/* Copyright (C) 2001-2006 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at http://www.artifex.com/ or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information. */ /*$Id$ */ /* Default device bitmap copying implementation */ #include "gx.h" #include "gpcheck.h" #include "gserrors.h" #include "gsbittab.h" #include "gsrect.h" #include "gsropt.h" #include "gxdcolor.h" #include "gxdevice.h" #include "gxdevmem.h" #include "gdevmem.h" #undef mdev #include "gxcpath.h" /* By default, implement tile_rectangle using strip_tile_rectangle. */ int gx_default_tile_rectangle(gx_device * dev, const gx_tile_bitmap * tile, int x, int y, int w, int h, gx_color_index color0, gx_color_index color1, int px, int py) { gx_strip_bitmap tiles; *(gx_tile_bitmap *) & tiles = *tile; tiles.shift = tiles.rep_shift = 0; tiles.num_planes = 1; return (*dev_proc(dev, strip_tile_rectangle)) (dev, &tiles, x, y, w, h, color0, color1, px, py); } /* Implement copy_mono by filling lots of small rectangles. */ /* This is very inefficient, but it works as a default. */ int gx_default_copy_mono(gx_device * dev, const byte * data, int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h, gx_color_index zero, gx_color_index one) { bool invert; gx_color_index color; gx_device_color devc; if (!data) return gs_throw_code(gs_error_unknownerror); fit_copy(dev, data, dx, raster, id, x, y, w, h); if (!data) return gs_throw_code(gs_error_unknownerror); if (one != gx_no_color_index) { invert = false; color = one; if (zero != gx_no_color_index) { int code = (*dev_proc(dev, fill_rectangle)) (dev, x, y, w, h, zero); if (code < 0) return code; } } else { invert = true; color = zero; } if (!data) return gs_throw_code(gs_error_unknownerror); set_nonclient_dev_color(&devc, color); if (!data) return gs_throw_code(gs_error_unknownerror); return gx_dc_default_fill_masked (&devc, data, dx, raster, id, x, y, w, h, dev, rop3_T, invert); } /* Implement copy_color by filling lots of small rectangles. */ /* This is very inefficient, but it works as a default. */ int gx_default_copy_color(gx_device * dev, const byte * data, int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h) { int depth = dev->color_info.depth; byte mask; dev_proc_fill_rectangle((*fill)); const byte *row; int iy; if (depth == 1) return (*dev_proc(dev, copy_mono)) (dev, data, dx, raster, id, x, y, w, h, (gx_color_index) 0, (gx_color_index) 1); fit_copy(dev, data, dx, raster, id, x, y, w, h); fill = dev_proc(dev, fill_rectangle); mask = (byte) ((1 << depth) - 1); for (row = data, iy = 0; iy < h; row += raster, ++iy) { int ix; gx_color_index c0 = gx_no_color_index; const byte *ptr = row + ((dx * depth) >> 3); int i0; for (i0 = ix = 0; ix < w; ++ix) { gx_color_index color; if (depth >= 8) { color = *ptr++; switch (depth) { case 64: color = (color << 8) + *ptr++; case 56: color = (color << 8) + *ptr++; case 48: color = (color << 8) + *ptr++; case 40: color = (color << 8) + *ptr++; case 32: color = (color << 8) + *ptr++; case 24: color = (color << 8) + *ptr++; case 16: color = (color << 8) + *ptr++; } } else { uint dbit = (-(ix + dx + 1) * depth) & 7; color = (*ptr >> dbit) & mask; if (dbit == 0) ptr++; } if (color != c0) { if (ix > i0) { int code = (*fill) (dev, i0 + x, iy + y, ix - i0, 1, c0); if (code < 0) return code; } c0 = color; i0 = ix; } } if (ix > i0) { int code = (*fill) (dev, i0 + x, iy + y, ix - i0, 1, c0); if (code < 0) return code; } } return 0; } int gx_no_copy_alpha(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, gx_color_index color, int depth) { return_error(gs_error_unknownerror); } int gx_default_copy_alpha(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, gx_color_index color, int depth) { /* This might be called with depth = 1.... */ if (depth == 1) return (*dev_proc(dev, copy_mono)) (dev, data, data_x, raster, id, x, y, width, height, gx_no_color_index, color); /* * Simulate alpha by weighted averaging of RGB values. * This is very slow, but functionally correct. */ { const byte *row; gs_memory_t *mem = dev->memory; int bpp = dev->color_info.depth; int ncomps = dev->color_info.num_components; uint in_size = gx_device_raster(dev, false); byte *lin; uint out_size; byte *lout; int code = 0; gx_color_value color_cv[GX_DEVICE_COLOR_MAX_COMPONENTS]; int ry, lx; fit_copy(dev, data, data_x, raster, id, x, y, width, height); row = data; out_size = bitmap_raster(width * bpp); lin = gs_alloc_bytes(mem, in_size, "copy_alpha(lin)"); lout = gs_alloc_bytes(mem, out_size, "copy_alpha(lout)"); if (lin == 0 || lout == 0) { code = gs_note_error(gs_error_VMerror); goto out; } (*dev_proc(dev, decode_color)) (dev, color, color_cv); for (ry = y; ry < y + height; row += raster, ++ry) { byte *line; int sx, rx; DECLARE_LINE_ACCUM_COPY(lout, bpp, x); code = (*dev_proc(dev, get_bits)) (dev, ry, lin, &line); if (code < 0) break; lx = x; for (sx = data_x, rx = x; sx < data_x + width; ++sx, ++rx) { gx_color_index previous = gx_no_color_index; gx_color_index composite; int alpha2, alpha; if (depth == 2) /* map 0 - 3 to 0 - 15 */ alpha = ((row[sx >> 2] >> ((3 - (sx & 3)) << 1)) & 3) * 5; else alpha2 = row[sx >> 1], alpha = (sx & 1 ? alpha2 & 0xf : alpha2 >> 4); blend: if (alpha == 0) { /* Previously the code used to just write out the previous * colour when the alpha was 0, but that's wrong. It leaves * the underlying colour unchanged, but has the effect of * making this pixel appear solid in any device that's * watching what pixels are written (such as the pattern * tile devices). The right thing to do is to write out * the buffered accumulator, and skip over any pixels that * are completely clear. */ LINE_ACCUM_FLUSH_AND_RESTART(dev, lout, bpp, lx, rx, out_size, ry); lx = rx+1; } else { if (alpha == 15) { /* Just write the new color. */ composite = color; } else { gx_color_value cv[GX_DEVICE_COLOR_MAX_COMPONENTS]; int i; if (previous == gx_no_color_index) { /* Extract the old color. */ if (bpp < 8) { const uint bit = rx * bpp; const byte *src = line + (bit >> 3); previous = (*src >> (8 - ((bit & 7) + bpp))) & ((1 << bpp) - 1); } else { const byte *src = line + (rx * (bpp >> 3)); previous = 0; switch (bpp >> 3) { case 8: previous += (gx_color_index) * src++ << sample_bound_shift(previous, 56); case 7: previous += (gx_color_index) * src++ << sample_bound_shift(previous, 48); case 6: previous += (gx_color_index) * src++ << sample_bound_shift(previous, 40); case 5: previous += (gx_color_index) * src++ << sample_bound_shift(previous, 32); case 4: previous += (gx_color_index) * src++ << 24; case 3: previous += (gx_color_index) * src++ << 16; case 2: previous += (gx_color_index) * src++ << 8; case 1: previous += *src++; } } } (*dev_proc(dev, decode_color)) (dev, previous, cv); #if ARCH_INTS_ARE_SHORT # define b_int long #else # define b_int int #endif #define make_shade(old, clr, alpha, amax) \ (old) + (((b_int)(clr) - (b_int)(old)) * (alpha) / (amax)) for (i=0; i> 1); goto blend; } } LINE_ACCUM(composite, bpp); } } LINE_ACCUM_COPY(dev, lout, bpp, lx, rx, out_size, ry); } out:gs_free_object(mem, lout, "copy_alpha(lout)"); gs_free_object(mem, lin, "copy_alpha(lin)"); return code; } } int gx_no_copy_rop(gx_device * dev, const byte * sdata, int sourcex, uint sraster, gx_bitmap_id id, const gx_color_index * scolors, const gx_tile_bitmap * texture, const gx_color_index * tcolors, int x, int y, int width, int height, int phase_x, int phase_y, gs_logical_operation_t lop) { return_error(gs_error_unknownerror); /* not implemented */ } int gx_default_fill_mask(gx_device * orig_dev, const byte * data, int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h, const gx_drawing_color * pdcolor, int depth, gs_logical_operation_t lop, const gx_clip_path * pcpath) { gx_device *dev = orig_dev; gx_device_clip cdev; if (w == 0 || h == 0) return 0; if (pcpath != 0) { gs_fixed_rect rect; int tmp; rect.p.x = int2fixed(x); rect.p.y = int2fixed(y); rect.q.x = int2fixed(x+w); rect.q.y = int2fixed(y+h); dev = gx_make_clip_device_on_stack_if_needed(&cdev, pcpath, dev, &rect); if (dev == NULL) return 0; /* Clip region if possible */ tmp = fixed2int(rect.p.x); if (tmp > x) { dx += tmp-x; x = tmp; } tmp = fixed2int(rect.q.x); if (tmp < x+w) w = tmp-x; tmp = fixed2int(rect.p.y); if (tmp > y) { data += (tmp-y) * raster; y = tmp; } tmp = fixed2int(rect.q.y); if (tmp < y+h) h = tmp-y; } if (depth > 1) { /****** CAN'T DO ROP OR HALFTONE WITH ALPHA ******/ return (*dev_proc(dev, copy_alpha)) (dev, data, dx, raster, id, x, y, w, h, gx_dc_pure_color(pdcolor), depth); } else return pdcolor->type->fill_masked(pdcolor, data, dx, raster, id, x, y, w, h, dev, lop, false); } /* Default implementation of strip_tile_rectangle */ int gx_default_strip_tile_rectangle(gx_device * dev, const gx_strip_bitmap * tiles, int x, int y, int w, int h, gx_color_index color0, gx_color_index color1, int px, int py) { /* Fill the rectangle in chunks. */ int width = tiles->size.x; int height = tiles->size.y; int raster = tiles->raster; int rwidth = tiles->rep_width; int rheight = tiles->rep_height; int shift = tiles->shift; gs_id tile_id = tiles->id; if (rwidth == 0 || rheight == 0) return_error(gs_error_unregistered); /* Must not happen. */ fit_fill_xy(dev, x, y, w, h); #ifdef DEBUG if (gs_debug_c('t')) { int ptx, pty; const byte *ptp = tiles->data; dlprintf4("[t]tile %dx%d raster=%d id=%lu;", tiles->size.x, tiles->size.y, tiles->raster, tiles->id); dlprintf6(" x,y=%d,%d w,h=%d,%d p=%d,%d\n", x, y, w, h, px, py); dlputs(""); for (pty = 0; pty < tiles->size.y; pty++) { dprintf(" "); for (ptx = 0; ptx < tiles->raster; ptx++) dprintf1("%3x", *ptp++); } dputc('\n'); } #endif if (dev_proc(dev, tile_rectangle) != gx_default_tile_rectangle) { if (shift == 0) { /* * Temporarily patch the tile_rectangle procedure in the * device so we don't get into a recursion loop if the * device has a tile_rectangle procedure that conditionally * calls the strip_tile_rectangle procedure. */ dev_proc_tile_rectangle((*tile_proc)) = dev_proc(dev, tile_rectangle); int code; set_dev_proc(dev, tile_rectangle, gx_default_tile_rectangle); code = (*tile_proc) (dev, (const gx_tile_bitmap *)tiles, x, y, w, h, color0, color1, px, py); set_dev_proc(dev, tile_rectangle, tile_proc); return code; } /* We should probably optimize this case too, for the benefit */ /* of window systems, but we don't yet. */ } { /* * Note: we can't do the following computations until after * the fit_fill_xy. */ int xoff = (shift == 0 ? px : px + (y + py) / rheight * tiles->rep_shift); int irx = ((rwidth & (rwidth - 1)) == 0 ? /* power of 2 */ (x + xoff) & (rwidth - 1) : (x + xoff) % rwidth); int ry = ((rheight & (rheight - 1)) == 0 ? /* power of 2 */ (y + py) & (rheight - 1) : (y + py) % rheight); int icw = width - irx; int ch = height - ry; byte *row = tiles->data + ry * raster; dev_proc_copy_mono((*proc_mono)); dev_proc_copy_color((*proc_color)); int code; if (color0 == gx_no_color_index && color1 == gx_no_color_index) proc_color = dev_proc(dev, copy_color), proc_mono = 0; else proc_color = 0, proc_mono = dev_proc(dev, copy_mono); #define real_copy_tile(srcx, tx, ty, tw, th, id)\ code =\ (proc_color != 0 ?\ (*proc_color)(dev, row, srcx, raster, id, tx, ty, tw, th) :\ (*proc_mono)(dev, row, srcx, raster, id, tx, ty, tw, th, color0, color1));\ if (code < 0) return_error(code);\ return_if_interrupt(dev->memory) #ifdef DEBUG #define copy_tile(srcx, tx, ty, tw, th, tid)\ if_debug6('t', " copy id=%lu sx=%d => x=%d y=%d w=%d h=%d\n",\ tid, srcx, tx, ty, tw, th);\ real_copy_tile(srcx, tx, ty, tw, th, tid) #else #define copy_tile(srcx, tx, ty, tw, th, id)\ real_copy_tile(srcx, tx, ty, tw, th, id) #endif if (ch >= h) { /* Shallow operation */ if (icw >= w) { /* Just one (partial) tile to transfer. */ copy_tile(irx, x, y, w, h, (w == width && h == height ? tile_id : gs_no_bitmap_id)); } else { int ex = x + w; int fex = ex - width; int cx = x + icw; ulong id = (h == height ? tile_id : gs_no_bitmap_id); copy_tile(irx, x, y, icw, h, gs_no_bitmap_id); while (cx <= fex) { copy_tile(0, cx, y, width, h, id); cx += width; } if (cx < ex) { copy_tile(0, cx, y, ex - cx, h, gs_no_bitmap_id); } } } else if (icw >= w && shift == 0) { /* Narrow operation, no shift */ int ey = y + h; int fey = ey - height; int cy = y + ch; ulong id = (w == width ? tile_id : gs_no_bitmap_id); copy_tile(irx, x, y, w, ch, (ch == height ? id : gs_no_bitmap_id)); row = tiles->data; do { ch = (cy > fey ? ey - cy : height); copy_tile(irx, x, cy, w, ch, (ch == height ? id : gs_no_bitmap_id)); } while ((cy += ch) < ey); } else { /* Full operation. If shift != 0, some scan lines */ /* may be narrow. We could test shift == 0 in advance */ /* and use a slightly faster loop, but right now */ /* we don't bother. */ int ex = x + w, ey = y + h; int fex = ex - width, fey = ey - height; int cx, cy; for (cy = y;;) { ulong id = (ch == height ? tile_id : gs_no_bitmap_id); if (icw >= w) { copy_tile(irx, x, cy, w, ch, (w == width ? id : gs_no_bitmap_id)); } else { copy_tile(irx, x, cy, icw, ch, gs_no_bitmap_id); cx = x + icw; while (cx <= fex) { copy_tile(0, cx, cy, width, ch, id); cx += width; } if (cx < ex) { copy_tile(0, cx, cy, ex - cx, ch, gs_no_bitmap_id); } } if ((cy += ch) >= ey) break; ch = (cy > fey ? ey - cy : height); if ((irx += shift) >= rwidth) irx -= rwidth; icw = width - irx; row = tiles->data; } } #undef copy_tile #undef real_copy_tile } return 0; } int gx_no_strip_copy_rop(gx_device * dev, const byte * sdata, int sourcex, uint sraster, gx_bitmap_id id, const gx_color_index * scolors, const gx_strip_bitmap * textures, const gx_color_index * tcolors, int x, int y, int width, int height, int phase_x, int phase_y, gs_logical_operation_t lop) { return_error(gs_error_unknownerror); /* not implemented */ } /* ---------------- Unaligned copy operations ---------------- */ /* * Implementing unaligned operations in terms of the standard aligned * operations requires adjusting the bitmap origin and/or the raster to be * aligned. Adjusting the origin is simple; adjusting the raster requires * doing the operation one scan line at a time. */ int gx_copy_mono_unaligned(gx_device * dev, const byte * data, int dx, int raster, gx_bitmap_id id, int x, int y, int w, int h, gx_color_index zero, gx_color_index one) { dev_proc_copy_mono((*copy_mono)) = dev_proc(dev, copy_mono); uint offset = ALIGNMENT_MOD(data, align_bitmap_mod); int step = raster & (align_bitmap_mod - 1); /* Adjust the origin. */ data -= offset; dx += offset << 3; /* Adjust the raster. */ if (!step) { /* No adjustment needed. */ return (*copy_mono) (dev, data, dx, raster, id, x, y, w, h, zero, one); } /* Do the transfer one scan line at a time. */ { const byte *p = data; int d = dx; int code = 0; int i; for (i = 0; i < h && code >= 0; ++i, p += raster - step, d += step << 3 ) code = (*copy_mono) (dev, p, d, raster, gx_no_bitmap_id, x, y + i, w, 1, zero, one); return code; } } int gx_copy_color_unaligned(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height) { dev_proc_copy_color((*copy_color)) = dev_proc(dev, copy_color); int depth = dev->color_info.depth; uint offset = (uint) (data - (const byte *)0) & (align_bitmap_mod - 1); int step = raster & (align_bitmap_mod - 1); /* * Adjust the origin. * We have to do something very special for 24-bit data, * because that is the only depth that doesn't divide * align_bitmap_mod exactly. In particular, we need to find * M*B + R == 0 mod 3, where M is align_bitmap_mod, R is the * offset value just calculated, and B is an integer unknown; * the new value of offset will be M*B + R. */ if (depth == 24) offset += (offset % 3) * (align_bitmap_mod * (3 - (align_bitmap_mod % 3))); data -= offset; data_x += (offset << 3) / depth; /* Adjust the raster. */ if (!step) { /* No adjustment needed. */ return (*copy_color) (dev, data, data_x, raster, id, x, y, width, height); } /* Do the transfer one scan line at a time. */ { const byte *p = data; int d = data_x; int dstep = (step << 3) / depth; int code = 0; int i; for (i = 0; i < height && code >= 0; ++i, p += raster - step, d += dstep ) code = (*copy_color) (dev, p, d, raster, gx_no_bitmap_id, x, y + i, width, 1); return code; } } int gx_copy_alpha_unaligned(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, gx_color_index color, int depth) { dev_proc_copy_alpha((*copy_alpha)) = dev_proc(dev, copy_alpha); uint offset = (uint) (data - (const byte *)0) & (align_bitmap_mod - 1); int step = raster & (align_bitmap_mod - 1); /* Adjust the origin. */ data -= offset; data_x += (offset << 3) / depth; /* Adjust the raster. */ if (!step) { /* No adjustment needed. */ return (*copy_alpha) (dev, data, data_x, raster, id, x, y, width, height, color, depth); } /* Do the transfer one scan line at a time. */ { const byte *p = data; int d = data_x; int dstep = (step << 3) / depth; int code = 0; int i; for (i = 0; i < height && code >= 0; ++i, p += raster - step, d += dstep ) code = (*copy_alpha) (dev, p, d, raster, gx_no_bitmap_id, x, y + i, width, 1, color, depth); return code; } }