summaryrefslogtreecommitdiff
path: root/thirdparty/brotli/dec/huffman.c
blob: e17ee27575fca88abc2d99db7e0576d9f12502c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/* Copyright 2013 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

/* Utilities for building Huffman decoding tables. */

#include "./huffman.h"

#include <string.h>  /* memcpy, memset */

#include "../common/constants.h"
#include "../common/types.h"
#include "./port.h"

#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif

#define BROTLI_REVERSE_BITS_MAX 8

#ifdef BROTLI_RBIT
#define BROTLI_REVERSE_BITS_BASE (32 - BROTLI_REVERSE_BITS_MAX)
#else
#define BROTLI_REVERSE_BITS_BASE 0
static uint8_t kReverseBits[1 << BROTLI_REVERSE_BITS_MAX] = {
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
  0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
  0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
  0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
  0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
  0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
  0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
  0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
  0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
  0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
  0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
  0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
  0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
  0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
  0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
  0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
  0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
#endif  /* BROTLI_RBIT */

#define BROTLI_REVERSE_BITS_LOWEST \
  (1U << (BROTLI_REVERSE_BITS_MAX - 1 + BROTLI_REVERSE_BITS_BASE))

/* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
   where reverse(value, len) is the bit-wise reversal of the len least
   significant bits of value. */
static BROTLI_INLINE uint32_t BrotliReverseBits(uint32_t num) {
#ifdef BROTLI_RBIT
  return BROTLI_RBIT(num);
#else
  return kReverseBits[num];
#endif
}

/* Stores code in table[0], table[step], table[2*step], ..., table[end] */
/* Assumes that end is an integer multiple of step */
static BROTLI_INLINE void ReplicateValue(HuffmanCode* table,
                                         int step, int end,
                                         HuffmanCode code) {
  do {
    end -= step;
    table[end] = code;
  } while (end > 0);
}

/* Returns the table width of the next 2nd level table. count is the histogram
   of bit lengths for the remaining symbols, len is the code length of the next
   processed symbol */
static BROTLI_INLINE int NextTableBitSize(const uint16_t* const count,
                                          int len, int root_bits) {
  int left = 1 << (len - root_bits);
  while (len < BROTLI_HUFFMAN_MAX_CODE_LENGTH) {
    left -= count[len];
    if (left <= 0) break;
    ++len;
    left <<= 1;
  }
  return len - root_bits;
}

void BrotliBuildCodeLengthsHuffmanTable(HuffmanCode* table,
                                        const uint8_t* const code_lengths,
                                        uint16_t* count) {
  HuffmanCode code;   /* current table entry */
  int symbol;         /* symbol index in original or sorted table */
  uint32_t key;       /* prefix code */
  uint32_t key_step;  /* prefix code addend */
  int step;           /* step size to replicate values in current table */
  int table_size;     /* size of current table */
  int sorted[BROTLI_CODE_LENGTH_CODES];  /* symbols sorted by code length */
  /* offsets in sorted table for each length */
  int offset[BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1];
  int bits;
  int bits_count;
  BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH <=
                BROTLI_REVERSE_BITS_MAX);

  /* generate offsets into sorted symbol table by code length */
  symbol = -1;
  bits = 1;
  BROTLI_REPEAT(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH, {
    symbol += count[bits];
    offset[bits] = symbol;
    bits++;
  });
  /* Symbols with code length 0 are placed after all other symbols. */
  offset[0] = BROTLI_CODE_LENGTH_CODES - 1;

  /* sort symbols by length, by symbol order within each length */
  symbol = BROTLI_CODE_LENGTH_CODES;
  do {
    BROTLI_REPEAT(6, {
      symbol--;
      sorted[offset[code_lengths[symbol]]--] = symbol;
    });
  } while (symbol != 0);

  table_size = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH;

  /* Special case: all symbols but one have 0 code length. */
  if (offset[0] == 0) {
    code.bits = 0;
    code.value = (uint16_t)sorted[0];
    for (key = 0; key < (uint32_t)table_size; ++key) {
      table[key] = code;
    }
    return;
  }

  /* fill in table */
  key = 0;
  key_step = BROTLI_REVERSE_BITS_LOWEST;
  symbol = 0;
  bits = 1;
  step = 2;
  do {
    code.bits = (uint8_t)bits;
    for (bits_count = count[bits]; bits_count != 0; --bits_count) {
      code.value = (uint16_t)sorted[symbol++];
      ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
      key += key_step;
    }
    step <<= 1;
    key_step >>= 1;
  } while (++bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH);
}

uint32_t BrotliBuildHuffmanTable(HuffmanCode* root_table,
                                 int root_bits,
                                 const uint16_t* const symbol_lists,
                                 uint16_t* count) {
  HuffmanCode code;       /* current table entry */
  HuffmanCode* table;     /* next available space in table */
  int len;                /* current code length */
  int symbol;             /* symbol index in original or sorted table */
  uint32_t key;           /* prefix code */
  uint32_t key_step;      /* prefix code addend */
  uint32_t sub_key;       /* 2nd level table prefix code */
  uint32_t sub_key_step;  /* 2nd level table prefix code addend */
  int step;               /* step size to replicate values in current table */
  int table_bits;         /* key length of current table */
  int table_size;         /* size of current table */
  int total_size;         /* sum of root table size and 2nd level table sizes */
  int max_length = -1;
  int bits;
  int bits_count;

  BROTLI_DCHECK(root_bits <= BROTLI_REVERSE_BITS_MAX);
  BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH - root_bits <=
                BROTLI_REVERSE_BITS_MAX);

  while (symbol_lists[max_length] == 0xFFFF) max_length--;
  max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1;

  table = root_table;
  table_bits = root_bits;
  table_size = 1 << table_bits;
  total_size = table_size;

  /* fill in root table */
  /* let's reduce the table size to a smaller size if possible, and */
  /* create the repetitions by memcpy if possible in the coming loop */
  if (table_bits > max_length) {
    table_bits = max_length;
    table_size = 1 << table_bits;
  }
  key = 0;
  key_step = BROTLI_REVERSE_BITS_LOWEST;
  bits = 1;
  step = 2;
  do {
    code.bits = (uint8_t)bits;
    symbol = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
    for (bits_count = count[bits]; bits_count != 0; --bits_count) {
      symbol = symbol_lists[symbol];
      code.value = (uint16_t)symbol;
      ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
      key += key_step;
    }
    step <<= 1;
    key_step >>= 1;
  } while (++bits <= table_bits);

  /* if root_bits != table_bits we only created one fraction of the */
  /* table, and we need to replicate it now. */
  while (total_size != table_size) {
    memcpy(&table[table_size], &table[0],
           (size_t)table_size * sizeof(table[0]));
    table_size <<= 1;
  }

  /* fill in 2nd level tables and add pointers to root table */
  key_step = BROTLI_REVERSE_BITS_LOWEST >> (root_bits - 1);
  sub_key = (BROTLI_REVERSE_BITS_LOWEST << 1);
  sub_key_step = BROTLI_REVERSE_BITS_LOWEST;
  for (len = root_bits + 1, step = 2; len <= max_length; ++len) {
    symbol = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
    for (; count[len] != 0; --count[len]) {
      if (sub_key == (BROTLI_REVERSE_BITS_LOWEST << 1U)) {
        table += table_size;
        table_bits = NextTableBitSize(count, len, root_bits);
        table_size = 1 << table_bits;
        total_size += table_size;
        sub_key = BrotliReverseBits(key);
        key += key_step;
        root_table[sub_key].bits = (uint8_t)(table_bits + root_bits);
        root_table[sub_key].value =
            (uint16_t)(((size_t)(table - root_table)) - sub_key);
        sub_key = 0;
      }
      code.bits = (uint8_t)(len - root_bits);
      symbol = symbol_lists[symbol];
      code.value = (uint16_t)symbol;
      ReplicateValue(
          &table[BrotliReverseBits(sub_key)], step, table_size, code);
      sub_key += sub_key_step;
    }
    step <<= 1;
    sub_key_step >>= 1;
  }
  return (uint32_t)total_size;
}

uint32_t BrotliBuildSimpleHuffmanTable(HuffmanCode* table,
                                       int root_bits,
                                       uint16_t* val,
                                       uint32_t num_symbols) {
  uint32_t table_size = 1;
  const uint32_t goal_size = 1U << root_bits;
  switch (num_symbols) {
    case 0:
      table[0].bits = 0;
      table[0].value = val[0];
      break;
    case 1:
      table[0].bits = 1;
      table[1].bits = 1;
      if (val[1] > val[0]) {
        table[0].value = val[0];
        table[1].value = val[1];
      } else {
        table[0].value = val[1];
        table[1].value = val[0];
      }
      table_size = 2;
      break;
    case 2:
      table[0].bits = 1;
      table[0].value = val[0];
      table[2].bits = 1;
      table[2].value = val[0];
      if (val[2] > val[1]) {
        table[1].value = val[1];
        table[3].value = val[2];
      } else {
        table[1].value = val[2];
        table[3].value = val[1];
      }
      table[1].bits = 2;
      table[3].bits = 2;
      table_size = 4;
      break;
    case 3: {
      int i, k;
      for (i = 0; i < 3; ++i) {
        for (k = i + 1; k < 4; ++k) {
          if (val[k] < val[i]) {
            uint16_t t = val[k];
            val[k] = val[i];
            val[i] = t;
          }
        }
      }
      for (i = 0; i < 4; ++i) {
        table[i].bits = 2;
      }
      table[0].value = val[0];
      table[2].value = val[1];
      table[1].value = val[2];
      table[3].value = val[3];
      table_size = 4;
      break;
    }
    case 4: {
      int i;
      if (val[3] < val[2]) {
        uint16_t t = val[3];
        val[3] = val[2];
        val[2] = t;
      }
      for (i = 0; i < 7; ++i) {
        table[i].value = val[0];
        table[i].bits = (uint8_t)(1 + (i & 1));
      }
      table[1].value = val[1];
      table[3].value = val[2];
      table[5].value = val[1];
      table[7].value = val[3];
      table[3].bits = 3;
      table[7].bits = 3;
      table_size = 8;
      break;
    }
  }
  while (table_size != goal_size) {
    memcpy(&table[table_size], &table[0],
           (size_t)table_size * sizeof(table[0]));
    table_size <<= 1;
  }
  return goal_size;
}

#if defined(__cplusplus) || defined(c_plusplus)
}  /* extern "C" */
#endif