } if (ptm != NULL) *ptm = char_tm_only(pgs); return 0; } int gs_setmatrix(gs_state * pgs, const gs_matrix * pmat) { update_ctm(pgs, pmat->tx, pmat->ty); set_ctm_only(pgs, *pmat); #ifdef DEBUG if (gs_debug_c('x')) dlprintf("[x]setmatrix:\n"), trace_ctm(pgs); #endif return 0; } int gs_imager_setmatrix(gs_imager_state * pis, const gs_matrix * pmat) { update_matrix_fixed(pis->ctm, pmat->tx, pmat->ty); set_ctm_only(pis, *pmat); #ifdef DEBUG if (gs_debug_c('x')) dlprintf("[x]imager_setmatrix:\n"), trace_ctm(pis); #endif return 0; } int gs_settocharmatrix(gs_state * pgs) { if (pgs->char_tm_valid) { pgs->ctm = pgs->char_tm; pgs->ctm_inverse_valid = false; return 0; } else return_error(gs_error_undefinedresult); } int gs_translate(gs_state * pgs, floatp dx, floatp dy) { gs_point pt; int code; if ((code = gs_distance_transform(dx, dy, &ctm_only(pgs), &pt)) < 0) return code; pt.x = (float)pt.x + pgs->ctm.tx; pt.y = (float)pt.y + pgs->ctm.ty; update_ctm(pgs, pt.x, pt.y); #ifdef DEBUG if (gs_debug_c('x')) dlprintf4("[x]translate: %f %f -> %f %f\n", dx, dy, pt.x, pt.y), trace_ctm(pgs); #endif return 0; } int gs_scale(gs_state * pgs, floatp sx, floatp sy) { pgs->ctm.xx *= sx; pgs->ctm.xy *= sx; pgs->ctm.yx *= sy; pgs->ctm.yy *= sy; pgs->ctm_inverse_valid = false, pgs->char_tm_valid = false; #ifdef DEBUG if (gs_debug_c('x')) dlprintf2("[x]scale: %f %f\n", sx, sy), trace_ctm(pgs); #endif return 0; } int gs_rotate(gs_state * pgs, floatp ang) { int code = gs_matrix_rotate(&ctm_only(pgs), ang, &ctm_only_writable(pgs)); pgs->ctm_inverse_valid = false, pgs->char_tm_valid = false; #ifdef DEBUG if (gs_debug_c('x')) dlprintf1("[x]rotate: %f\n", ang), trace_ctm(pgs); #endif return code; } int gs_concat(gs_state * pgs, const gs_matrix * pmat) { gs_matrix cmat; int code = gs_matrix_multiply(pmat, &ctm_only(pgs), &cmat); if (code < 0) return code; update_ctm(pgs, cmat.tx, cmat.ty); set_ctm_only(pgs, cmat); #ifdef DEBUG if (gs_debug_c('x')) dlprintf("[x]concat:\n"), trace_matrix(pmat), trace_ctm(pgs); #endif return code; } /* ------ Coordinate transformation ------ */ #define is_skewed(pmat) (!(is_xxyy(pmat) || is_xyyx(pmat))) int gs_transform(gs_state * pgs, floatp x, floatp y, gs_point * pt) { return gs_point_transform(x, y, &ctm_only(pgs), pt); } int gs_dtransform(gs_state * pgs, floatp dx, floatp dy, gs_point * pt) { return gs_distance_transform(dx, dy, &ctm_only(pgs), pt); } int gs_itransform(gs_state * pgs, floatp x, floatp y, gs_point * pt) { /* If the matrix isn't skewed, we get more accurate results */ /* by using transform_inverse than by using the inverse matrix. */ if (!is_skewed(&pgs->ctm)) { return gs_point_transform_inverse(x, y, &ctm_only(pgs), pt); } else { ensure_inverse_valid(pgs); return gs_point_transform(x, y, &pgs->ctm_inverse, pt); } } int gs_idtransform(gs_state * pgs, floatp dx, floatp dy, gs_point * pt) { /* If the matrix isn't skewed, we get more accurate results */ /* by using transform_inverse than by using the inverse matrix. */ if (!is_skewed(&pgs->ctm)) { return gs_distance_transform_inverse(dx, dy, &ctm_only(pgs), pt); } else { ensure_inverse_valid(pgs); return gs_distance_transform(dx, dy, &pgs->ctm_inverse, pt); } } int gs_imager_idtransform(const gs_imager_state * pis, floatp dx, floatp dy, gs_point * pt) { return gs_distance_transform_inverse(dx, dy, &ctm_only(pis), pt); } /* ------ For internal use only ------ */ /* Set the translation to a fixed value, and translate any existing path. */ /* Used by gschar.c to prepare for a BuildChar or BuildGlyph procedure. */ int gx_translate_to_fixed(register gs_state * pgs, fixed px, fixed py) { double fpx = fixed2float(px); double fdx = fpx - pgs->ctm.tx; double fpy = fixed2float(py); double fdy = fpy - pgs->ctm.ty; fixed dx, dy; int code; if (pgs->ctm.txy_fixed_valid) { dx = float2fixed(fdx); dy = float2fixed(fdy); code = gx_path_translate(pgs->path, dx, dy); if (code < 0) return code; if (pgs->char_tm_valid && pgs->char_tm.txy_fixed_valid) pgs->char_tm.tx_fixed += dx, pgs->char_tm.ty_fixed += dy; } else { if (!gx_path_is_null(pgs->path)) return_error(gs_error_limitcheck); } pgs->ctm.tx = fpx; pgs->ctm.tx_fixed = px; pgs->ctm.ty = fpy; pgs->ctm.ty_fixed = py; pgs->ctm.txy_fixed_valid = true; pgs->ctm_inverse_valid = false; if (pgs->char_tm_valid) { /* Update char_tm now, leaving it valid. */ pgs->char_tm.tx += fdx; pgs->char_tm.ty += fdy; } #ifdef DEBUG if (gs_debug_c('x')) { dlprintf2("[x]translate_to_fixed %g, %g:\n", fixed2float(px), fixed2float(py)); trace_ctm(pgs); dlprintf("[x] char_tm:\n"); trace_matrix_fixed(&pgs->char_tm); } #endif gx_setcurrentpoint(pgs, fixed2float(pgs->ctm.tx_fixed), fixed2float(pgs->ctm.ty_fixed)); pgs->current_point_valid = true; return 0; } /* Scale the CTM and character matrix for oversampling. */ int gx_scale_char_matrix(register gs_state * pgs, int sx, int sy) { #define scale_cxy(s, vx, vy)\ if ( s != 1 )\ { pgs->ctm.vx *= s;\ pgs->ctm.vy *= s;\ pgs->ctm_inverse_valid = false;\ if ( pgs->char_tm_valid )\ { pgs->char_tm.vx *= s;\ pgs->char_tm.vy *= s;\ }\ } scale_cxy(sx, xx, yx); scale_cxy(sy, xy, yy); #undef scale_cxy if_debug2('x', "[x]char scale: %d %d\n", sx, sy); return 0; } /* Compute the coefficients for fast fixed-point distance transformations */ /* from a transformation matrix. */ /* We should cache the coefficients with the ctm.... */ int gx_matrix_to_fixed_coeff(const gs_matrix * pmat, register fixed_coeff * pfc, int max_bits) { gs_matrix ctm; int scale = -10000; int expt, shift; ctm = *pmat; pfc->skewed = 0; if (!is_fzero(ctm.xx)) { discard(frexp(ctm.xx, &scale)); } if (!is_fzero(ctm.xy)) { discard(frexp(ctm.xy, &expt)); if (expt > scale) scale = expt; pfc->skewed = 1; } if (!is_fzero(ctm.yx)) { discard(frexp(ctm.yx, &expt)); if (expt > scale) scale = expt; pfc->skewed = 1; } if (!is_fzero(ctm.yy)) { discard(frexp(ctm.yy, &expt)); if (expt > scale) scale = expt; } /* * There are two multiplications in fixed_coeff_mult: one involves a * factor that may have max_bits significant bits, the other may have * fixed_fraction_bits (_fixed_shift) bits. Ensure that neither one * will overflow. */ if (max_bits < fixed_fraction_bits) max_bits = fixed_fraction_bits; scale = sizeof(long) * 8 - 1 - max_bits - scale; shift = scale - _fixed_shift; if (shift > 0) { pfc->shift = shift; pfc->round = (fixed) 1 << (shift - 1); } else { pfc->shift = 0; pfc->round = 0; scale -= shift; } #define SET_C(c)\ if ( is_fzero(ctm.c) ) pfc->c = 0;\ else pfc->c = (long)ldexp(ctm.c, scale) SET_C(xx); SET_C(xy); SET_C(yx); SET_C(yy); #undef SET_C #ifdef DEBUG if (gs_debug_c('x')) { dlprintf6("[x]ctm: [%6g %6g %6g %6g %6g %6g]\n", ctm.xx, ctm.xy, ctm.yx, ctm.yy, ctm.tx, ctm.ty); dlprintf6(" scale=%d fc: [0x%lx 0x%lx 0x%lx 0x%lx] shift=%d\n", scale, pfc->xx, pfc->xy, pfc->yx, pfc->yy, pfc->shift); } #endif pfc->max_bits = max_bits; return 0; } /* * Handle the case of a large value or a value with a fraction part. * See gxmatrix.h for more details. */ fixed fixed_coeff_mult(fixed value, long coeff, const fixed_coeff *pfc, int maxb) { int shift = pfc->shift; /* * Test if the value is too large for simple long math. */ if ((value + (fixed_1 << (maxb - 1))) & (-fixed_1 << maxb)) { /* The second argument of fixed_mult_quo must be non-negative. */ return (coeff < 0 ? -fixed_mult_quo(value, -coeff, fixed_1 << shift) : fixed_mult_quo(value, coeff, fixed_1 << shift)); } else { /* * The construction above guarantees that the multiplications * won't overflow the capacity of an int. */ return (fixed) arith_rshift(fixed2int_var(value) * coeff + fixed2int(fixed_fraction(value) * coeff) + pfc->round, shift); } } /* ------ Debugging printout ------ */ #ifdef DEBUG /* Print a matrix */ static void trace_matrix_fixed(const gs_matrix_fixed * pmat) { trace_matrix((const gs_matrix *)pmat); if (pmat->txy_fixed_valid) { dprintf2("\t\tt_fixed: [%6g %6g]\n", fixed2float(pmat->tx_fixed), fixed2float(pmat->ty_fixed)); } else { dputs("\t\tt_fixed not valid\n"); } } static void trace_matrix(register const gs_matrix * pmat) { dlprintf6("\t[%6g %6g %6g %6g %6g %6g]\n", pmat->xx, pmat->xy, pmat->yx, pmat->yy, pmat->tx, pmat->ty); } #endif