/*** This file is part of PulseAudio. Copyright 2004-2006 Lennart Poettering Copyright 2006 Pierre Ossman for Cendio AB PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sink.h" #define MAX_MIX_CHANNELS 32 #define MIX_BUFFER_LENGTH (PA_PAGE_SIZE) #define ABSOLUTE_MIN_LATENCY (500) #define ABSOLUTE_MAX_LATENCY (10*PA_USEC_PER_SEC) #define DEFAULT_FIXED_LATENCY (250*PA_USEC_PER_MSEC) PA_DEFINE_PUBLIC_CLASS(pa_sink, pa_msgobject); struct pa_sink_volume_change { pa_usec_t at; pa_cvolume hw_volume; PA_LLIST_FIELDS(pa_sink_volume_change); }; struct sink_message_set_port { pa_device_port *port; int ret; }; static void sink_free(pa_object *s); static void pa_sink_volume_change_push(pa_sink *s); static void pa_sink_volume_change_flush(pa_sink *s); static void pa_sink_volume_change_rewind(pa_sink *s, size_t nbytes); pa_sink_new_data* pa_sink_new_data_init(pa_sink_new_data *data) { pa_assert(data); pa_zero(*data); data->proplist = pa_proplist_new(); return data; } void pa_sink_new_data_set_name(pa_sink_new_data *data, const char *name) { pa_assert(data); pa_xfree(data->name); data->name = pa_xstrdup(name); } void pa_sink_new_data_set_sample_spec(pa_sink_new_data *data, const pa_sample_spec *spec) { pa_assert(data); if ((data->sample_spec_is_set = !!spec)) data->sample_spec = *spec; } void pa_sink_new_data_set_channel_map(pa_sink_new_data *data, const pa_channel_map *map) { pa_assert(data); if ((data->channel_map_is_set = !!map)) data->channel_map = *map; } void pa_sink_new_data_set_alternate_sample_rate(pa_sink_new_data *data, const uint32_t alternate_sample_rate) { pa_assert(data); data->alternate_sample_rate_is_set = TRUE; data->alternate_sample_rate = alternate_sample_rate; } void pa_sink_new_data_set_volume(pa_sink_new_data *data, const pa_cvolume *volume) { pa_assert(data); if ((data->volume_is_set = !!volume)) data->volume = *volume; } void pa_sink_new_data_set_muted(pa_sink_new_data *data, pa_bool_t mute) { pa_assert(data); data->muted_is_set = TRUE; data->muted = !!mute; } void pa_sink_new_data_set_port(pa_sink_new_data *data, const char *port) { pa_assert(data); pa_xfree(data->active_port); data->active_port = pa_xstrdup(port); } void pa_sink_new_data_done(pa_sink_new_data *data) { pa_assert(data); pa_proplist_free(data->proplist); if (data->ports) pa_device_port_hashmap_free(data->ports); pa_xfree(data->name); pa_xfree(data->active_port); } /* Called from main context */ static void reset_callbacks(pa_sink *s) { pa_assert(s); s->set_state = NULL; s->get_volume = NULL; s->set_volume = NULL; s->write_volume = NULL; s->get_mute = NULL; s->set_mute = NULL; s->request_rewind = NULL; s->update_requested_latency = NULL; s->set_port = NULL; s->get_formats = NULL; s->set_formats = NULL; s->update_rate = NULL; } /* Called from main context */ pa_sink* pa_sink_new( pa_core *core, pa_sink_new_data *data, pa_sink_flags_t flags) { pa_sink *s; const char *name; char st[PA_SAMPLE_SPEC_SNPRINT_MAX], cm[PA_CHANNEL_MAP_SNPRINT_MAX]; pa_source_new_data source_data; const char *dn; char *pt; pa_assert(core); pa_assert(data); pa_assert(data->name); pa_assert_ctl_context(); s = pa_msgobject_new(pa_sink); if (!(name = pa_namereg_register(core, data->name, PA_NAMEREG_SINK, s, data->namereg_fail))) { pa_log_debug("Failed to register name %s.", data->name); pa_xfree(s); return NULL; } pa_sink_new_data_set_name(data, name); if (pa_hook_fire(&core->hooks[PA_CORE_HOOK_SINK_NEW], data) < 0) { pa_xfree(s); pa_namereg_unregister(core, name); return NULL; } /* FIXME, need to free s here on failure */ pa_return_null_if_fail(!data->driver || pa_utf8_valid(data->driver)); pa_return_null_if_fail(data->name && pa_utf8_valid(data->name) && data->name[0]); pa_return_null_if_fail(data->sample_spec_is_set && pa_sample_spec_valid(&data->sample_spec)); if (!data->channel_map_is_set) pa_return_null_if_fail(pa_channel_map_init_auto(&data->channel_map, data->sample_spec.channels, PA_CHANNEL_MAP_DEFAULT)); pa_return_null_if_fail(pa_channel_map_valid(&data->channel_map)); pa_return_null_if_fail(data->channel_map.channels == data->sample_spec.channels); /* FIXME: There should probably be a general function for checking whether * the sink volume is allowed to be set, like there is for sink inputs. */ pa_assert(!data->volume_is_set || !(flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)); if (!data->volume_is_set) { pa_cvolume_reset(&data->volume, data->sample_spec.channels); data->save_volume = FALSE; } pa_return_null_if_fail(pa_cvolume_valid(&data->volume)); pa_return_null_if_fail(pa_cvolume_compatible(&data->volume, &data->sample_spec)); if (!data->muted_is_set) data->muted = FALSE; if (data->card) pa_proplist_update(data->proplist, PA_UPDATE_MERGE, data->card->proplist); pa_device_init_description(data->proplist); pa_device_init_icon(data->proplist, TRUE); pa_device_init_intended_roles(data->proplist); if (pa_hook_fire(&core->hooks[PA_CORE_HOOK_SINK_FIXATE], data) < 0) { pa_xfree(s); pa_namereg_unregister(core, name); return NULL; } s->parent.parent.free = sink_free; s->parent.process_msg = pa_sink_process_msg; s->core = core; s->state = PA_SINK_INIT; s->flags = flags; s->priority = 0; s->suspend_cause = 0; pa_sink_set_mixer_dirty(s, FALSE); s->name = pa_xstrdup(name); s->proplist = pa_proplist_copy(data->proplist); s->driver = pa_xstrdup(pa_path_get_filename(data->driver)); s->module = data->module; s->card = data->card; s->priority = pa_device_init_priority(s->proplist); s->sample_spec = data->sample_spec; s->channel_map = data->channel_map; s->default_sample_rate = s->sample_spec.rate; if (data->alternate_sample_rate_is_set) s->alternate_sample_rate = data->alternate_sample_rate; else s->alternate_sample_rate = s->core->alternate_sample_rate; if (s->sample_spec.rate == s->alternate_sample_rate) { pa_log_warn("Default and alternate sample rates are the same."); s->alternate_sample_rate = 0; } s->inputs = pa_idxset_new(NULL, NULL); s->n_corked = 0; s->input_to_master = NULL; s->reference_volume = s->real_volume = data->volume; pa_cvolume_reset(&s->soft_volume, s->sample_spec.channels); s->base_volume = PA_VOLUME_NORM; s->n_volume_steps = PA_VOLUME_NORM+1; s->muted = data->muted; s->refresh_volume = s->refresh_muted = FALSE; reset_callbacks(s); s->userdata = NULL; s->asyncmsgq = NULL; /* As a minor optimization we just steal the list instead of * copying it here */ s->ports = data->ports; data->ports = NULL; s->active_port = NULL; s->save_port = FALSE; if (data->active_port && s->ports) if ((s->active_port = pa_hashmap_get(s->ports, data->active_port))) s->save_port = data->save_port; if (!s->active_port && s->ports) { void *state; pa_device_port *p; PA_HASHMAP_FOREACH(p, s->ports, state) if (!s->active_port || p->priority > s->active_port->priority) s->active_port = p; } s->save_volume = data->save_volume; s->save_muted = data->save_muted; pa_silence_memchunk_get( &core->silence_cache, core->mempool, &s->silence, &s->sample_spec, 0); s->thread_info.rtpoll = NULL; s->thread_info.inputs = pa_hashmap_new(pa_idxset_trivial_hash_func, pa_idxset_trivial_compare_func); s->thread_info.soft_volume = s->soft_volume; s->thread_info.soft_muted = s->muted; s->thread_info.state = s->state; s->thread_info.rewind_nbytes = 0; s->thread_info.rewind_requested = FALSE; s->thread_info.max_rewind = 0; s->thread_info.max_request = 0; s->thread_info.requested_latency_valid = FALSE; s->thread_info.requested_latency = 0; s->thread_info.min_latency = ABSOLUTE_MIN_LATENCY; s->thread_info.max_latency = ABSOLUTE_MAX_LATENCY; s->thread_info.fixed_latency = flags & PA_SINK_DYNAMIC_LATENCY ? 0 : DEFAULT_FIXED_LATENCY; PA_LLIST_HEAD_INIT(pa_sink_volume_change, s->thread_info.volume_changes); s->thread_info.volume_changes_tail = NULL; pa_sw_cvolume_multiply(&s->thread_info.current_hw_volume, &s->soft_volume, &s->real_volume); s->thread_info.volume_change_safety_margin = core->deferred_volume_safety_margin_usec; s->thread_info.volume_change_extra_delay = core->deferred_volume_extra_delay_usec; /* FIXME: This should probably be moved to pa_sink_put() */ pa_assert_se(pa_idxset_put(core->sinks, s, &s->index) >= 0); if (s->card) pa_assert_se(pa_idxset_put(s->card->sinks, s, NULL) >= 0); pt = pa_proplist_to_string_sep(s->proplist, "\n "); pa_log_info("Created sink %u \"%s\" with sample spec %s and channel map %s\n %s", s->index, s->name, pa_sample_spec_snprint(st, sizeof(st), &s->sample_spec), pa_channel_map_snprint(cm, sizeof(cm), &s->channel_map), pt); pa_xfree(pt); pa_source_new_data_init(&source_data); pa_source_new_data_set_sample_spec(&source_data, &s->sample_spec); pa_source_new_data_set_channel_map(&source_data, &s->channel_map); pa_source_new_data_set_alternate_sample_rate(&source_data, s->alternate_sample_rate); source_data.name = pa_sprintf_malloc("%s.monitor", name); source_data.driver = data->driver; source_data.module = data->module; source_data.card = data->card; dn = pa_proplist_gets(s->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_setf(source_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Monitor of %s", dn ? dn : s->name); pa_proplist_sets(source_data.proplist, PA_PROP_DEVICE_CLASS, "monitor"); s->monitor_source = pa_source_new(core, &source_data, ((flags & PA_SINK_LATENCY) ? PA_SOURCE_LATENCY : 0) | ((flags & PA_SINK_DYNAMIC_LATENCY) ? PA_SOURCE_DYNAMIC_LATENCY : 0)); pa_source_new_data_done(&source_data); if (!s->monitor_source) { pa_sink_unlink(s); pa_sink_unref(s); return NULL; } s->monitor_source->monitor_of = s; pa_source_set_latency_range(s->monitor_source, s->thread_info.min_latency, s->thread_info.max_latency); pa_source_set_fixed_latency(s->monitor_source, s->thread_info.fixed_latency); pa_source_set_max_rewind(s->monitor_source, s->thread_info.max_rewind); return s; } /* Called from main context */ static int sink_set_state(pa_sink *s, pa_sink_state_t state) { int ret; pa_bool_t suspend_change; pa_sink_state_t original_state; pa_assert(s); pa_assert_ctl_context(); if (s->state == state) return 0; original_state = s->state; suspend_change = (original_state == PA_SINK_SUSPENDED && PA_SINK_IS_OPENED(state)) || (PA_SINK_IS_OPENED(original_state) && state == PA_SINK_SUSPENDED); if (s->set_state) if ((ret = s->set_state(s, state)) < 0) return ret; if (s->asyncmsgq) if ((ret = pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_STATE, PA_UINT_TO_PTR(state), 0, NULL)) < 0) { if (s->set_state) s->set_state(s, original_state); return ret; } s->state = state; if (state != PA_SINK_UNLINKED) { /* if we enter UNLINKED state pa_sink_unlink() will fire the appropriate events */ pa_hook_fire(&s->core->hooks[PA_CORE_HOOK_SINK_STATE_CHANGED], s); pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK | PA_SUBSCRIPTION_EVENT_CHANGE, s->index); } if (suspend_change) { pa_sink_input *i; uint32_t idx; /* We're suspending or resuming, tell everyone about it */ PA_IDXSET_FOREACH(i, s->inputs, idx) if (s->state == PA_SINK_SUSPENDED && (i->flags & PA_SINK_INPUT_KILL_ON_SUSPEND)) pa_sink_input_kill(i); else if (i->suspend) i->suspend(i, state == PA_SINK_SUSPENDED); if (s->monitor_source) pa_source_sync_suspend(s->monitor_source); } return 0; } void pa_sink_set_get_volume_callback(pa_sink *s, pa_sink_cb_t cb) { pa_assert(s); s->get_volume = cb; } void pa_sink_set_set_volume_callback(pa_sink *s, pa_sink_cb_t cb) { pa_sink_flags_t flags; pa_assert(s); pa_assert(!s->write_volume || cb); s->set_volume = cb; /* Save the current flags so we can tell if they've changed */ flags = s->flags; if (cb) { /* The sink implementor is responsible for setting decibel volume support */ s->flags |= PA_SINK_HW_VOLUME_CTRL; } else { s->flags &= ~PA_SINK_HW_VOLUME_CTRL; /* See note below in pa_sink_put() about volume sharing and decibel volumes */ pa_sink_enable_decibel_volume(s, !(s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)); } /* If the flags have changed after init, let any clients know via a change event */ if (s->state != PA_SINK_INIT && flags != s->flags) pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); } void pa_sink_set_write_volume_callback(pa_sink *s, pa_sink_cb_t cb) { pa_sink_flags_t flags; pa_assert(s); pa_assert(!cb || s->set_volume); s->write_volume = cb; /* Save the current flags so we can tell if they've changed */ flags = s->flags; if (cb) s->flags |= PA_SINK_DEFERRED_VOLUME; else s->flags &= ~PA_SINK_DEFERRED_VOLUME; /* If the flags have changed after init, let any clients know via a change event */ if (s->state != PA_SINK_INIT && flags != s->flags) pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); } void pa_sink_set_get_mute_callback(pa_sink *s, pa_sink_cb_t cb) { pa_assert(s); s->get_mute = cb; } void pa_sink_set_set_mute_callback(pa_sink *s, pa_sink_cb_t cb) { pa_sink_flags_t flags; pa_assert(s); s->set_mute = cb; /* Save the current flags so we can tell if they've changed */ flags = s->flags; if (cb) s->flags |= PA_SINK_HW_MUTE_CTRL; else s->flags &= ~PA_SINK_HW_MUTE_CTRL; /* If the flags have changed after init, let any clients know via a change event */ if (s->state != PA_SINK_INIT && flags != s->flags) pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); } static void enable_flat_volume(pa_sink *s, pa_bool_t enable) { pa_sink_flags_t flags; pa_assert(s); /* Always follow the overall user preference here */ enable = enable && s->core->flat_volumes; /* Save the current flags so we can tell if they've changed */ flags = s->flags; if (enable) s->flags |= PA_SINK_FLAT_VOLUME; else s->flags &= ~PA_SINK_FLAT_VOLUME; /* If the flags have changed after init, let any clients know via a change event */ if (s->state != PA_SINK_INIT && flags != s->flags) pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); } void pa_sink_enable_decibel_volume(pa_sink *s, pa_bool_t enable) { pa_sink_flags_t flags; pa_assert(s); /* Save the current flags so we can tell if they've changed */ flags = s->flags; if (enable) { s->flags |= PA_SINK_DECIBEL_VOLUME; enable_flat_volume(s, TRUE); } else { s->flags &= ~PA_SINK_DECIBEL_VOLUME; enable_flat_volume(s, FALSE); } /* If the flags have changed after init, let any clients know via a change event */ if (s->state != PA_SINK_INIT && flags != s->flags) pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); } /* Called from main context */ void pa_sink_put(pa_sink* s) { pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(s->state == PA_SINK_INIT); pa_assert(!(s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER) || s->input_to_master); /* The following fields must be initialized properly when calling _put() */ pa_assert(s->asyncmsgq); pa_assert(s->thread_info.min_latency <= s->thread_info.max_latency); /* Generally, flags should be initialized via pa_sink_new(). As a * special exception we allow some volume related flags to be set * between _new() and _put() by the callback setter functions above. * * Thus we implement a couple safeguards here which ensure the above * setters were used (or at least the implementor made manual changes * in a compatible way). * * Note: All of these flags set here can change over the life time * of the sink. */ pa_assert(!(s->flags & PA_SINK_HW_VOLUME_CTRL) || s->set_volume); pa_assert(!(s->flags & PA_SINK_DEFERRED_VOLUME) || s->write_volume); pa_assert(!(s->flags & PA_SINK_HW_MUTE_CTRL) || s->set_mute); /* XXX: Currently decibel volume is disabled for all sinks that use volume * sharing. When the master sink supports decibel volume, it would be good * to have the flag also in the filter sink, but currently we don't do that * so that the flags of the filter sink never change when it's moved from * a master sink to another. One solution for this problem would be to * remove user-visible volume altogether from filter sinks when volume * sharing is used, but the current approach was easier to implement... */ /* We always support decibel volumes in software, otherwise we leave it to * the sink implementor to set this flag as needed. * * Note: This flag can also change over the life time of the sink. */ if (!(s->flags & PA_SINK_HW_VOLUME_CTRL) && !(s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) pa_sink_enable_decibel_volume(s, TRUE); /* If the sink implementor support DB volumes by itself, we should always * try and enable flat volumes too */ if ((s->flags & PA_SINK_DECIBEL_VOLUME)) enable_flat_volume(s, TRUE); if (s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER) { pa_sink *root_sink = pa_sink_get_master(s); pa_assert(root_sink); s->reference_volume = root_sink->reference_volume; pa_cvolume_remap(&s->reference_volume, &root_sink->channel_map, &s->channel_map); s->real_volume = root_sink->real_volume; pa_cvolume_remap(&s->real_volume, &root_sink->channel_map, &s->channel_map); } else /* We assume that if the sink implementor changed the default * volume he did so in real_volume, because that is the usual * place where he is supposed to place his changes. */ s->reference_volume = s->real_volume; s->thread_info.soft_volume = s->soft_volume; s->thread_info.soft_muted = s->muted; pa_sw_cvolume_multiply(&s->thread_info.current_hw_volume, &s->soft_volume, &s->real_volume); pa_assert((s->flags & PA_SINK_HW_VOLUME_CTRL) || (s->base_volume == PA_VOLUME_NORM && ((s->flags & PA_SINK_DECIBEL_VOLUME || (s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER))))); pa_assert(!(s->flags & PA_SINK_DECIBEL_VOLUME) || s->n_volume_steps == PA_VOLUME_NORM+1); pa_assert(!(s->flags & PA_SINK_DYNAMIC_LATENCY) == (s->thread_info.fixed_latency != 0)); pa_assert(!(s->flags & PA_SINK_LATENCY) == !(s->monitor_source->flags & PA_SOURCE_LATENCY)); pa_assert(!(s->flags & PA_SINK_DYNAMIC_LATENCY) == !(s->monitor_source->flags & PA_SOURCE_DYNAMIC_LATENCY)); pa_assert(s->monitor_source->thread_info.fixed_latency == s->thread_info.fixed_latency); pa_assert(s->monitor_source->thread_info.min_latency == s->thread_info.min_latency); pa_assert(s->monitor_source->thread_info.max_latency == s->thread_info.max_latency); pa_assert_se(sink_set_state(s, PA_SINK_IDLE) == 0); pa_source_put(s->monitor_source); pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK | PA_SUBSCRIPTION_EVENT_NEW, s->index); pa_hook_fire(&s->core->hooks[PA_CORE_HOOK_SINK_PUT], s); } /* Called from main context */ void pa_sink_unlink(pa_sink* s) { pa_bool_t linked; pa_sink_input *i, *j = NULL; pa_assert(s); pa_assert_ctl_context(); /* Please note that pa_sink_unlink() does more than simply * reversing pa_sink_put(). It also undoes the registrations * already done in pa_sink_new()! */ /* All operations here shall be idempotent, i.e. pa_sink_unlink() * may be called multiple times on the same sink without bad * effects. */ linked = PA_SINK_IS_LINKED(s->state); if (linked) pa_hook_fire(&s->core->hooks[PA_CORE_HOOK_SINK_UNLINK], s); if (s->state != PA_SINK_UNLINKED) pa_namereg_unregister(s->core, s->name); pa_idxset_remove_by_data(s->core->sinks, s, NULL); if (s->card) pa_idxset_remove_by_data(s->card->sinks, s, NULL); while ((i = pa_idxset_first(s->inputs, NULL))) { pa_assert(i != j); pa_sink_input_kill(i); j = i; } if (linked) sink_set_state(s, PA_SINK_UNLINKED); else s->state = PA_SINK_UNLINKED; reset_callbacks(s); if (s->monitor_source) pa_source_unlink(s->monitor_source); if (linked) { pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK | PA_SUBSCRIPTION_EVENT_REMOVE, s->index); pa_hook_fire(&s->core->hooks[PA_CORE_HOOK_SINK_UNLINK_POST], s); } } /* Called from main context */ static void sink_free(pa_object *o) { pa_sink *s = PA_SINK(o); pa_sink_input *i; pa_assert(s); pa_assert_ctl_context(); pa_assert(pa_sink_refcnt(s) == 0); if (PA_SINK_IS_LINKED(s->state)) pa_sink_unlink(s); pa_log_info("Freeing sink %u \"%s\"", s->index, s->name); if (s->monitor_source) { pa_source_unref(s->monitor_source); s->monitor_source = NULL; } pa_idxset_free(s->inputs, NULL, NULL); while ((i = pa_hashmap_steal_first(s->thread_info.inputs))) pa_sink_input_unref(i); pa_hashmap_free(s->thread_info.inputs, NULL, NULL); if (s->silence.memblock) pa_memblock_unref(s->silence.memblock); pa_xfree(s->name); pa_xfree(s->driver); if (s->proplist) pa_proplist_free(s->proplist); if (s->ports) pa_device_port_hashmap_free(s->ports); pa_xfree(s); } /* Called from main context, and not while the IO thread is active, please */ void pa_sink_set_asyncmsgq(pa_sink *s, pa_asyncmsgq *q) { pa_sink_assert_ref(s); pa_assert_ctl_context(); s->asyncmsgq = q; if (s->monitor_source) pa_source_set_asyncmsgq(s->monitor_source, q); } /* Called from main context, and not while the IO thread is active, please */ void pa_sink_update_flags(pa_sink *s, pa_sink_flags_t mask, pa_sink_flags_t value) { pa_sink_assert_ref(s); pa_assert_ctl_context(); if (mask == 0) return; /* For now, allow only a minimal set of flags to be changed. */ pa_assert((mask & ~(PA_SINK_DYNAMIC_LATENCY|PA_SINK_LATENCY)) == 0); s->flags = (s->flags & ~mask) | (value & mask); pa_source_update_flags(s->monitor_source, ((mask & PA_SINK_LATENCY) ? PA_SOURCE_LATENCY : 0) | ((mask & PA_SINK_DYNAMIC_LATENCY) ? PA_SOURCE_DYNAMIC_LATENCY : 0), ((value & PA_SINK_LATENCY) ? PA_SOURCE_LATENCY : 0) | ((value & PA_SINK_DYNAMIC_LATENCY) ? PA_SINK_DYNAMIC_LATENCY : 0)); } /* Called from IO context, or before _put() from main context */ void pa_sink_set_rtpoll(pa_sink *s, pa_rtpoll *p) { pa_sink_assert_ref(s); pa_sink_assert_io_context(s); s->thread_info.rtpoll = p; if (s->monitor_source) pa_source_set_rtpoll(s->monitor_source, p); } /* Called from main context */ int pa_sink_update_status(pa_sink*s) { pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); if (s->state == PA_SINK_SUSPENDED) return 0; return sink_set_state(s, pa_sink_used_by(s) ? PA_SINK_RUNNING : PA_SINK_IDLE); } /* Called from any context - must be threadsafe */ void pa_sink_set_mixer_dirty(pa_sink *s, pa_bool_t is_dirty) { pa_atomic_store(&s->mixer_dirty, is_dirty ? 1 : 0); } /* Called from main context */ int pa_sink_suspend(pa_sink *s, pa_bool_t suspend, pa_suspend_cause_t cause) { pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert(cause != 0); if (suspend) { s->suspend_cause |= cause; s->monitor_source->suspend_cause |= cause; } else { s->suspend_cause &= ~cause; s->monitor_source->suspend_cause &= ~cause; } if (!(s->suspend_cause & PA_SUSPEND_SESSION) && (pa_atomic_load(&s->mixer_dirty) != 0)) { /* This might look racy but isn't: If somebody sets mixer_dirty exactly here, it'll be handled just fine. */ pa_sink_set_mixer_dirty(s, FALSE); pa_log_debug("Mixer is now accessible. Updating alsa mixer settings."); if (s->active_port && s->set_port) { if (s->flags & PA_SINK_DEFERRED_VOLUME) { struct sink_message_set_port msg = { .port = s->active_port, .ret = 0 }; pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_PORT, &msg, 0, NULL) == 0); } else s->set_port(s, s->active_port); } else { if (s->set_mute) s->set_mute(s); if (s->set_volume) s->set_volume(s); } } if ((pa_sink_get_state(s) == PA_SINK_SUSPENDED) == !!s->suspend_cause) return 0; pa_log_debug("Suspend cause of sink %s is 0x%04x, %s", s->name, s->suspend_cause, s->suspend_cause ? "suspending" : "resuming"); if (s->suspend_cause) return sink_set_state(s, PA_SINK_SUSPENDED); else return sink_set_state(s, pa_sink_used_by(s) ? PA_SINK_RUNNING : PA_SINK_IDLE); } /* Called from main context */ pa_queue *pa_sink_move_all_start(pa_sink *s, pa_queue *q) { pa_sink_input *i, *n; uint32_t idx; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); if (!q) q = pa_queue_new(); for (i = PA_SINK_INPUT(pa_idxset_first(s->inputs, &idx)); i; i = n) { n = PA_SINK_INPUT(pa_idxset_next(s->inputs, &idx)); pa_sink_input_ref(i); if (pa_sink_input_start_move(i) >= 0) pa_queue_push(q, i); else pa_sink_input_unref(i); } return q; } /* Called from main context */ void pa_sink_move_all_finish(pa_sink *s, pa_queue *q, pa_bool_t save) { pa_sink_input *i; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert(q); while ((i = PA_SINK_INPUT(pa_queue_pop(q)))) { if (pa_sink_input_finish_move(i, s, save) < 0) pa_sink_input_fail_move(i); pa_sink_input_unref(i); } pa_queue_free(q, NULL); } /* Called from main context */ void pa_sink_move_all_fail(pa_queue *q) { pa_sink_input *i; pa_assert_ctl_context(); pa_assert(q); while ((i = PA_SINK_INPUT(pa_queue_pop(q)))) { pa_sink_input_fail_move(i); pa_sink_input_unref(i); } pa_queue_free(q, NULL); } /* Called from IO thread context */ void pa_sink_process_rewind(pa_sink *s, size_t nbytes) { pa_sink_input *i; void *state = NULL; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(PA_SINK_IS_LINKED(s->thread_info.state)); /* If nobody requested this and this is actually no real rewind * then we can short cut this. Please note that this means that * not all rewind requests triggered upstream will always be * translated in actual requests! */ if (!s->thread_info.rewind_requested && nbytes <= 0) return; s->thread_info.rewind_nbytes = 0; s->thread_info.rewind_requested = FALSE; if (s->thread_info.state == PA_SINK_SUSPENDED) return; if (nbytes > 0) { pa_log_debug("Processing rewind..."); if (s->flags & PA_SINK_DEFERRED_VOLUME) pa_sink_volume_change_rewind(s, nbytes); } PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) { pa_sink_input_assert_ref(i); pa_sink_input_process_rewind(i, nbytes); } if (nbytes > 0) { if (s->monitor_source && PA_SOURCE_IS_LINKED(s->monitor_source->thread_info.state)) pa_source_process_rewind(s->monitor_source, nbytes); } } /* Called from IO thread context */ static unsigned fill_mix_info(pa_sink *s, size_t *length, pa_mix_info *info, unsigned maxinfo) { pa_sink_input *i; unsigned n = 0; void *state = NULL; size_t mixlength = *length; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(info); while ((i = pa_hashmap_iterate(s->thread_info.inputs, &state, NULL)) && maxinfo > 0) { pa_sink_input_assert_ref(i); pa_sink_input_peek(i, *length, &info->chunk, &info->volume); if (mixlength == 0 || info->chunk.length < mixlength) mixlength = info->chunk.length; if (pa_memblock_is_silence(info->chunk.memblock)) { pa_memblock_unref(info->chunk.memblock); continue; } info->userdata = pa_sink_input_ref(i); pa_assert(info->chunk.memblock); pa_assert(info->chunk.length > 0); info++; n++; maxinfo--; } if (mixlength > 0) *length = mixlength; return n; } /* Called from IO thread context */ static void inputs_drop(pa_sink *s, pa_mix_info *info, unsigned n, pa_memchunk *result) { pa_sink_input *i; void *state; unsigned p = 0; unsigned n_unreffed = 0; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(result); pa_assert(result->memblock); pa_assert(result->length > 0); /* We optimize for the case where the order of the inputs has not changed */ PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) { unsigned j; pa_mix_info* m = NULL; pa_sink_input_assert_ref(i); /* Let's try to find the matching entry info the pa_mix_info array */ for (j = 0; j < n; j ++) { if (info[p].userdata == i) { m = info + p; break; } p++; if (p >= n) p = 0; } /* Drop read data */ pa_sink_input_drop(i, result->length); if (s->monitor_source && PA_SOURCE_IS_LINKED(s->monitor_source->thread_info.state)) { if (pa_hashmap_size(i->thread_info.direct_outputs) > 0) { void *ostate = NULL; pa_source_output *o; pa_memchunk c; if (m && m->chunk.memblock) { c = m->chunk; pa_memblock_ref(c.memblock); pa_assert(result->length <= c.length); c.length = result->length; pa_memchunk_make_writable(&c, 0); pa_volume_memchunk(&c, &s->sample_spec, &m->volume); } else { c = s->silence; pa_memblock_ref(c.memblock); pa_assert(result->length <= c.length); c.length = result->length; } while ((o = pa_hashmap_iterate(i->thread_info.direct_outputs, &ostate, NULL))) { pa_source_output_assert_ref(o); pa_assert(o->direct_on_input == i); pa_source_post_direct(s->monitor_source, o, &c); } pa_memblock_unref(c.memblock); } } if (m) { if (m->chunk.memblock) pa_memblock_unref(m->chunk.memblock); pa_memchunk_reset(&m->chunk); pa_sink_input_unref(m->userdata); m->userdata = NULL; n_unreffed += 1; } } /* Now drop references to entries that are included in the * pa_mix_info array but don't exist anymore */ if (n_unreffed < n) { for (; n > 0; info++, n--) { if (info->userdata) pa_sink_input_unref(info->userdata); if (info->chunk.memblock) pa_memblock_unref(info->chunk.memblock); } } if (s->monitor_source && PA_SOURCE_IS_LINKED(s->monitor_source->thread_info.state)) pa_source_post(s->monitor_source, result); } /* Called from IO thread context */ void pa_sink_render(pa_sink*s, size_t length, pa_memchunk *result) { pa_mix_info info[MAX_MIX_CHANNELS]; unsigned n; size_t block_size_max; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(PA_SINK_IS_LINKED(s->thread_info.state)); pa_assert(pa_frame_aligned(length, &s->sample_spec)); pa_assert(result); pa_assert(!s->thread_info.rewind_requested); pa_assert(s->thread_info.rewind_nbytes == 0); if (s->thread_info.state == PA_SINK_SUSPENDED) { result->memblock = pa_memblock_ref(s->silence.memblock); result->index = s->silence.index; result->length = PA_MIN(s->silence.length, length); return; } pa_sink_ref(s); if (length <= 0) length = pa_frame_align(MIX_BUFFER_LENGTH, &s->sample_spec); block_size_max = pa_mempool_block_size_max(s->core->mempool); if (length > block_size_max) length = pa_frame_align(block_size_max, &s->sample_spec); pa_assert(length > 0); n = fill_mix_info(s, &length, info, MAX_MIX_CHANNELS); if (n == 0) { *result = s->silence; pa_memblock_ref(result->memblock); if (result->length > length) result->length = length; } else if (n == 1) { pa_cvolume volume; *result = info[0].chunk; pa_memblock_ref(result->memblock); if (result->length > length) result->length = length; pa_sw_cvolume_multiply(&volume, &s->thread_info.soft_volume, &info[0].volume); if (s->thread_info.soft_muted || pa_cvolume_is_muted(&volume)) { pa_memblock_unref(result->memblock); pa_silence_memchunk_get(&s->core->silence_cache, s->core->mempool, result, &s->sample_spec, result->length); } else if (!pa_cvolume_is_norm(&volume)) { pa_memchunk_make_writable(result, 0); pa_volume_memchunk(result, &s->sample_spec, &volume); } } else { void *ptr; result->memblock = pa_memblock_new(s->core->mempool, length); ptr = pa_memblock_acquire(result->memblock); result->length = pa_mix(info, n, ptr, length, &s->sample_spec, &s->thread_info.soft_volume, s->thread_info.soft_muted); pa_memblock_release(result->memblock); result->index = 0; } inputs_drop(s, info, n, result); pa_sink_unref(s); } /* Called from IO thread context */ void pa_sink_render_into(pa_sink*s, pa_memchunk *target) { pa_mix_info info[MAX_MIX_CHANNELS]; unsigned n; size_t length, block_size_max; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(PA_SINK_IS_LINKED(s->thread_info.state)); pa_assert(target); pa_assert(target->memblock); pa_assert(target->length > 0); pa_assert(pa_frame_aligned(target->length, &s->sample_spec)); pa_assert(!s->thread_info.rewind_requested); pa_assert(s->thread_info.rewind_nbytes == 0); if (s->thread_info.state == PA_SINK_SUSPENDED) { pa_silence_memchunk(target, &s->sample_spec); return; } pa_sink_ref(s); length = target->length; block_size_max = pa_mempool_block_size_max(s->core->mempool); if (length > block_size_max) length = pa_frame_align(block_size_max, &s->sample_spec); pa_assert(length > 0); n = fill_mix_info(s, &length, info, MAX_MIX_CHANNELS); if (n == 0) { if (target->length > length) target->length = length; pa_silence_memchunk(target, &s->sample_spec); } else if (n == 1) { pa_cvolume volume; if (target->length > length) target->length = length; pa_sw_cvolume_multiply(&volume, &s->thread_info.soft_volume, &info[0].volume); if (s->thread_info.soft_muted || pa_cvolume_is_muted(&volume)) pa_silence_memchunk(target, &s->sample_spec); else { pa_memchunk vchunk; vchunk = info[0].chunk; pa_memblock_ref(vchunk.memblock); if (vchunk.length > length) vchunk.length = length; if (!pa_cvolume_is_norm(&volume)) { pa_memchunk_make_writable(&vchunk, 0); pa_volume_memchunk(&vchunk, &s->sample_spec, &volume); } pa_memchunk_memcpy(target, &vchunk); pa_memblock_unref(vchunk.memblock); } } else { void *ptr; ptr = pa_memblock_acquire(target->memblock); target->length = pa_mix(info, n, (uint8_t*) ptr + target->index, length, &s->sample_spec, &s->thread_info.soft_volume, s->thread_info.soft_muted); pa_memblock_release(target->memblock); } inputs_drop(s, info, n, target); pa_sink_unref(s); } /* Called from IO thread context */ void pa_sink_render_into_full(pa_sink *s, pa_memchunk *target) { pa_memchunk chunk; size_t l, d; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(PA_SINK_IS_LINKED(s->thread_info.state)); pa_assert(target); pa_assert(target->memblock); pa_assert(target->length > 0); pa_assert(pa_frame_aligned(target->length, &s->sample_spec)); pa_assert(!s->thread_info.rewind_requested); pa_assert(s->thread_info.rewind_nbytes == 0); if (s->thread_info.state == PA_SINK_SUSPENDED) { pa_silence_memchunk(target, &s->sample_spec); return; } pa_sink_ref(s); l = target->length; d = 0; while (l > 0) { chunk = *target; chunk.index += d; chunk.length -= d; pa_sink_render_into(s, &chunk); d += chunk.length; l -= chunk.length; } pa_sink_unref(s); } /* Called from IO thread context */ void pa_sink_render_full(pa_sink *s, size_t length, pa_memchunk *result) { pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(PA_SINK_IS_LINKED(s->thread_info.state)); pa_assert(length > 0); pa_assert(pa_frame_aligned(length, &s->sample_spec)); pa_assert(result); pa_assert(!s->thread_info.rewind_requested); pa_assert(s->thread_info.rewind_nbytes == 0); pa_sink_ref(s); pa_sink_render(s, length, result); if (result->length < length) { pa_memchunk chunk; pa_memchunk_make_writable(result, length); chunk.memblock = result->memblock; chunk.index = result->index + result->length; chunk.length = length - result->length; pa_sink_render_into_full(s, &chunk); result->length = length; } pa_sink_unref(s); } /* Called from main thread */ pa_bool_t pa_sink_update_rate(pa_sink *s, uint32_t rate, pa_bool_t passthrough) { if (s->update_rate) { uint32_t desired_rate = rate; uint32_t default_rate = s->default_sample_rate; uint32_t alternate_rate = s->alternate_sample_rate; uint32_t idx; pa_sink_input *i; pa_bool_t use_alternate = FALSE; if (PA_UNLIKELY(default_rate == alternate_rate)) { pa_log_warn("Default and alternate sample rates are the same."); return FALSE; } if (PA_SINK_IS_RUNNING(s->state)) { pa_log_info("Cannot update rate, SINK_IS_RUNNING, will keep using %u Hz", s->sample_spec.rate); return FALSE; } if (s->monitor_source) { if (PA_SOURCE_IS_RUNNING(s->monitor_source->state) == TRUE) { pa_log_info("Cannot update rate, monitor source is RUNNING"); return FALSE; } } if (PA_UNLIKELY (desired_rate < 8000 || desired_rate > PA_RATE_MAX)) return FALSE; if (!passthrough) { pa_assert(default_rate % 4000 || default_rate % 11025); pa_assert(alternate_rate % 4000 || alternate_rate % 11025); if (default_rate % 4000) { /* default is a 11025 multiple */ if ((alternate_rate % 4000 == 0) && (desired_rate % 4000 == 0)) use_alternate=TRUE; } else { /* default is 4000 multiple */ if ((alternate_rate % 11025 == 0) && (desired_rate % 11025 == 0)) use_alternate=TRUE; } if (use_alternate) desired_rate = alternate_rate; else desired_rate = default_rate; } else { desired_rate = rate; /* use stream sampling rate, discard default/alternate settings */ } if (!passthrough && pa_sink_used_by(s) > 0) return FALSE; pa_sink_suspend(s, TRUE, PA_SUSPEND_IDLE); /* needed before rate update, will be resumed automatically */ if (s->update_rate(s, desired_rate) == TRUE) { /* update monitor source as well */ if (s->monitor_source && !passthrough) pa_source_update_rate(s->monitor_source, desired_rate, FALSE); pa_log_info("Changed sampling rate successfully"); PA_IDXSET_FOREACH(i, s->inputs, idx) { if (i->state == PA_SINK_INPUT_CORKED) pa_sink_input_update_rate(i); } return TRUE; } } return FALSE; } /* Called from main thread */ pa_usec_t pa_sink_get_latency(pa_sink *s) { pa_usec_t usec = 0; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); /* The returned value is supposed to be in the time domain of the sound card! */ if (s->state == PA_SINK_SUSPENDED) return 0; if (!(s->flags & PA_SINK_LATENCY)) return 0; pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) == 0); return usec; } /* Called from IO thread */ pa_usec_t pa_sink_get_latency_within_thread(pa_sink *s) { pa_usec_t usec = 0; pa_msgobject *o; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(PA_SINK_IS_LINKED(s->thread_info.state)); /* The returned value is supposed to be in the time domain of the sound card! */ if (s->thread_info.state == PA_SINK_SUSPENDED) return 0; if (!(s->flags & PA_SINK_LATENCY)) return 0; o = PA_MSGOBJECT(s); /* FIXME: We probably should make this a proper vtable callback instead of going through process_msg() */ if (o->process_msg(o, PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0) return -1; return usec; } /* Called from the main thread (and also from the IO thread while the main * thread is waiting). * * When a sink uses volume sharing, it never has the PA_SINK_FLAT_VOLUME flag * set. Instead, flat volume mode is detected by checking whether the root sink * has the flag set. */ pa_bool_t pa_sink_flat_volume_enabled(pa_sink *s) { pa_sink_assert_ref(s); s = pa_sink_get_master(s); if (PA_LIKELY(s)) return (s->flags & PA_SINK_FLAT_VOLUME); else return FALSE; } /* Called from the main thread (and also from the IO thread while the main * thread is waiting). */ pa_sink *pa_sink_get_master(pa_sink *s) { pa_sink_assert_ref(s); while (s && (s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) { if (PA_UNLIKELY(!s->input_to_master)) return NULL; s = s->input_to_master->sink; } return s; } /* Called from main context */ pa_bool_t pa_sink_is_passthrough(pa_sink *s) { pa_sink_input *alt_i; uint32_t idx; pa_sink_assert_ref(s); /* one and only one PASSTHROUGH input can possibly be connected */ if (pa_idxset_size(s->inputs) == 1) { alt_i = pa_idxset_first(s->inputs, &idx); if (pa_sink_input_is_passthrough(alt_i)) return TRUE; } return FALSE; } /* Called from main context */ void pa_sink_enter_passthrough(pa_sink *s) { pa_cvolume volume; /* disable the monitor in passthrough mode */ if (s->monitor_source) pa_source_suspend(s->monitor_source, TRUE, PA_SUSPEND_PASSTHROUGH); /* set the volume to NORM */ s->saved_volume = *pa_sink_get_volume(s, TRUE); s->saved_save_volume = s->save_volume; pa_cvolume_set(&volume, s->sample_spec.channels, PA_MIN(s->base_volume, PA_VOLUME_NORM)); pa_sink_set_volume(s, &volume, TRUE, FALSE); } /* Called from main context */ void pa_sink_leave_passthrough(pa_sink *s) { /* Unsuspend monitor */ if (s->monitor_source) pa_source_suspend(s->monitor_source, FALSE, PA_SUSPEND_PASSTHROUGH); /* Restore sink volume to what it was before we entered passthrough mode */ pa_sink_set_volume(s, &s->saved_volume, TRUE, s->saved_save_volume); pa_cvolume_init(&s->saved_volume); s->saved_save_volume = FALSE; } /* Called from main context. */ static void compute_reference_ratio(pa_sink_input *i) { unsigned c = 0; pa_cvolume remapped; pa_assert(i); pa_assert(pa_sink_flat_volume_enabled(i->sink)); /* * Calculates the reference ratio from the sink's reference * volume. This basically calculates: * * i->reference_ratio = i->volume / i->sink->reference_volume */ remapped = i->sink->reference_volume; pa_cvolume_remap(&remapped, &i->sink->channel_map, &i->channel_map); i->reference_ratio.channels = i->sample_spec.channels; for (c = 0; c < i->sample_spec.channels; c++) { /* We don't update when the sink volume is 0 anyway */ if (remapped.values[c] <= PA_VOLUME_MUTED) continue; /* Don't update the reference ratio unless necessary */ if (pa_sw_volume_multiply( i->reference_ratio.values[c], remapped.values[c]) == i->volume.values[c]) continue; i->reference_ratio.values[c] = pa_sw_volume_divide( i->volume.values[c], remapped.values[c]); } } /* Called from main context. Only called for the root sink in volume sharing * cases, except for internal recursive calls. */ static void compute_reference_ratios(pa_sink *s) { uint32_t idx; pa_sink_input *i; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert(pa_sink_flat_volume_enabled(s)); PA_IDXSET_FOREACH(i, s->inputs, idx) { compute_reference_ratio(i); if (i->origin_sink && (i->origin_sink->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) compute_reference_ratios(i->origin_sink); } } /* Called from main context. Only called for the root sink in volume sharing * cases, except for internal recursive calls. */ static void compute_real_ratios(pa_sink *s) { pa_sink_input *i; uint32_t idx; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert(pa_sink_flat_volume_enabled(s)); PA_IDXSET_FOREACH(i, s->inputs, idx) { unsigned c; pa_cvolume remapped; if (i->origin_sink && (i->origin_sink->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) { /* The origin sink uses volume sharing, so this input's real ratio * is handled as a special case - the real ratio must be 0 dB, and * as a result i->soft_volume must equal i->volume_factor. */ pa_cvolume_reset(&i->real_ratio, i->real_ratio.channels); i->soft_volume = i->volume_factor; compute_real_ratios(i->origin_sink); continue; } /* * This basically calculates: * * i->real_ratio := i->volume / s->real_volume * i->soft_volume := i->real_ratio * i->volume_factor */ remapped = s->real_volume; pa_cvolume_remap(&remapped, &s->channel_map, &i->channel_map); i->real_ratio.channels = i->sample_spec.channels; i->soft_volume.channels = i->sample_spec.channels; for (c = 0; c < i->sample_spec.channels; c++) { if (remapped.values[c] <= PA_VOLUME_MUTED) { /* We leave i->real_ratio untouched */ i->soft_volume.values[c] = PA_VOLUME_MUTED; continue; } /* Don't lose accuracy unless necessary */ if (pa_sw_volume_multiply( i->real_ratio.values[c], remapped.values[c]) != i->volume.values[c]) i->real_ratio.values[c] = pa_sw_volume_divide( i->volume.values[c], remapped.values[c]); i->soft_volume.values[c] = pa_sw_volume_multiply( i->real_ratio.values[c], i->volume_factor.values[c]); } /* We don't copy the soft_volume to the thread_info data * here. That must be done by the caller */ } } static pa_cvolume *cvolume_remap_minimal_impact( pa_cvolume *v, const pa_cvolume *template, const pa_channel_map *from, const pa_channel_map *to) { pa_cvolume t; pa_assert(v); pa_assert(template); pa_assert(from); pa_assert(to); pa_assert(pa_cvolume_compatible_with_channel_map(v, from)); pa_assert(pa_cvolume_compatible_with_channel_map(template, to)); /* Much like pa_cvolume_remap(), but tries to minimize impact when * mapping from sink input to sink volumes: * * If template is a possible remapping from v it is used instead * of remapping anew. * * If the channel maps don't match we set an all-channel volume on * the sink to ensure that changing a volume on one stream has no * effect that cannot be compensated for in another stream that * does not have the same channel map as the sink. */ if (pa_channel_map_equal(from, to)) return v; t = *template; if (pa_cvolume_equal(pa_cvolume_remap(&t, to, from), v)) { *v = *template; return v; } pa_cvolume_set(v, to->channels, pa_cvolume_max(v)); return v; } /* Called from main thread. Only called for the root sink in volume sharing * cases, except for internal recursive calls. */ static void get_maximum_input_volume(pa_sink *s, pa_cvolume *max_volume, const pa_channel_map *channel_map) { pa_sink_input *i; uint32_t idx; pa_sink_assert_ref(s); pa_assert(max_volume); pa_assert(channel_map); pa_assert(pa_sink_flat_volume_enabled(s)); PA_IDXSET_FOREACH(i, s->inputs, idx) { pa_cvolume remapped; if (i->origin_sink && (i->origin_sink->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) { get_maximum_input_volume(i->origin_sink, max_volume, channel_map); /* Ignore this input. The origin sink uses volume sharing, so this * input's volume will be set to be equal to the root sink's real * volume. Obviously this input's current volume must not then * affect what the root sink's real volume will be. */ continue; } remapped = i->volume; cvolume_remap_minimal_impact(&remapped, max_volume, &i->channel_map, channel_map); pa_cvolume_merge(max_volume, max_volume, &remapped); } } /* Called from main thread. Only called for the root sink in volume sharing * cases, except for internal recursive calls. */ static pa_bool_t has_inputs(pa_sink *s) { pa_sink_input *i; uint32_t idx; pa_sink_assert_ref(s); PA_IDXSET_FOREACH(i, s->inputs, idx) { if (!i->origin_sink || !(i->origin_sink->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER) || has_inputs(i->origin_sink)) return TRUE; } return FALSE; } /* Called from main thread. Only called for the root sink in volume sharing * cases, except for internal recursive calls. */ static void update_real_volume(pa_sink *s, const pa_cvolume *new_volume, pa_channel_map *channel_map) { pa_sink_input *i; uint32_t idx; pa_sink_assert_ref(s); pa_assert(new_volume); pa_assert(channel_map); s->real_volume = *new_volume; pa_cvolume_remap(&s->real_volume, channel_map, &s->channel_map); PA_IDXSET_FOREACH(i, s->inputs, idx) { if (i->origin_sink && (i->origin_sink->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) { if (pa_sink_flat_volume_enabled(s)) { pa_cvolume old_volume = i->volume; /* Follow the root sink's real volume. */ i->volume = *new_volume; pa_cvolume_remap(&i->volume, channel_map, &i->channel_map); compute_reference_ratio(i); /* The volume changed, let's tell people so */ if (!pa_cvolume_equal(&old_volume, &i->volume)) { if (i->volume_changed) i->volume_changed(i); pa_subscription_post(i->core, PA_SUBSCRIPTION_EVENT_SINK_INPUT|PA_SUBSCRIPTION_EVENT_CHANGE, i->index); } } update_real_volume(i->origin_sink, new_volume, channel_map); } } } /* Called from main thread. Only called for the root sink in shared volume * cases. */ static void compute_real_volume(pa_sink *s) { pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert(pa_sink_flat_volume_enabled(s)); pa_assert(!(s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)); /* This determines the maximum volume of all streams and sets * s->real_volume accordingly. */ if (!has_inputs(s)) { /* In the special case that we have no sink inputs we leave the * volume unmodified. */ update_real_volume(s, &s->reference_volume, &s->channel_map); return; } pa_cvolume_mute(&s->real_volume, s->channel_map.channels); /* First let's determine the new maximum volume of all inputs * connected to this sink */ get_maximum_input_volume(s, &s->real_volume, &s->channel_map); update_real_volume(s, &s->real_volume, &s->channel_map); /* Then, let's update the real ratios/soft volumes of all inputs * connected to this sink */ compute_real_ratios(s); } /* Called from main thread. Only called for the root sink in shared volume * cases, except for internal recursive calls. */ static void propagate_reference_volume(pa_sink *s) { pa_sink_input *i; uint32_t idx; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert(pa_sink_flat_volume_enabled(s)); /* This is called whenever the sink volume changes that is not * caused by a sink input volume change. We need to fix up the * sink input volumes accordingly */ PA_IDXSET_FOREACH(i, s->inputs, idx) { pa_cvolume old_volume; if (i->origin_sink && (i->origin_sink->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) { propagate_reference_volume(i->origin_sink); /* Since the origin sink uses volume sharing, this input's volume * needs to be updated to match the root sink's real volume, but * that will be done later in update_shared_real_volume(). */ continue; } old_volume = i->volume; /* This basically calculates: * * i->volume := s->reference_volume * i->reference_ratio */ i->volume = s->reference_volume; pa_cvolume_remap(&i->volume, &s->channel_map, &i->channel_map); pa_sw_cvolume_multiply(&i->volume, &i->volume, &i->reference_ratio); /* The volume changed, let's tell people so */ if (!pa_cvolume_equal(&old_volume, &i->volume)) { if (i->volume_changed) i->volume_changed(i); pa_subscription_post(i->core, PA_SUBSCRIPTION_EVENT_SINK_INPUT|PA_SUBSCRIPTION_EVENT_CHANGE, i->index); } } } /* Called from main thread. Only called for the root sink in volume sharing * cases, except for internal recursive calls. The return value indicates * whether any reference volume actually changed. */ static pa_bool_t update_reference_volume(pa_sink *s, const pa_cvolume *v, const pa_channel_map *channel_map, pa_bool_t save) { pa_cvolume volume; pa_bool_t reference_volume_changed; pa_sink_input *i; uint32_t idx; pa_sink_assert_ref(s); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert(v); pa_assert(channel_map); pa_assert(pa_cvolume_valid(v)); volume = *v; pa_cvolume_remap(&volume, channel_map, &s->channel_map); reference_volume_changed = !pa_cvolume_equal(&volume, &s->reference_volume); s->reference_volume = volume; s->save_volume = (!reference_volume_changed && s->save_volume) || save; if (reference_volume_changed) pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); else if (!(s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) /* If the root sink's volume doesn't change, then there can't be any * changes in the other sinks in the sink tree either. * * It's probably theoretically possible that even if the root sink's * volume changes slightly, some filter sink doesn't change its volume * due to rounding errors. If that happens, we still want to propagate * the changed root sink volume to the sinks connected to the * intermediate sink that didn't change its volume. This theoretical * possibility is the reason why we have that !(s->flags & * PA_SINK_SHARE_VOLUME_WITH_MASTER) condition. Probably nobody would * notice even if we returned here FALSE always if * reference_volume_changed is FALSE. */ return FALSE; PA_IDXSET_FOREACH(i, s->inputs, idx) { if (i->origin_sink && (i->origin_sink->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) update_reference_volume(i->origin_sink, v, channel_map, FALSE); } return TRUE; } /* Called from main thread */ void pa_sink_set_volume( pa_sink *s, const pa_cvolume *volume, pa_bool_t send_msg, pa_bool_t save) { pa_cvolume new_reference_volume; pa_sink *root_sink; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert(!volume || pa_cvolume_valid(volume)); pa_assert(volume || pa_sink_flat_volume_enabled(s)); pa_assert(!volume || volume->channels == 1 || pa_cvolume_compatible(volume, &s->sample_spec)); /* make sure we don't change the volume when a PASSTHROUGH input is connected ... * ... *except* if we're being invoked to reset the volume to ensure 0 dB gain */ if (pa_sink_is_passthrough(s) && (!volume || !pa_cvolume_is_norm(volume))) { pa_log_warn("Cannot change volume, Sink is connected to PASSTHROUGH input"); return; } /* In case of volume sharing, the volume is set for the root sink first, * from which it's then propagated to the sharing sinks. */ root_sink = pa_sink_get_master(s); if (PA_UNLIKELY(!root_sink)) return; /* As a special exception we accept mono volumes on all sinks -- * even on those with more complex channel maps */ if (volume) { if (pa_cvolume_compatible(volume, &s->sample_spec)) new_reference_volume = *volume; else { new_reference_volume = s->reference_volume; pa_cvolume_scale(&new_reference_volume, pa_cvolume_max(volume)); } pa_cvolume_remap(&new_reference_volume, &s->channel_map, &root_sink->channel_map); if (update_reference_volume(root_sink, &new_reference_volume, &root_sink->channel_map, save)) { if (pa_sink_flat_volume_enabled(root_sink)) { /* OK, propagate this volume change back to the inputs */ propagate_reference_volume(root_sink); /* And now recalculate the real volume */ compute_real_volume(root_sink); } else update_real_volume(root_sink, &root_sink->reference_volume, &root_sink->channel_map); } } else { /* If volume is NULL we synchronize the sink's real and * reference volumes with the stream volumes. */ pa_assert(pa_sink_flat_volume_enabled(root_sink)); /* Ok, let's determine the new real volume */ compute_real_volume(root_sink); /* Let's 'push' the reference volume if necessary */ pa_cvolume_merge(&new_reference_volume, &s->reference_volume, &root_sink->real_volume); /* If the sink and it's root don't have the same number of channels, we need to remap */ if (s != root_sink && !pa_channel_map_equal(&s->channel_map, &root_sink->channel_map)) pa_cvolume_remap(&new_reference_volume, &s->channel_map, &root_sink->channel_map); update_reference_volume(root_sink, &new_reference_volume, &root_sink->channel_map, save); /* Now that the reference volume is updated, we can update the streams' * reference ratios. */ compute_reference_ratios(root_sink); } if (root_sink->set_volume) { /* If we have a function set_volume(), then we do not apply a * soft volume by default. However, set_volume() is free to * apply one to root_sink->soft_volume */ pa_cvolume_reset(&root_sink->soft_volume, root_sink->sample_spec.channels); if (!(root_sink->flags & PA_SINK_DEFERRED_VOLUME)) root_sink->set_volume(root_sink); } else /* If we have no function set_volume(), then the soft volume * becomes the real volume */ root_sink->soft_volume = root_sink->real_volume; /* This tells the sink that soft volume and/or real volume changed */ if (send_msg) pa_assert_se(pa_asyncmsgq_send(root_sink->asyncmsgq, PA_MSGOBJECT(root_sink), PA_SINK_MESSAGE_SET_SHARED_VOLUME, NULL, 0, NULL) == 0); } /* Called from the io thread if sync volume is used, otherwise from the main thread. * Only to be called by sink implementor */ void pa_sink_set_soft_volume(pa_sink *s, const pa_cvolume *volume) { pa_sink_assert_ref(s); pa_assert(!(s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)); if (s->flags & PA_SINK_DEFERRED_VOLUME) pa_sink_assert_io_context(s); else pa_assert_ctl_context(); if (!volume) pa_cvolume_reset(&s->soft_volume, s->sample_spec.channels); else s->soft_volume = *volume; if (PA_SINK_IS_LINKED(s->state) && !(s->flags & PA_SINK_DEFERRED_VOLUME)) pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_VOLUME, NULL, 0, NULL) == 0); else s->thread_info.soft_volume = s->soft_volume; } /* Called from the main thread. Only called for the root sink in volume sharing * cases, except for internal recursive calls. */ static void propagate_real_volume(pa_sink *s, const pa_cvolume *old_real_volume) { pa_sink_input *i; uint32_t idx; pa_sink_assert_ref(s); pa_assert(old_real_volume); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); /* This is called when the hardware's real volume changes due to * some external event. We copy the real volume into our * reference volume and then rebuild the stream volumes based on * i->real_ratio which should stay fixed. */ if (!(s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) { if (pa_cvolume_equal(old_real_volume, &s->real_volume)) return; /* 1. Make the real volume the reference volume */ update_reference_volume(s, &s->real_volume, &s->channel_map, TRUE); } if (pa_sink_flat_volume_enabled(s)) { PA_IDXSET_FOREACH(i, s->inputs, idx) { pa_cvolume old_volume = i->volume; /* 2. Since the sink's reference and real volumes are equal * now our ratios should be too. */ i->reference_ratio = i->real_ratio; /* 3. Recalculate the new stream reference volume based on the * reference ratio and the sink's reference volume. * * This basically calculates: * * i->volume = s->reference_volume * i->reference_ratio * * This is identical to propagate_reference_volume() */ i->volume = s->reference_volume; pa_cvolume_remap(&i->volume, &s->channel_map, &i->channel_map); pa_sw_cvolume_multiply(&i->volume, &i->volume, &i->reference_ratio); /* Notify if something changed */ if (!pa_cvolume_equal(&old_volume, &i->volume)) { if (i->volume_changed) i->volume_changed(i); pa_subscription_post(i->core, PA_SUBSCRIPTION_EVENT_SINK_INPUT|PA_SUBSCRIPTION_EVENT_CHANGE, i->index); } if (i->origin_sink && (i->origin_sink->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) propagate_real_volume(i->origin_sink, old_real_volume); } } /* Something got changed in the hardware. It probably makes sense * to save changed hw settings given that hw volume changes not * triggered by PA are almost certainly done by the user. */ if (!(s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) s->save_volume = TRUE; } /* Called from io thread */ void pa_sink_update_volume_and_mute(pa_sink *s) { pa_assert(s); pa_sink_assert_io_context(s); pa_asyncmsgq_post(pa_thread_mq_get()->outq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_UPDATE_VOLUME_AND_MUTE, NULL, 0, NULL, NULL); } /* Called from main thread */ const pa_cvolume *pa_sink_get_volume(pa_sink *s, pa_bool_t force_refresh) { pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); if (s->refresh_volume || force_refresh) { struct pa_cvolume old_real_volume; pa_assert(!(s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)); old_real_volume = s->real_volume; if (!(s->flags & PA_SINK_DEFERRED_VOLUME) && s->get_volume) s->get_volume(s); pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_VOLUME, NULL, 0, NULL) == 0); update_real_volume(s, &s->real_volume, &s->channel_map); propagate_real_volume(s, &old_real_volume); } return &s->reference_volume; } /* Called from main thread. In volume sharing cases, only the root sink may * call this. */ void pa_sink_volume_changed(pa_sink *s, const pa_cvolume *new_real_volume) { pa_cvolume old_real_volume; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert(!(s->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)); /* The sink implementor may call this if the volume changed to make sure everyone is notified */ old_real_volume = s->real_volume; update_real_volume(s, new_real_volume, &s->channel_map); propagate_real_volume(s, &old_real_volume); } /* Called from main thread */ void pa_sink_set_mute(pa_sink *s, pa_bool_t mute, pa_bool_t save) { pa_bool_t old_muted; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); old_muted = s->muted; s->muted = mute; s->save_muted = (old_muted == s->muted && s->save_muted) || save; if (!(s->flags & PA_SINK_DEFERRED_VOLUME) && s->set_mute) s->set_mute(s); pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_MUTE, NULL, 0, NULL) == 0); if (old_muted != s->muted) pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); } /* Called from main thread */ pa_bool_t pa_sink_get_mute(pa_sink *s, pa_bool_t force_refresh) { pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); if (s->refresh_muted || force_refresh) { pa_bool_t old_muted = s->muted; if (!(s->flags & PA_SINK_DEFERRED_VOLUME) && s->get_mute) s->get_mute(s); pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_MUTE, NULL, 0, NULL) == 0); if (old_muted != s->muted) { s->save_muted = TRUE; pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); /* Make sure the soft mute status stays in sync */ pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_MUTE, NULL, 0, NULL) == 0); } } return s->muted; } /* Called from main thread */ void pa_sink_mute_changed(pa_sink *s, pa_bool_t new_muted) { pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); /* The sink implementor may call this if the volume changed to make sure everyone is notified */ if (s->muted == new_muted) return; s->muted = new_muted; s->save_muted = TRUE; pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); } /* Called from main thread */ pa_bool_t pa_sink_update_proplist(pa_sink *s, pa_update_mode_t mode, pa_proplist *p) { pa_sink_assert_ref(s); pa_assert_ctl_context(); if (p) pa_proplist_update(s->proplist, mode, p); if (PA_SINK_IS_LINKED(s->state)) { pa_hook_fire(&s->core->hooks[PA_CORE_HOOK_SINK_PROPLIST_CHANGED], s); pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); } return TRUE; } /* Called from main thread */ /* FIXME -- this should be dropped and be merged into pa_sink_update_proplist() */ void pa_sink_set_description(pa_sink *s, const char *description) { const char *old; pa_sink_assert_ref(s); pa_assert_ctl_context(); if (!description && !pa_proplist_contains(s->proplist, PA_PROP_DEVICE_DESCRIPTION)) return; old = pa_proplist_gets(s->proplist, PA_PROP_DEVICE_DESCRIPTION); if (old && description && pa_streq(old, description)) return; if (description) pa_proplist_sets(s->proplist, PA_PROP_DEVICE_DESCRIPTION, description); else pa_proplist_unset(s->proplist, PA_PROP_DEVICE_DESCRIPTION); if (s->monitor_source) { char *n; n = pa_sprintf_malloc("Monitor Source of %s", description ? description : s->name); pa_source_set_description(s->monitor_source, n); pa_xfree(n); } if (PA_SINK_IS_LINKED(s->state)) { pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); pa_hook_fire(&s->core->hooks[PA_CORE_HOOK_SINK_PROPLIST_CHANGED], s); } } /* Called from main thread */ unsigned pa_sink_linked_by(pa_sink *s) { unsigned ret; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); ret = pa_idxset_size(s->inputs); /* We add in the number of streams connected to us here. Please * note the asymmetry to pa_sink_used_by()! */ if (s->monitor_source) ret += pa_source_linked_by(s->monitor_source); return ret; } /* Called from main thread */ unsigned pa_sink_used_by(pa_sink *s) { unsigned ret; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); ret = pa_idxset_size(s->inputs); pa_assert(ret >= s->n_corked); /* Streams connected to our monitor source do not matter for * pa_sink_used_by()!.*/ return ret - s->n_corked; } /* Called from main thread */ unsigned pa_sink_check_suspend(pa_sink *s) { unsigned ret; pa_sink_input *i; uint32_t idx; pa_sink_assert_ref(s); pa_assert_ctl_context(); if (!PA_SINK_IS_LINKED(s->state)) return 0; ret = 0; PA_IDXSET_FOREACH(i, s->inputs, idx) { pa_sink_input_state_t st; st = pa_sink_input_get_state(i); /* We do not assert here. It is perfectly valid for a sink input to * be in the INIT state (i.e. created, marked done but not yet put) * and we should not care if it's unlinked as it won't contribute * towards our busy status. */ if (!PA_SINK_INPUT_IS_LINKED(st)) continue; if (st == PA_SINK_INPUT_CORKED) continue; if (i->flags & PA_SINK_INPUT_DONT_INHIBIT_AUTO_SUSPEND) continue; ret ++; } if (s->monitor_source) ret += pa_source_check_suspend(s->monitor_source); return ret; } /* Called from the IO thread */ static void sync_input_volumes_within_thread(pa_sink *s) { pa_sink_input *i; void *state = NULL; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) { if (pa_cvolume_equal(&i->thread_info.soft_volume, &i->soft_volume)) continue; i->thread_info.soft_volume = i->soft_volume; pa_sink_input_request_rewind(i, 0, TRUE, FALSE, FALSE); } } /* Called from the IO thread. Only called for the root sink in volume sharing * cases, except for internal recursive calls. */ static void set_shared_volume_within_thread(pa_sink *s) { pa_sink_input *i = NULL; void *state = NULL; pa_sink_assert_ref(s); PA_MSGOBJECT(s)->process_msg(PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_VOLUME_SYNCED, NULL, 0, NULL); PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) { if (i->origin_sink && (i->origin_sink->flags & PA_SINK_SHARE_VOLUME_WITH_MASTER)) set_shared_volume_within_thread(i->origin_sink); } } /* Called from IO thread, except when it is not */ int pa_sink_process_msg(pa_msgobject *o, int code, void *userdata, int64_t offset, pa_memchunk *chunk) { pa_sink *s = PA_SINK(o); pa_sink_assert_ref(s); switch ((pa_sink_message_t) code) { case PA_SINK_MESSAGE_ADD_INPUT: { pa_sink_input *i = PA_SINK_INPUT(userdata); /* If you change anything here, make sure to change the * sink input handling a few lines down at * PA_SINK_MESSAGE_FINISH_MOVE, too. */ pa_hashmap_put(s->thread_info.inputs, PA_UINT32_TO_PTR(i->index), pa_sink_input_ref(i)); /* Since the caller sleeps in pa_sink_input_put(), we can * safely access data outside of thread_info even though * it is mutable */ if ((i->thread_info.sync_prev = i->sync_prev)) { pa_assert(i->sink == i->thread_info.sync_prev->sink); pa_assert(i->sync_prev->sync_next == i); i->thread_info.sync_prev->thread_info.sync_next = i; } if ((i->thread_info.sync_next = i->sync_next)) { pa_assert(i->sink == i->thread_info.sync_next->sink); pa_assert(i->sync_next->sync_prev == i); i->thread_info.sync_next->thread_info.sync_prev = i; } pa_assert(!i->thread_info.attached); i->thread_info.attached = TRUE; if (i->attach) i->attach(i); pa_sink_input_set_state_within_thread(i, i->state); /* The requested latency of the sink input needs to be * fixed up and then configured on the sink */ if (i->thread_info.requested_sink_latency != (pa_usec_t) -1) pa_sink_input_set_requested_latency_within_thread(i, i->thread_info.requested_sink_latency); pa_sink_input_update_max_rewind(i, s->thread_info.max_rewind); pa_sink_input_update_max_request(i, s->thread_info.max_request); /* We don't rewind here automatically. This is left to the * sink input implementor because some sink inputs need a * slow start, i.e. need some time to buffer client * samples before beginning streaming. */ /* FIXME: Actually rewinding should be requested before * updating the sink requested latency, because updating * the requested latency updates also max_rewind of the * sink. Now consider this: a sink has a 10 s buffer and * nobody has requested anything less. Then a new stream * appears while the sink buffer is full. The new stream * requests e.g. 100 ms latency. That request is forwarded * to the sink, so now max_rewind is 100 ms. When a rewind * is requested, the sink will only rewind 100 ms, and the * new stream will have to wait about 10 seconds before it * becomes audible. */ /* In flat volume mode we need to update the volume as * well */ return o->process_msg(o, PA_SINK_MESSAGE_SET_SHARED_VOLUME, NULL, 0, NULL); } case PA_SINK_MESSAGE_REMOVE_INPUT: { pa_sink_input *i = PA_SINK_INPUT(userdata); /* If you change anything here, make sure to change the * sink input handling a few lines down at * PA_SINK_MESSAGE_START_MOVE, too. */ if (i->detach) i->detach(i); pa_sink_input_set_state_within_thread(i, i->state); pa_assert(i->thread_info.attached); i->thread_info.attached = FALSE; /* Since the caller sleeps in pa_sink_input_unlink(), * we can safely access data outside of thread_info even * though it is mutable */ pa_assert(!i->sync_prev); pa_assert(!i->sync_next); if (i->thread_info.sync_prev) { i->thread_info.sync_prev->thread_info.sync_next = i->thread_info.sync_prev->sync_next; i->thread_info.sync_prev = NULL; } if (i->thread_info.sync_next) { i->thread_info.sync_next->thread_info.sync_prev = i->thread_info.sync_next->sync_prev; i->thread_info.sync_next = NULL; } if (pa_hashmap_remove(s->thread_info.inputs, PA_UINT32_TO_PTR(i->index))) pa_sink_input_unref(i); pa_sink_invalidate_requested_latency(s, TRUE); pa_sink_request_rewind(s, (size_t) -1); /* In flat volume mode we need to update the volume as * well */ return o->process_msg(o, PA_SINK_MESSAGE_SET_SHARED_VOLUME, NULL, 0, NULL); } case PA_SINK_MESSAGE_START_MOVE: { pa_sink_input *i = PA_SINK_INPUT(userdata); /* We don't support moving synchronized streams. */ pa_assert(!i->sync_prev); pa_assert(!i->sync_next); pa_assert(!i->thread_info.sync_next); pa_assert(!i->thread_info.sync_prev); if (i->thread_info.state != PA_SINK_INPUT_CORKED) { pa_usec_t usec = 0; size_t sink_nbytes, total_nbytes; /* The old sink probably has some audio from this * stream in its buffer. We want to "take it back" as * much as possible and play it to the new sink. We * don't know at this point how much the old sink can * rewind. We have to pick something, and that * something is the full latency of the old sink here. * So we rewind the stream buffer by the sink latency * amount, which may be more than what we should * rewind. This can result in a chunk of audio being * played both to the old sink and the new sink. * * FIXME: Fix this code so that we don't have to make * guesses about how much the sink will actually be * able to rewind. If someone comes up with a solution * for this, something to note is that the part of the * latency that the old sink couldn't rewind should * ideally be compensated after the stream has moved * to the new sink by adding silence. The new sink * most likely can't start playing the moved stream * immediately, and that gap should be removed from * the "compensation silence" (at least at the time of * writing this, the move finish code will actually * already take care of dropping the new sink's * unrewindable latency, so taking into account the * unrewindable latency of the old sink is the only * problem). * * The render_memblockq contents are discarded, * because when the sink changes, the format of the * audio stored in the render_memblockq may change * too, making the stored audio invalid. FIXME: * However, the read and write indices are moved back * the same amount, so if they are not the same now, * they won't be the same after the rewind either. If * the write index of the render_memblockq is ahead of * the read index, then the render_memblockq will feed * the new sink some silence first, which it shouldn't * do. The write index should be flushed to be the * same as the read index. */ /* Get the latency of the sink */ usec = pa_sink_get_latency_within_thread(s); sink_nbytes = pa_usec_to_bytes(usec, &s->sample_spec); total_nbytes = sink_nbytes + pa_memblockq_get_length(i->thread_info.render_memblockq); if (total_nbytes > 0) { i->thread_info.rewrite_nbytes = i->thread_info.resampler ? pa_resampler_request(i->thread_info.resampler, total_nbytes) : total_nbytes; i->thread_info.rewrite_flush = TRUE; pa_sink_input_process_rewind(i, sink_nbytes); } } if (i->detach) i->detach(i); pa_assert(i->thread_info.attached); i->thread_info.attached = FALSE; /* Let's remove the sink input ...*/ if (pa_hashmap_remove(s->thread_info.inputs, PA_UINT32_TO_PTR(i->index))) pa_sink_input_unref(i); pa_sink_invalidate_requested_latency(s, TRUE); pa_log_debug("Requesting rewind due to started move"); pa_sink_request_rewind(s, (size_t) -1); /* In flat volume mode we need to update the volume as * well */ return o->process_msg(o, PA_SINK_MESSAGE_SET_SHARED_VOLUME, NULL, 0, NULL); } case PA_SINK_MESSAGE_FINISH_MOVE: { pa_sink_input *i = PA_SINK_INPUT(userdata); /* We don't support moving synchronized streams. */ pa_assert(!i->sync_prev); pa_assert(!i->sync_next); pa_assert(!i->thread_info.sync_next); pa_assert(!i->thread_info.sync_prev); pa_hashmap_put(s->thread_info.inputs, PA_UINT32_TO_PTR(i->index), pa_sink_input_ref(i)); pa_assert(!i->thread_info.attached); i->thread_info.attached = TRUE; if (i->attach) i->attach(i); if (i->thread_info.state != PA_SINK_INPUT_CORKED) { pa_usec_t usec = 0; size_t nbytes; /* In the ideal case the new sink would start playing * the stream immediately. That requires the sink to * be able to rewind all of its latency, which usually * isn't possible, so there will probably be some gap * before the moved stream becomes audible. We then * have two possibilities: 1) start playing the stream * from where it is now, or 2) drop the unrewindable * latency of the sink from the stream. With option 1 * we won't lose any audio but the stream will have a * pause. With option 2 we may lose some audio but the * stream time will be somewhat in sync with the wall * clock. Lennart seems to have chosen option 2 (one * of the reasons might have been that option 1 is * actually much harder to implement), so we drop the * latency of the new sink from the moved stream and * hope that the sink will undo most of that in the * rewind. */ /* Get the latency of the sink */ usec = pa_sink_get_latency_within_thread(s); nbytes = pa_usec_to_bytes(usec, &s->sample_spec); if (nbytes > 0) pa_sink_input_drop(i, nbytes); pa_log_debug("Requesting rewind due to finished move"); pa_sink_request_rewind(s, nbytes); } /* Updating the requested sink latency has to be done * after the sink rewind request, not before, because * otherwise the sink may limit the rewind amount * needlessly. */ if (i->thread_info.requested_sink_latency != (pa_usec_t) -1) pa_sink_input_set_requested_latency_within_thread(i, i->thread_info.requested_sink_latency); pa_sink_input_update_max_rewind(i, s->thread_info.max_rewind); pa_sink_input_update_max_request(i, s->thread_info.max_request); return o->process_msg(o, PA_SINK_MESSAGE_SET_SHARED_VOLUME, NULL, 0, NULL); } case PA_SINK_MESSAGE_SET_SHARED_VOLUME: { pa_sink *root_sink = pa_sink_get_master(s); if (PA_LIKELY(root_sink)) set_shared_volume_within_thread(root_sink); return 0; } case PA_SINK_MESSAGE_SET_VOLUME_SYNCED: if (s->flags & PA_SINK_DEFERRED_VOLUME) { s->set_volume(s); pa_sink_volume_change_push(s); } /* Fall through ... */ case PA_SINK_MESSAGE_SET_VOLUME: if (!pa_cvolume_equal(&s->thread_info.soft_volume, &s->soft_volume)) { s->thread_info.soft_volume = s->soft_volume; pa_sink_request_rewind(s, (size_t) -1); } /* Fall through ... */ case PA_SINK_MESSAGE_SYNC_VOLUMES: sync_input_volumes_within_thread(s); return 0; case PA_SINK_MESSAGE_GET_VOLUME: if ((s->flags & PA_SINK_DEFERRED_VOLUME) && s->get_volume) { s->get_volume(s); pa_sink_volume_change_flush(s); pa_sw_cvolume_divide(&s->thread_info.current_hw_volume, &s->real_volume, &s->soft_volume); } /* In case sink implementor reset SW volume. */ if (!pa_cvolume_equal(&s->thread_info.soft_volume, &s->soft_volume)) { s->thread_info.soft_volume = s->soft_volume; pa_sink_request_rewind(s, (size_t) -1); } return 0; case PA_SINK_MESSAGE_SET_MUTE: if (s->thread_info.soft_muted != s->muted) { s->thread_info.soft_muted = s->muted; pa_sink_request_rewind(s, (size_t) -1); } if (s->flags & PA_SINK_DEFERRED_VOLUME && s->set_mute) s->set_mute(s); return 0; case PA_SINK_MESSAGE_GET_MUTE: if (s->flags & PA_SINK_DEFERRED_VOLUME && s->get_mute) s->get_mute(s); return 0; case PA_SINK_MESSAGE_SET_STATE: { pa_bool_t suspend_change = (s->thread_info.state == PA_SINK_SUSPENDED && PA_SINK_IS_OPENED(PA_PTR_TO_UINT(userdata))) || (PA_SINK_IS_OPENED(s->thread_info.state) && PA_PTR_TO_UINT(userdata) == PA_SINK_SUSPENDED); s->thread_info.state = PA_PTR_TO_UINT(userdata); if (s->thread_info.state == PA_SINK_SUSPENDED) { s->thread_info.rewind_nbytes = 0; s->thread_info.rewind_requested = FALSE; } if (suspend_change) { pa_sink_input *i; void *state = NULL; while ((i = pa_hashmap_iterate(s->thread_info.inputs, &state, NULL))) if (i->suspend_within_thread) i->suspend_within_thread(i, s->thread_info.state == PA_SINK_SUSPENDED); } return 0; } case PA_SINK_MESSAGE_DETACH: /* Detach all streams */ pa_sink_detach_within_thread(s); return 0; case PA_SINK_MESSAGE_ATTACH: /* Reattach all streams */ pa_sink_attach_within_thread(s); return 0; case PA_SINK_MESSAGE_GET_REQUESTED_LATENCY: { pa_usec_t *usec = userdata; *usec = pa_sink_get_requested_latency_within_thread(s); /* Yes, that's right, the IO thread will see -1 when no * explicit requested latency is configured, the main * thread will see max_latency */ if (*usec == (pa_usec_t) -1) *usec = s->thread_info.max_latency; return 0; } case PA_SINK_MESSAGE_SET_LATENCY_RANGE: { pa_usec_t *r = userdata; pa_sink_set_latency_range_within_thread(s, r[0], r[1]); return 0; } case PA_SINK_MESSAGE_GET_LATENCY_RANGE: { pa_usec_t *r = userdata; r[0] = s->thread_info.min_latency; r[1] = s->thread_info.max_latency; return 0; } case PA_SINK_MESSAGE_GET_FIXED_LATENCY: *((pa_usec_t*) userdata) = s->thread_info.fixed_latency; return 0; case PA_SINK_MESSAGE_SET_FIXED_LATENCY: pa_sink_set_fixed_latency_within_thread(s, (pa_usec_t) offset); return 0; case PA_SINK_MESSAGE_GET_MAX_REWIND: *((size_t*) userdata) = s->thread_info.max_rewind; return 0; case PA_SINK_MESSAGE_GET_MAX_REQUEST: *((size_t*) userdata) = s->thread_info.max_request; return 0; case PA_SINK_MESSAGE_SET_MAX_REWIND: pa_sink_set_max_rewind_within_thread(s, (size_t) offset); return 0; case PA_SINK_MESSAGE_SET_MAX_REQUEST: pa_sink_set_max_request_within_thread(s, (size_t) offset); return 0; case PA_SINK_MESSAGE_SET_PORT: pa_assert(userdata); if (s->set_port) { struct sink_message_set_port *msg_data = userdata; msg_data->ret = s->set_port(s, msg_data->port); } return 0; case PA_SINK_MESSAGE_UPDATE_VOLUME_AND_MUTE: /* This message is sent from IO-thread and handled in main thread. */ pa_assert_ctl_context(); /* Make sure we're not messing with main thread when no longer linked */ if (!PA_SINK_IS_LINKED(s->state)) return 0; pa_sink_get_volume(s, TRUE); pa_sink_get_mute(s, TRUE); return 0; case PA_SINK_MESSAGE_GET_LATENCY: case PA_SINK_MESSAGE_MAX: ; } return -1; } /* Called from main thread */ int pa_sink_suspend_all(pa_core *c, pa_bool_t suspend, pa_suspend_cause_t cause) { pa_sink *sink; uint32_t idx; int ret = 0; pa_core_assert_ref(c); pa_assert_ctl_context(); pa_assert(cause != 0); PA_IDXSET_FOREACH(sink, c->sinks, idx) { int r; if ((r = pa_sink_suspend(sink, suspend, cause)) < 0) ret = r; } return ret; } /* Called from main thread */ void pa_sink_detach(pa_sink *s) { pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_DETACH, NULL, 0, NULL) == 0); } /* Called from main thread */ void pa_sink_attach(pa_sink *s) { pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_ATTACH, NULL, 0, NULL) == 0); } /* Called from IO thread */ void pa_sink_detach_within_thread(pa_sink *s) { pa_sink_input *i; void *state = NULL; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(PA_SINK_IS_LINKED(s->thread_info.state)); PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) if (i->detach) i->detach(i); if (s->monitor_source) pa_source_detach_within_thread(s->monitor_source); } /* Called from IO thread */ void pa_sink_attach_within_thread(pa_sink *s) { pa_sink_input *i; void *state = NULL; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(PA_SINK_IS_LINKED(s->thread_info.state)); PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) if (i->attach) i->attach(i); if (s->monitor_source) pa_source_attach_within_thread(s->monitor_source); } /* Called from IO thread */ void pa_sink_request_rewind(pa_sink*s, size_t nbytes) { pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(PA_SINK_IS_LINKED(s->thread_info.state)); if (s->thread_info.state == PA_SINK_SUSPENDED) return; if (nbytes == (size_t) -1) nbytes = s->thread_info.max_rewind; nbytes = PA_MIN(nbytes, s->thread_info.max_rewind); if (s->thread_info.rewind_requested && nbytes <= s->thread_info.rewind_nbytes) return; s->thread_info.rewind_nbytes = nbytes; s->thread_info.rewind_requested = TRUE; if (s->request_rewind) s->request_rewind(s); } /* Called from IO thread */ pa_usec_t pa_sink_get_requested_latency_within_thread(pa_sink *s) { pa_usec_t result = (pa_usec_t) -1; pa_sink_input *i; void *state = NULL; pa_usec_t monitor_latency; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); if (!(s->flags & PA_SINK_DYNAMIC_LATENCY)) return PA_CLAMP(s->thread_info.fixed_latency, s->thread_info.min_latency, s->thread_info.max_latency); if (s->thread_info.requested_latency_valid) return s->thread_info.requested_latency; PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) if (i->thread_info.requested_sink_latency != (pa_usec_t) -1 && (result == (pa_usec_t) -1 || result > i->thread_info.requested_sink_latency)) result = i->thread_info.requested_sink_latency; monitor_latency = pa_source_get_requested_latency_within_thread(s->monitor_source); if (monitor_latency != (pa_usec_t) -1 && (result == (pa_usec_t) -1 || result > monitor_latency)) result = monitor_latency; if (result != (pa_usec_t) -1) result = PA_CLAMP(result, s->thread_info.min_latency, s->thread_info.max_latency); if (PA_SINK_IS_LINKED(s->thread_info.state)) { /* Only cache if properly initialized */ s->thread_info.requested_latency = result; s->thread_info.requested_latency_valid = TRUE; } return result; } /* Called from main thread */ pa_usec_t pa_sink_get_requested_latency(pa_sink *s) { pa_usec_t usec = 0; pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(PA_SINK_IS_LINKED(s->state)); if (s->state == PA_SINK_SUSPENDED) return 0; pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_REQUESTED_LATENCY, &usec, 0, NULL) == 0); return usec; } /* Called from IO as well as the main thread -- the latter only before the IO thread started up */ void pa_sink_set_max_rewind_within_thread(pa_sink *s, size_t max_rewind) { pa_sink_input *i; void *state = NULL; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); if (max_rewind == s->thread_info.max_rewind) return; s->thread_info.max_rewind = max_rewind; if (PA_SINK_IS_LINKED(s->thread_info.state)) PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) pa_sink_input_update_max_rewind(i, s->thread_info.max_rewind); if (s->monitor_source) pa_source_set_max_rewind_within_thread(s->monitor_source, s->thread_info.max_rewind); } /* Called from main thread */ void pa_sink_set_max_rewind(pa_sink *s, size_t max_rewind) { pa_sink_assert_ref(s); pa_assert_ctl_context(); if (PA_SINK_IS_LINKED(s->state)) pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_MAX_REWIND, NULL, max_rewind, NULL) == 0); else pa_sink_set_max_rewind_within_thread(s, max_rewind); } /* Called from IO as well as the main thread -- the latter only before the IO thread started up */ void pa_sink_set_max_request_within_thread(pa_sink *s, size_t max_request) { void *state = NULL; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); if (max_request == s->thread_info.max_request) return; s->thread_info.max_request = max_request; if (PA_SINK_IS_LINKED(s->thread_info.state)) { pa_sink_input *i; PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) pa_sink_input_update_max_request(i, s->thread_info.max_request); } } /* Called from main thread */ void pa_sink_set_max_request(pa_sink *s, size_t max_request) { pa_sink_assert_ref(s); pa_assert_ctl_context(); if (PA_SINK_IS_LINKED(s->state)) pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_MAX_REQUEST, NULL, max_request, NULL) == 0); else pa_sink_set_max_request_within_thread(s, max_request); } /* Called from IO thread */ void pa_sink_invalidate_requested_latency(pa_sink *s, pa_bool_t dynamic) { pa_sink_input *i; void *state = NULL; pa_sink_assert_ref(s); pa_sink_assert_io_context(s); if ((s->flags & PA_SINK_DYNAMIC_LATENCY)) s->thread_info.requested_latency_valid = FALSE; else if (dynamic) return; if (PA_SINK_IS_LINKED(s->thread_info.state)) { if (s->update_requested_latency) s->update_requested_latency(s); PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) if (i->update_sink_requested_latency) i->update_sink_requested_latency(i); } } /* Called from main thread */ void pa_sink_set_latency_range(pa_sink *s, pa_usec_t min_latency, pa_usec_t max_latency) { pa_sink_assert_ref(s); pa_assert_ctl_context(); /* min_latency == 0: no limit * min_latency anything else: specified limit * * Similar for max_latency */ if (min_latency < ABSOLUTE_MIN_LATENCY) min_latency = ABSOLUTE_MIN_LATENCY; if (max_latency <= 0 || max_latency > ABSOLUTE_MAX_LATENCY) max_latency = ABSOLUTE_MAX_LATENCY; pa_assert(min_latency <= max_latency); /* Hmm, let's see if someone forgot to set PA_SINK_DYNAMIC_LATENCY here... */ pa_assert((min_latency == ABSOLUTE_MIN_LATENCY && max_latency == ABSOLUTE_MAX_LATENCY) || (s->flags & PA_SINK_DYNAMIC_LATENCY)); if (PA_SINK_IS_LINKED(s->state)) { pa_usec_t r[2]; r[0] = min_latency; r[1] = max_latency; pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_LATENCY_RANGE, r, 0, NULL) == 0); } else pa_sink_set_latency_range_within_thread(s, min_latency, max_latency); } /* Called from main thread */ void pa_sink_get_latency_range(pa_sink *s, pa_usec_t *min_latency, pa_usec_t *max_latency) { pa_sink_assert_ref(s); pa_assert_ctl_context(); pa_assert(min_latency); pa_assert(max_latency); if (PA_SINK_IS_LINKED(s->state)) { pa_usec_t r[2] = { 0, 0 }; pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_LATENCY_RANGE, r, 0, NULL) == 0); *min_latency = r[0]; *max_latency = r[1]; } else { *min_latency = s->thread_info.min_latency; *max_latency = s->thread_info.max_latency; } } /* Called from IO thread */ void pa_sink_set_latency_range_within_thread(pa_sink *s, pa_usec_t min_latency, pa_usec_t max_latency) { pa_sink_assert_ref(s); pa_sink_assert_io_context(s); pa_assert(min_latency >= ABSOLUTE_MIN_LATENCY); pa_assert(max_latency <= ABSOLUTE_MAX_LATENCY); pa_assert(min_latency <= max_latency); /* Hmm, let's see if someone forgot to set PA_SINK_DYNAMIC_LATENCY here... */ pa_assert((min_latency == ABSOLUTE_MIN_LATENCY && max_latency == ABSOLUTE_MAX_LATENCY) || (s->flags & PA_SINK_DYNAMIC_LATENCY)); if (s->thread_info.min_latency == min_latency && s->thread_info.max_latency == max_latency) return; s->thread_info.min_latency = min_latency; s->thread_info.max_latency = max_latency; if (PA_SINK_IS_LINKED(s->thread_info.state)) { pa_sink_input *i; void *state = NULL; PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) if (i->update_sink_latency_range) i->update_sink_latency_range(i); } pa_sink_invalidate_requested_latency(s, FALSE); pa_source_set_latency_range_within_thread(s->monitor_source, min_latency, max_latency); } /* Called from main thread */ void pa_sink_set_fixed_latency(pa_sink *s, pa_usec_t latency) { pa_sink_assert_ref(s); pa_assert_ctl_context(); if (s->flags & PA_SINK_DYNAMIC_LATENCY) { pa_assert(latency == 0); return; } if (latency < ABSOLUTE_MIN_LATENCY) latency = ABSOLUTE_MIN_LATENCY; if (latency > ABSOLUTE_MAX_LATENCY) latency = ABSOLUTE_MAX_LATENCY; if (PA_SINK_IS_LINKED(s->state)) pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_FIXED_LATENCY, NULL, (int64_t) latency, NULL) == 0); else s->thread_info.fixed_latency = latency; pa_source_set_fixed_latency(s->monitor_source, latency); } /* Called from main thread */ pa_usec_t pa_sink_get_fixed_latency(pa_sink *s) { pa_usec_t latency; pa_sink_assert_ref(s); pa_assert_ctl_context(); if (s->flags & PA_SINK_DYNAMIC_LATENCY) return 0; if (PA_SINK_IS_LINKED(s->state)) pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_FIXED_LATENCY, &latency, 0, NULL) == 0); else latency = s->thread_info.fixed_latency; return latency; } /* Called from IO thread */ void pa_sink_set_fixed_latency_within_thread(pa_sink *s, pa_usec_t latency) { pa_sink_assert_ref(s); pa_sink_assert_io_context(s); if (s->flags & PA_SINK_DYNAMIC_LATENCY) { pa_assert(latency == 0); return; } pa_assert(latency >= ABSOLUTE_MIN_LATENCY); pa_assert(latency <= ABSOLUTE_MAX_LATENCY); if (s->thread_info.fixed_latency == latency) return; s->thread_info.fixed_latency = latency; if (PA_SINK_IS_LINKED(s->thread_info.state)) { pa_sink_input *i; void *state = NULL; PA_HASHMAP_FOREACH(i, s->thread_info.inputs, state) if (i->update_sink_fixed_latency) i->update_sink_fixed_latency(i); } pa_sink_invalidate_requested_latency(s, FALSE); pa_source_set_fixed_latency_within_thread(s->monitor_source, latency); } /* Called from main context */ size_t pa_sink_get_max_rewind(pa_sink *s) { size_t r; pa_assert_ctl_context(); pa_sink_assert_ref(s); if (!PA_SINK_IS_LINKED(s->state)) return s->thread_info.max_rewind; pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_MAX_REWIND, &r, 0, NULL) == 0); return r; } /* Called from main context */ size_t pa_sink_get_max_request(pa_sink *s) { size_t r; pa_sink_assert_ref(s); pa_assert_ctl_context(); if (!PA_SINK_IS_LINKED(s->state)) return s->thread_info.max_request; pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_MAX_REQUEST, &r, 0, NULL) == 0); return r; } /* Called from main context */ int pa_sink_set_port(pa_sink *s, const char *name, pa_bool_t save) { pa_device_port *port; int ret; pa_sink_assert_ref(s); pa_assert_ctl_context(); if (!s->set_port) { pa_log_debug("set_port() operation not implemented for sink %u \"%s\"", s->index, s->name); return -PA_ERR_NOTIMPLEMENTED; } if (!s->ports || !name) return -PA_ERR_NOENTITY; if (!(port = pa_hashmap_get(s->ports, name))) return -PA_ERR_NOENTITY; if (s->active_port == port) { s->save_port = s->save_port || save; return 0; } if (s->flags & PA_SINK_DEFERRED_VOLUME) { struct sink_message_set_port msg = { .port = port, .ret = 0 }; pa_assert_se(pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_SET_PORT, &msg, 0, NULL) == 0); ret = msg.ret; } else ret = s->set_port(s, port); if (ret < 0) return -PA_ERR_NOENTITY; pa_subscription_post(s->core, PA_SUBSCRIPTION_EVENT_SINK|PA_SUBSCRIPTION_EVENT_CHANGE, s->index); pa_log_info("Changed port of sink %u \"%s\" to %s", s->index, s->name, port->name); s->active_port = port; s->save_port = save; pa_hook_fire(&s->core->hooks[PA_CORE_HOOK_SINK_PORT_CHANGED], s); return 0; } pa_bool_t pa_device_init_icon(pa_proplist *p, pa_bool_t is_sink) { const char *ff, *c, *t = NULL, *s = "", *profile, *bus; pa_assert(p); if (pa_proplist_contains(p, PA_PROP_DEVICE_ICON_NAME)) return TRUE; if ((ff = pa_proplist_gets(p, PA_PROP_DEVICE_FORM_FACTOR))) { if (pa_streq(ff, "microphone")) t = "audio-input-microphone"; else if (pa_streq(ff, "webcam")) t = "camera-web"; else if (pa_streq(ff, "computer")) t = "computer"; else if (pa_streq(ff, "handset")) t = "phone"; else if (pa_streq(ff, "portable")) t = "multimedia-player"; else if (pa_streq(ff, "tv")) t = "video-display"; /* * The following icons are not part of the icon naming spec, * because Rodney Dawes sucks as the maintainer of that spec. * * http://lists.freedesktop.org/archives/xdg/2009-May/010397.html */ else if (pa_streq(ff, "headset")) t = "audio-headset"; else if (pa_streq(ff, "headphone")) t = "audio-headphones"; else if (pa_streq(ff, "speaker")) t = "audio-speakers"; else if (pa_streq(ff, "hands-free")) t = "audio-handsfree"; } if (!t) if ((c = pa_proplist_gets(p, PA_PROP_DEVICE_CLASS))) if (pa_streq(c, "modem")) t = "modem"; if (!t) { if (is_sink) t = "audio-card"; else t = "audio-input-microphone"; } if ((profile = pa_proplist_gets(p, PA_PROP_DEVICE_PROFILE_NAME))) { if (strstr(profile, "analog")) s = "-analog"; else if (strstr(profile, "iec958")) s = "-iec958"; else if (strstr(profile, "hdmi")) s = "-hdmi"; } bus = pa_proplist_gets(p, PA_PROP_DEVICE_BUS); pa_proplist_setf(p, PA_PROP_DEVICE_ICON_NAME, "%s%s%s%s", t, pa_strempty(s), bus ? "-" : "", pa_strempty(bus)); return TRUE; } pa_bool_t pa_device_init_description(pa_proplist *p) { const char *s, *d = NULL, *k; pa_assert(p); if (pa_proplist_contains(p, PA_PROP_DEVICE_DESCRIPTION)) return TRUE; if ((s = pa_proplist_gets(p, PA_PROP_DEVICE_FORM_FACTOR))) if (pa_streq(s, "internal")) d = _("Built-in Audio"); if (!d) if ((s = pa_proplist_gets(p, PA_PROP_DEVICE_CLASS))) if (pa_streq(s, "modem")) d = _("Modem"); if (!d) d = pa_proplist_gets(p, PA_PROP_DEVICE_PRODUCT_NAME); if (!d) return FALSE; k = pa_proplist_gets(p, PA_PROP_DEVICE_PROFILE_DESCRIPTION); if (d && k) pa_proplist_setf(p, PA_PROP_DEVICE_DESCRIPTION, "%s %s", d, k); else if (d) pa_proplist_sets(p, PA_PROP_DEVICE_DESCRIPTION, d); return TRUE; } pa_bool_t pa_device_init_intended_roles(pa_proplist *p) { const char *s; pa_assert(p); if (pa_proplist_contains(p, PA_PROP_DEVICE_INTENDED_ROLES)) return TRUE; if ((s = pa_proplist_gets(p, PA_PROP_DEVICE_FORM_FACTOR))) if (pa_streq(s, "handset") || pa_streq(s, "hands-free") || pa_streq(s, "headset")) { pa_proplist_sets(p, PA_PROP_DEVICE_INTENDED_ROLES, "phone"); return TRUE; } return FALSE; } unsigned pa_device_init_priority(pa_proplist *p) { const char *s; unsigned priority = 0; pa_assert(p); if ((s = pa_proplist_gets(p, PA_PROP_DEVICE_CLASS))) { if (pa_streq(s, "sound")) priority += 9000; else if (!pa_streq(s, "modem")) priority += 1000; } if ((s = pa_proplist_gets(p, PA_PROP_DEVICE_FORM_FACTOR))) { if (pa_streq(s, "internal")) priority += 900; else if (pa_streq(s, "speaker")) priority += 500; else if (pa_streq(s, "headphone")) priority += 400; } if ((s = pa_proplist_gets(p, PA_PROP_DEVICE_BUS))) { if (pa_streq(s, "pci")) priority += 50; else if (pa_streq(s, "usb")) priority += 40; else if (pa_streq(s, "bluetooth")) priority += 30; } if ((s = pa_proplist_gets(p, PA_PROP_DEVICE_PROFILE_NAME))) { if (pa_startswith(s, "analog-")) priority += 9; else if (pa_startswith(s, "iec958-")) priority += 8; } return priority; } PA_STATIC_FLIST_DECLARE(pa_sink_volume_change, 0, pa_xfree); /* Called from the IO thread. */ static pa_sink_volume_change *pa_sink_volume_change_new(pa_sink *s) { pa_sink_volume_change *c; if (!(c = pa_flist_pop(PA_STATIC_FLIST_GET(pa_sink_volume_change)))) c = pa_xnew(pa_sink_volume_change, 1); PA_LLIST_INIT(pa_sink_volume_change, c); c->at = 0; pa_cvolume_reset(&c->hw_volume, s->sample_spec.channels); return c; } /* Called from the IO thread. */ static void pa_sink_volume_change_free(pa_sink_volume_change *c) { pa_assert(c); if (pa_flist_push(PA_STATIC_FLIST_GET(pa_sink_volume_change), c) < 0) pa_xfree(c); } /* Called from the IO thread. */ void pa_sink_volume_change_push(pa_sink *s) { pa_sink_volume_change *c = NULL; pa_sink_volume_change *nc = NULL; uint32_t safety_margin = s->thread_info.volume_change_safety_margin; const char *direction = NULL; pa_assert(s); nc = pa_sink_volume_change_new(s); /* NOTE: There is already more different volumes in pa_sink that I can remember. * Adding one more volume for HW would get us rid of this, but I am trying * to survive with the ones we already have. */ pa_sw_cvolume_divide(&nc->hw_volume, &s->real_volume, &s->soft_volume); if (!s->thread_info.volume_changes && pa_cvolume_equal(&nc->hw_volume, &s->thread_info.current_hw_volume)) { pa_log_debug("Volume not changing"); pa_sink_volume_change_free(nc); return; } nc->at = pa_sink_get_latency_within_thread(s); nc->at += pa_rtclock_now() + s->thread_info.volume_change_extra_delay; if (s->thread_info.volume_changes_tail) { for (c = s->thread_info.volume_changes_tail; c; c = c->prev) { /* If volume is going up let's do it a bit late. If it is going * down let's do it a bit early. */ if (pa_cvolume_avg(&nc->hw_volume) > pa_cvolume_avg(&c->hw_volume)) { if (nc->at + safety_margin > c->at) { nc->at += safety_margin; direction = "up"; break; } } else if (nc->at - safety_margin > c->at) { nc->at -= safety_margin; direction = "down"; break; } } } if (c == NULL) { if (pa_cvolume_avg(&nc->hw_volume) > pa_cvolume_avg(&s->thread_info.current_hw_volume)) { nc->at += safety_margin; direction = "up"; } else { nc->at -= safety_margin; direction = "down"; } PA_LLIST_PREPEND(pa_sink_volume_change, s->thread_info.volume_changes, nc); } else { PA_LLIST_INSERT_AFTER(pa_sink_volume_change, s->thread_info.volume_changes, c, nc); } pa_log_debug("Volume going %s to %d at %llu", direction, pa_cvolume_avg(&nc->hw_volume), (long long unsigned) nc->at); /* We can ignore volume events that came earlier but should happen later than this. */ PA_LLIST_FOREACH(c, nc->next) { pa_log_debug("Volume change to %d at %llu was dropped", pa_cvolume_avg(&c->hw_volume), (long long unsigned) c->at); pa_sink_volume_change_free(c); } nc->next = NULL; s->thread_info.volume_changes_tail = nc; } /* Called from the IO thread. */ static void pa_sink_volume_change_flush(pa_sink *s) { pa_sink_volume_change *c = s->thread_info.volume_changes; pa_assert(s); s->thread_info.volume_changes = NULL; s->thread_info.volume_changes_tail = NULL; while (c) { pa_sink_volume_change *next = c->next; pa_sink_volume_change_free(c); c = next; } } /* Called from the IO thread. */ pa_bool_t pa_sink_volume_change_apply(pa_sink *s, pa_usec_t *usec_to_next) { pa_usec_t now; pa_bool_t ret = FALSE; pa_assert(s); if (!s->thread_info.volume_changes || !PA_SINK_IS_LINKED(s->state)) { if (usec_to_next) *usec_to_next = 0; return ret; } pa_assert(s->write_volume); now = pa_rtclock_now(); while (s->thread_info.volume_changes && now >= s->thread_info.volume_changes->at) { pa_sink_volume_change *c = s->thread_info.volume_changes; PA_LLIST_REMOVE(pa_sink_volume_change, s->thread_info.volume_changes, c); pa_log_debug("Volume change to %d at %llu was written %llu usec late", pa_cvolume_avg(&c->hw_volume), (long long unsigned) c->at, (long long unsigned) (now - c->at)); ret = TRUE; s->thread_info.current_hw_volume = c->hw_volume; pa_sink_volume_change_free(c); } if (ret) s->write_volume(s); if (s->thread_info.volume_changes) { if (usec_to_next) *usec_to_next = s->thread_info.volume_changes->at - now; if (pa_log_ratelimit(PA_LOG_DEBUG)) pa_log_debug("Next volume change in %lld usec", (long long) (s->thread_info.volume_changes->at - now)); } else { if (usec_to_next) *usec_to_next = 0; s->thread_info.volume_changes_tail = NULL; } return ret; } /* Called from the IO thread. */ static void pa_sink_volume_change_rewind(pa_sink *s, size_t nbytes) { /* All the queued volume events later than current latency are shifted to happen earlier. */ pa_sink_volume_change *c; pa_volume_t prev_vol = pa_cvolume_avg(&s->thread_info.current_hw_volume); pa_usec_t rewound = pa_bytes_to_usec(nbytes, &s->sample_spec); pa_usec_t limit = pa_sink_get_latency_within_thread(s); pa_log_debug("latency = %lld", (long long) limit); limit += pa_rtclock_now() + s->thread_info.volume_change_extra_delay; PA_LLIST_FOREACH(c, s->thread_info.volume_changes) { pa_usec_t modified_limit = limit; if (prev_vol > pa_cvolume_avg(&c->hw_volume)) modified_limit -= s->thread_info.volume_change_safety_margin; else modified_limit += s->thread_info.volume_change_safety_margin; if (c->at > modified_limit) { c->at -= rewound; if (c->at < modified_limit) c->at = modified_limit; } prev_vol = pa_cvolume_avg(&c->hw_volume); } pa_sink_volume_change_apply(s, NULL); } /* Called from the main thread */ /* Gets the list of formats supported by the sink. The members and idxset must * be freed by the caller. */ pa_idxset* pa_sink_get_formats(pa_sink *s) { pa_idxset *ret; pa_assert(s); if (s->get_formats) { /* Sink supports format query, all is good */ ret = s->get_formats(s); } else { /* Sink doesn't support format query, so assume it does PCM */ pa_format_info *f = pa_format_info_new(); f->encoding = PA_ENCODING_PCM; ret = pa_idxset_new(NULL, NULL); pa_idxset_put(ret, f, NULL); } return ret; } /* Called from the main thread */ /* Allows an external source to set what formats a sink supports if the sink * permits this. The function makes a copy of the formats on success. */ pa_bool_t pa_sink_set_formats(pa_sink *s, pa_idxset *formats) { pa_assert(s); pa_assert(formats); if (s->set_formats) /* Sink supports setting formats -- let's give it a shot */ return s->set_formats(s, formats); else /* Sink doesn't support setting this -- bail out */ return FALSE; } /* Called from the main thread */ /* Checks if the sink can accept this format */ pa_bool_t pa_sink_check_format(pa_sink *s, pa_format_info *f) { pa_idxset *formats = NULL; pa_bool_t ret = FALSE; pa_assert(s); pa_assert(f); formats = pa_sink_get_formats(s); if (formats) { pa_format_info *finfo_device; uint32_t i; PA_IDXSET_FOREACH(finfo_device, formats, i) { if (pa_format_info_is_compatible(finfo_device, f)) { ret = TRUE; break; } } pa_idxset_free(formats, (pa_free2_cb_t) pa_format_info_free2, NULL); } return ret; } /* Called from the main thread */ /* Calculates the intersection between formats supported by the sink and * in_formats, and returns these, in the order of the sink's formats. */ pa_idxset* pa_sink_check_formats(pa_sink *s, pa_idxset *in_formats) { pa_idxset *out_formats = pa_idxset_new(NULL, NULL), *sink_formats = NULL; pa_format_info *f_sink, *f_in; uint32_t i, j; pa_assert(s); if (!in_formats || pa_idxset_isempty(in_formats)) goto done; sink_formats = pa_sink_get_formats(s); PA_IDXSET_FOREACH(f_sink, sink_formats, i) { PA_IDXSET_FOREACH(f_in, in_formats, j) { if (pa_format_info_is_compatible(f_sink, f_in)) pa_idxset_put(out_formats, pa_format_info_copy(f_in), NULL); } } done: if (sink_formats) pa_idxset_free(sink_formats, (pa_free2_cb_t) pa_format_info_free2, NULL); return out_formats; }