/* * CCID Device emulation * * Based on usb-serial.c: * Copyright (c) 2006 CodeSourcery. * Copyright (c) 2008 Samuel Thibault * Written by Paul Brook, reused for FTDI by Samuel Thibault, * Reused for CCID by Alon Levy. * Contributed to by Robert Relyea * Copyright (c) 2010 Red Hat. * * This code is licenced under the LGPL. */ /* References: * * CCID Specification Revision 1.1 April 22nd 2005 * "Universal Serial Bus, Device Class: Smart Card" * Specification for Integrated Circuit(s) Cards Interface Devices * * KNOWN BUGS * 1. remove/insert can sometimes result in removed state instead of inserted. * This is a result of the following: * symptom: dmesg shows ERMOTEIO (-121), pcscd shows -99. Thsi happens * when we send a too short packet, seen in uhci-usb.c, resulting from * a urb requesting SPD and us returning a smaller packet. * Not sure which messages trigger this. * */ #include "qemu-common.h" #include "qemu-error.h" #include "usb.h" #include "monitor.h" #include "hw/ccid.h" //#define DEBUG_CCID #define DPRINTF(s, lvl, fmt, ...) \ do { if (lvl <= s->debug) { printf("usb-ccid: " fmt , ## __VA_ARGS__); } } while (0) #define CCID_DEV_NAME "usb-ccid" /* The two options for variable sized buffers: * make them constant size, for large enough constant, * or handle the migration complexity - VMState doesn't handle this case. * sizes are expected never to be exceeded, unless client misbehaves. */ #define BULK_OUT_DATA_SIZE 65536 #define PENDING_ANSWERS_NUM 128 #define BULK_IN_BUF_SIZE 384 #define BULK_IN_PENDING_NUM 8 #define InterfaceOutClass ((USB_DIR_OUT|USB_TYPE_CLASS|USB_RECIP_INTERFACE)<<8) #define InterfaceInClass ((USB_DIR_IN |USB_TYPE_CLASS|USB_RECIP_INTERFACE)<<8) #define CCID_CONTROL_ABORT 0x1 #define CCID_CONTROL_GET_CLOCK_FREQUENCIES 0x2 #define CCID_CONTROL_GET_DATA_RATES 0x3 #define CCID_PRODUCT_DESCRIPTION "QEMU USB CCID" #define CCID_VENDOR_DESCRIPTION "QEMU " QEMU_VERSION #define CCID_INTERFACE_NAME "CCID Interface" #define CCID_SERIAL_NUMBER_STRING "1" /* Using Gemplus Vendor and Product id Effect on various drivers: * usbccid.sys (winxp, others untested) is a class driver so it doesn't care. * linux has a number of class drivers, but openct filters based on vendor/product (/etc/openct.conf under fedora), hence Gemplus. */ #define CCID_VENDOR_ID 0x08e6 #define CCID_PRODUCT_ID 0x4433 #define CCID_DEVICE_VERSION 0x0000 /* BULK_OUT messages from PC to Reader Defined in CCID Rev 1.1 6.1 (page 26) */ #define CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOn 0x62 #define CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOff 0x63 #define CCID_MESSAGE_TYPE_PC_to_RDR_GetSlotStatus 0x65 #define CCID_MESSAGE_TYPE_PC_to_RDR_XfrBlock 0x6f #define CCID_MESSAGE_TYPE_PC_to_RDR_GetParameters 0x6c #define CCID_MESSAGE_TYPE_PC_to_RDR_ResetParameters 0x6d #define CCID_MESSAGE_TYPE_PC_to_RDR_SetParameters 0x61 #define CCID_MESSAGE_TYPE_PC_to_RDR_Escape 0x6b #define CCID_MESSAGE_TYPE_PC_to_RDR_IccClock 0x6e #define CCID_MESSAGE_TYPE_PC_to_RDR_T0APDU 0x6a #define CCID_MESSAGE_TYPE_PC_to_RDR_Secure 0x69 #define CCID_MESSAGE_TYPE_PC_to_RDR_Mechanical 0x71 #define CCID_MESSAGE_TYPE_PC_to_RDR_Abort 0x72 #define CCID_MESSAGE_TYPE_PC_to_RDR_SetDataRateAndClockFrequency 0x73 /* BULK_IN messages from Reader to PC Defined in CCID Rev 1.1 6.2 (page 48) */ #define CCID_MESSAGE_TYPE_RDR_to_PC_DataBlock 0x80 #define CCID_MESSAGE_TYPE_RDR_to_PC_SlotStatus 0x81 #define CCID_MESSAGE_TYPE_RDR_to_PC_Parameters 0x82 #define CCID_MESSAGE_TYPE_RDR_to_PC_Escape 0x83 #define CCID_MESSAGE_TYPE_RDR_to_PC_DataRateAndClockFrequency 0x84 /* INTERRUPT_IN messages from Reader to PC Defined in CCID Rev 1.1 6.3 (page 56) */ #define CCID_MESSAGE_TYPE_RDR_to_PC_NotifySlotChange 0x50 #define CCID_MESSAGE_TYPE_RDR_to_PC_HardwareError 0x51 /* Endpoints for CCID - addresses are up to us to decide. To support slot insertion and removal we must have an interrupt in ep in addition we need a bulk in and bulk out ep 5.2, page 20 */ #define CCID_INT_IN_EP 1 #define CCID_BULK_IN_EP 2 #define CCID_BULK_OUT_EP 3 /* bmSlotICCState masks */ #define SLOT_0_STATE_MASK 1 #define SLOT_0_CHANGED_MASK 2 /* Status codes that go in bStatus (see 6.2.6) */ enum { ICC_STATUS_PRESENT_ACTIVE = 0, ICC_STATUS_PRESENT_INACTIVE, ICC_STATUS_NOT_PRESENT }; enum { COMMAND_STATUS_NO_ERROR = 0, COMMAND_STATUS_FAILED, COMMAND_STATUS_TIME_EXTENSION_REQUIRED }; /* Error codes that go in bError (see 6.2.6) */ enum { ERROR_CMD_NOT_SUPPORTED = 0, ERROR_CMD_ABORTED = -1, ERROR_ICC_MUTE = -2, ERROR_XFR_PARITY_ERROR = -3, ERROR_XFR_OVERRUN = -4, ERROR_HW_ERROR = -5, }; /* 6.2.6 RDR_to_PC_SlotStatus definitions */ enum { CLOCK_STATUS_RUNNING = 0, /* 0 - Clock Running, 1 - Clock stopped in State L, 2 - H, 3 - unkonwn state. rest are RFU */ }; typedef struct __attribute__ ((__packed__)) { uint8_t bMessageType; uint32_t dwLength; uint8_t bSlot; uint8_t bSeq; } CCID_Header; typedef struct __attribute__ ((__packed__)) { CCID_Header hdr; uint8_t bStatus; /* Only used in BULK_IN */ uint8_t bError; /* Only used in BULK_IN */ } CCID_BULK_IN; typedef struct __attribute__ ((__packed__)) { CCID_BULK_IN b; uint8_t bClockStatus; } CCID_SlotStatus; typedef struct __attribute__ ((__packed__)) { CCID_BULK_IN b; uint8_t bProtocolNum; uint8_t abProtocolDataStructure[0]; } CCID_Parameter; typedef struct __attribute__ ((__packed__)) { CCID_BULK_IN b; uint8_t bChainParameter; uint8_t abData[0]; } CCID_DataBlock; /* 6.1.4 PC_to_RDR_XfrBlock */ typedef struct __attribute__ ((__packed__)) { CCID_Header hdr; uint8_t bBWI; /* Block Waiting Timeout */ uint16_t wLevelParameter; uint8_t abData[0]; } CCID_XferBlock; typedef struct __attribute__ ((__packed__)) { CCID_Header hdr; uint8_t bPowerSelect; uint16_t abRFU; } CCID_IccPowerOn; typedef struct __attribute__ ((__packed__)) { CCID_Header hdr; uint16_t abRFU; } CCID_IccPowerOff; typedef struct __attribute__ ((__packed__)) { CCID_Header hdr; uint8_t bProtocolNum; uint8_t abProtocolDataStructure[0]; } CCID_SetParameter; typedef struct { uint8_t bMessageType; /* CCID_MESSAGE_TYPE_RDR_to_PC_NotifySlotChange */ uint8_t bmSlotICCState; } CCID_Notify_Slot_Change; /* used for DataBlock response to XferBlock */ typedef struct answer_t { uint8_t slot; uint8_t seq; } answer_t; /* pending BULK_IN messages */ typedef struct bulk_in_t { uint8_t data[BULK_IN_BUF_SIZE]; uint32_t len; uint32_t pos; } bulk_in_t; enum { MIGRATION_NONE, MIGRATION_MIGRATED, }; typedef struct CCIDBus CCIDBus; typedef struct USBCCIDState USBCCIDState; #define MAX_PROTOCOL_SIZE 7 /** * powered - defaults to true, changed by PowerOn/PowerOff messages */ struct USBCCIDState { USBDevice dev; CCIDBus *bus; CCIDCardState *card; CCIDCardInfo *cardinfo; /* caching the info pointer */ uint8_t debug; uint8_t auto_attach; bulk_in_t bulk_in_pending[BULK_IN_PENDING_NUM]; /* circular */ uint32_t bulk_in_pending_start; uint32_t bulk_in_pending_end; /* first free */ uint32_t bulk_in_pending_num; bulk_in_t *current_bulk_in; uint8_t bulk_out_data[BULK_OUT_DATA_SIZE]; uint32_t bulk_out_pos; uint8_t bmSlotICCState; uint8_t powered; uint8_t notify_slot_change; uint64_t last_answer_error; answer_t pending_answers[PENDING_ANSWERS_NUM]; uint32_t pending_answers_start; uint32_t pending_answers_end; uint32_t pending_answers_num; uint8_t bError; uint8_t bmCommandStatus; uint8_t bProtocolNum; uint8_t abProtocolDataStructure[MAX_PROTOCOL_SIZE]; uint32_t ulProtocolDataStructureSize; uint8_t attached_vmstate; uint32_t state_vmstate; uint8_t migration_state; uint32_t migration_target_ip; uint16_t migration_target_port; }; /* Slot specific variables. We emulate a single slot card reader. */ /* CCID Spec chapter 4: CCID uses a standard device descriptor per Chapter 9, * "USB Device Framework", section 9.6.1, in the Universal Serial Bus * Specification. * * This device implemented based on the spec and with an Athena Smart Card * Reader as reference: * 0dc3:1004 Athena Smartcard Solutions, Inc. */ static const uint8_t qemu_ccid_dev_descriptor[] = { 0x12, /* u8 bLength; */ USB_DT_DEVICE, /* u8 bDescriptorType; Device */ 0x10, 0x01, /* u16 bcdUSB; v1.1 */ 0x00, /* u8 bDeviceClass; */ 0x00, /* u8 bDeviceSubClass; */ 0x00, /* u8 bDeviceProtocol; [ low/full speeds only ] */ 0x40, /* u8 bMaxPacketSize0; 8 Bytes (valid: 8,16,32,64) */ /* Vendor and product id are arbitrary. */ /* u16 idVendor */ CCID_VENDOR_ID & 0xff, CCID_VENDOR_ID >> 8, /* u16 idProduct */ CCID_PRODUCT_ID & 0xff, CCID_PRODUCT_ID >> 8, /* u16 bcdDevice */ CCID_DEVICE_VERSION & 0xff, CCID_DEVICE_VERSION >> 8, 0x01, /* u8 iManufacturer; */ 0x02, /* u8 iProduct; */ 0x03, /* u8 iSerialNumber; */ 0x01, /* u8 bNumConfigurations; */ }; typedef struct DescriptorParam { const char *name; uint32_t offset; uint32_t size; uint32_t value; } DescriptorParam; DescriptorParam descriptor_params[] = { { .name = "protocols", .offset = 6, .size = 4, .value = 0, }, { .name = "default_clock", .offset = 10, .size = 4, .value = 0, }, { .name = "max_clock", .offset = 14, .size = 4, .value = 0, }, { .name = "data_rate", .offset = 19, .size = 4, .value = 0, }, { .name = "max_data_rate", .offset = 23, .size = 4, .value = 0, }, { .name = "max_ifsd", .offset = 28, .size = 4, .value = 0, }, { .name = "features", .offset = 40, .size = 4, .value = 0, }, { .name = "max_ccid_message_length", .offset = 44, .size = 4, .value = 0, }, { .name = NULL, .offset = 0, .size = 0, .value = 0, } }; #define CCID_CONFIG_LENGTH 9 #define CCID_INTERFACE_LENGTH 9 #define CCID_CLASS_LENGTH 54 #define CCID_CONFIG_DESCRIPTOR_CLASS_OFFSET \ (CCID_CONFIG_LENGTH + CCID_INTERFACE_LENGTH) static uint8_t qemu_ccid_config_descriptor[] = { /* one configuration */ CCID_CONFIG_LENGTH, /* u8 bLength; */ USB_DT_CONFIG, /* u8 bDescriptorType; Configuration */ 0x5d, 0x00, /* u16 wTotalLength; 9+9+54+7+7+7 */ 0x01, /* u8 bNumInterfaces; (1) */ 0x01, /* u8 bConfigurationValue; */ 0x00, /* u8 iConfiguration; */ 0xe0, /* u8 bmAttributes; Bit 7: must be set, 6: Self-powered, 5: Remote wakeup, 4..0: resvd */ 100/2, /* u8 MaxPower; 50 == 100mA */ /* one interface */ CCID_INTERFACE_LENGTH, /* u8 if_bLength; */ USB_DT_INTERFACE, /* u8 if_bDescriptorType; Interface */ 0x00, /* u8 if_bInterfaceNumber; */ 0x00, /* u8 if_bAlternateSetting; */ 0x03, /* u8 if_bNumEndpoints; */ 0x0b, /* u8 if_bInterfaceClass; Smart Card Device Class */ 0x00, /* u8 if_bInterfaceSubClass; Subclass code */ 0x00, /* u8 if_bInterfaceProtocol; Protocol code */ 0x04, /* u8 if_iInterface; Index of string descriptor */ /* Smart Card Device Class Descriptor */ 0x36, /* u8 bLength; */ 0x21, /* u8 bDescriptorType; Functional */ 0x10, 0x01, /* u16 bcdCCID; CCID Specification Release Number. */ 0x00, /* u8 bMaxSlotIndex; The index of the highest available slot on this device. All slots are consecutive starting at 00h. */ 0x07, /* u8 bVoltageSupport; 01h - 5.0v, 02h - 3.0, 03 - 1.8 */ 0x03, 0x00, /* u32 dwProtocols; RRRR PPPP. RRRR = 0000h.*/ 0x00, 0x00, /* PPPP: 0001h = Protocol T=0, 0002h = Protocol T=1 */ /* u32 dwDefaultClock; in kHZ (0x0fa0 is 4 MHz) */ 0xa0, 0x0f, 0x00, 0x00, /* u32 dwMaximumClock; */ 0x00, 0x00, 0x01, 0x00, 0x00, /* u8 bNumClockSupported; 0 means just the default and max. */ /* u32 dwDataRate ;bps. 9600 == 00002580h */ 0x80, 0x25, 0x00, 0x00, /* u32 dwMaxDataRate ; 115200 bps == 0001C200h */ 0x00, 0xC2, 0x01, 0x00, 0x00, /* u8 bNumDataRatesSupported; 00 means all rates between * default and max */ /* u32 dwMaxIFSD; maximum IFSD supported by CCID for protocol * T=1 (Maximum seen from various cards) */ 0xfe, 0x00, 0x00, 0x00, /* u32 dwSyncProtocols; 1 - 2-wire, 2 - 3-wire, 4 - I2C */ 0x00, 0x00, 0x00, 0x00, /* u32 dwMechanical; 0 - no special characteristics. */ 0x00, 0x00, 0x00, 0x00, /* u32 dwFeatures; * 0 - No special characteristics * + 2 Automatic parameter configuration based on ATR data * + 4 Automatic activation of ICC on inserting * + 8 Automatic ICC voltage selection * + 10 Automatic ICC clock frequency change * + 20 Automatic baud rate change * 40 Automatic parameters negotiation made by the CCID * 80 automatic PPS made by the CCID * 100 CCID can set ICC in clock stop mode * 200 NAD value other then 00 accepted (T=1 protocol) * 400 Automatic IFSD exchange as first exchange (T=1) * One of the following only: * + 10000 TPDU level exchanges with CCID * 20000 Short APDU level exchange with CCID * 40000 Short and Extended APDU level exchange with CCID * * 100000 USB Wake up signaling supported on card insertion * and removal. Must set bit 5 in bmAttributes in Configuration * descriptor if 100000 is set.*/ 0x3e, 0x00, 0x01, 0x00, /* u32 dwMaxCCIDMessageLength; For extended APDU in [261 + 10 * , 65544 + 10]. Otherwise the minimum is wMaxPacketSize of * the Bulk-OUT endpoint */ 0x12, 0x00, 0x01, 0x00, 0xFF, /* u8 bClassGetResponse; Significant only for CCID that * offers an APDU level for exchanges. Indicates the default * class value used by the CCID when it sends a Get Response * command to perform the transportation of an APDU by T=0 * protocol * FFh indicates that the CCID echos the class of the APDU. */ 0xFF, /* u8 bClassEnvelope; EAPDU only. Envelope command for T=0 */ 0x00, 0x00, /* u16 wLcdLayout; XXYY Number of lines (XX) and chars per * line for LCD display used for PIN entry. 0000 - no LCD */ 0x01, /* u8 bPINSupport; 01h PIN Verification, * 02h PIN Modification */ 0x01, /* u8 bMaxCCIDBusySlots; */ /* Interrupt-IN endpoint */ 0x07, /* u8 ep_bLength; */ /* u8 ep_bDescriptorType; Endpoint */ USB_DT_ENDPOINT, /* u8 ep_bEndpointAddress; IN Endpoint 1 */ 0x80 | CCID_INT_IN_EP, 0x03, /* u8 ep_bmAttributes; Interrupt */ 0x40, 0x00, /* u16 ep_wMaxPacketSize; */ 0xff, /* u8 ep_bInterval; */ /* Bulk-In endpoint */ 0x07, /* u8 ep_bLength; */ /* u8 ep_bDescriptorType; Endpoint */ USB_DT_ENDPOINT, /* u8 ep_bEndpointAddress; IN Endpoint 2 */ 0x80 | CCID_BULK_IN_EP, 0x02, /* u8 ep_bmAttributes; Bulk */ 0x40, 0x00, /* u16 ep_wMaxPacketSize; */ 0x00, /* u8 ep_bInterval; */ /* Bulk-Out endpoint */ 0x07, /* u8 ep_bLength; */ /* u8 ep_bDescriptorType; Endpoint */ USB_DT_ENDPOINT, /* u8 ep_bEndpointAddress; OUT Endpoint 3 */ CCID_BULK_OUT_EP, 0x02, /* u8 ep_bmAttributes; Bulk */ 0x40, 0x00, /* u16 ep_wMaxPacketSize; */ 0x00, /* u8 ep_bInterval; */ }; static bool ccid_has_pending_answers(USBCCIDState *s) { return s->pending_answers_num > 0; } static void ccid_clear_pending_answers(USBCCIDState *s) { s->pending_answers_num = 0; s->pending_answers_start = 0; s->pending_answers_end = 0; } static void ccid_print_pending_answers(USBCCIDState *s) { #ifdef DEBUG_CCID answer_t *answer; int i, count; printf("usb-ccid: pending answers:"); if (!ccid_has_pending_answers(s)) { printf(" empty\n"); return; } for (i = s->pending_answers_start, count=s->pending_answers_num ; count > 0; count--, i++) { answer = &s->pending_answers[i % PENDING_ANSWERS_NUM]; if (count == 1) { printf("%d:%d\n", answer->slot, answer->seq); } else { printf("%d:%d,", answer->slot, answer->seq); } } #endif } static void ccid_add_pending_answer(USBCCIDState *s, CCID_Header *hdr) { answer_t* answer; assert(s->pending_answers_num++ < PENDING_ANSWERS_NUM); answer = &s->pending_answers[(s->pending_answers_end++) % PENDING_ANSWERS_NUM]; answer->slot = hdr->bSlot; answer->seq = hdr->bSeq; ccid_print_pending_answers(s); } static void ccid_remove_pending_answer(USBCCIDState *s, uint8_t *slot, uint8_t *seq) { answer_t *answer; assert(s->pending_answers_num-- > 0); answer = &s->pending_answers[(s->pending_answers_start++) % PENDING_ANSWERS_NUM]; *slot = answer->slot; *seq = answer->seq; ccid_print_pending_answers(s); } static void ccid_bulk_in_clear(USBCCIDState *s) { s->bulk_in_pending_start = 0; s->bulk_in_pending_end = 0; s->bulk_in_pending_num = 0; } static void ccid_bulk_in_release(USBCCIDState *s) { assert(s->current_bulk_in != NULL); s->current_bulk_in->pos = 0; s->current_bulk_in = NULL; } static void ccid_bulk_in_get(USBCCIDState *s) { if (s->current_bulk_in != NULL || s->bulk_in_pending_num == 0) { return; } assert(s->bulk_in_pending_num > 0); s->bulk_in_pending_num--; s->current_bulk_in = &s->bulk_in_pending[ (s->bulk_in_pending_start++) % BULK_IN_PENDING_NUM]; } static uint8_t* ccid_reserve_recv_buf(USBCCIDState* s, uint16_t len) { bulk_in_t* bulk_in; DPRINTF(s, 4, "%s: QUEUE: reserve %d bytes\n", __func__, len); /* look for an existing element */ if (len > BULK_IN_BUF_SIZE) { printf("usb-ccid.c: %s: len larger then max (%d>%d). bailing out.\n", __func__, len, BULK_IN_BUF_SIZE); exit(-1); } if (s->bulk_in_pending_num >= BULK_IN_PENDING_NUM) { printf("usb-ccid.c: %s: No free bulk_in buffers. discarding message.\n", __func__); return NULL; } bulk_in = &s->bulk_in_pending[(s->bulk_in_pending_end++) % BULK_IN_PENDING_NUM]; s->bulk_in_pending_num++; bulk_in->len = len; return bulk_in->data; } static void ccid_reset(USBCCIDState *s) { ccid_bulk_in_clear(s); ccid_clear_pending_answers(s); } static void ccid_detach(USBCCIDState *s) { ccid_reset(s); if (s->auto_attach == 0 && s->dev.attached) { usb_device_detach(&s->dev); } } static void ccid_handle_reset(USBDevice *dev) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev, dev); DPRINTF(s, 1, "Reset\n"); ccid_reset(s); } static int ccid_handle_control(USBDevice *dev, int request, int value, int index, int length, uint8_t *data) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev, dev); int ret = 0; DPRINTF(s, 1, "got control %x, value %x\n",request, value); switch (request) { case DeviceRequest | USB_REQ_GET_STATUS: data[0] = (0 << USB_DEVICE_SELF_POWERED) | (dev->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP); data[1] = 0x00; ret = 2; break; case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: if (value == USB_DEVICE_REMOTE_WAKEUP) { dev->remote_wakeup = 0; } else { goto fail; } ret = 0; break; case DeviceOutRequest | USB_REQ_SET_FEATURE: if (value == USB_DEVICE_REMOTE_WAKEUP) { dev->remote_wakeup = 1; } else { goto fail; } ret = 0; break; case DeviceOutRequest | USB_REQ_SET_ADDRESS: dev->addr = value; ret = 0; break; case DeviceRequest | USB_REQ_GET_DESCRIPTOR: switch(value >> 8) { case USB_DT_DEVICE: memcpy(data, qemu_ccid_dev_descriptor, sizeof(qemu_ccid_dev_descriptor)); ret = sizeof(qemu_ccid_dev_descriptor); break; case USB_DT_CONFIG: memcpy(data, qemu_ccid_config_descriptor, sizeof(qemu_ccid_config_descriptor)); ret = sizeof(qemu_ccid_config_descriptor); break; case USB_DT_STRING: switch(value & 0xff) { case 0: /* language ids */ data[0] = 4; data[1] = 3; data[2] = 0x09; data[3] = 0x04; ret = 4; break; case 1: /* vendor description */ ret = set_usb_string(data, CCID_VENDOR_DESCRIPTION); break; case 2: /* product description */ ret = set_usb_string(data, CCID_PRODUCT_DESCRIPTION); break; case 3: /* serial number */ ret = set_usb_string(data, CCID_SERIAL_NUMBER_STRING); break; case 4: /* interface name */ ret = set_usb_string(data, CCID_INTERFACE_NAME); break; default: goto fail; } break; default: goto fail; } break; case DeviceRequest | USB_REQ_GET_CONFIGURATION: data[0] = 1; ret = 1; break; case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: /* Only one configuration - we just ignore the request */ ret = 0; break; case DeviceRequest | USB_REQ_GET_INTERFACE: data[0] = 0; ret = 1; break; case InterfaceOutRequest | USB_REQ_SET_INTERFACE: ret = 0; break; case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: ret = 0; break; /* Class specific requests. */ case InterfaceOutClass | CCID_CONTROL_ABORT: DPRINTF(s, 1, "ccid_control abort UNIMPLEMENTED\n"); ret = USB_RET_STALL; break; case InterfaceInClass | CCID_CONTROL_GET_CLOCK_FREQUENCIES: DPRINTF(s, 1, "ccid_control get clock frequencies UNIMPLEMENTED\n"); ret = USB_RET_STALL; break; case InterfaceInClass | CCID_CONTROL_GET_DATA_RATES: DPRINTF(s, 1, "ccid_control get data rates UNIMPLEMENTED\n"); ret = USB_RET_STALL; break; default: fail: DPRINTF(s, 1, "got unsupported/bogus control %x, value %x\n", request, value); ret = USB_RET_STALL; break; } return ret; } static bool ccid_card_inserted(USBCCIDState *s) { return s->bmSlotICCState & SLOT_0_STATE_MASK; } static uint8_t ccid_card_status(USBCCIDState *s) { return ccid_card_inserted(s) ? (s->powered ? ICC_STATUS_PRESENT_ACTIVE : ICC_STATUS_PRESENT_INACTIVE ) : ICC_STATUS_NOT_PRESENT; } static uint8_t ccid_calc_status(USBCCIDState *s) { /* page 55, 6.2.6, calculation of bStatus from bmICCStatus and bmCommandStatus */ uint8_t ret = ccid_card_status(s) | (s->bmCommandStatus << 6); DPRINTF(s, 4, "status = %d\n", ret); return ret; } static void ccid_reset_error_status(USBCCIDState* s) { s->bError = ERROR_CMD_NOT_SUPPORTED; s->bmCommandStatus = COMMAND_STATUS_NO_ERROR; } static void ccid_write_slot_status(USBCCIDState* s, CCID_Header* recv) { CCID_SlotStatus *h = (CCID_SlotStatus*)ccid_reserve_recv_buf(s, sizeof(CCID_SlotStatus)); if (h == NULL) { return; } h->b.hdr.bMessageType = CCID_MESSAGE_TYPE_RDR_to_PC_SlotStatus; h->b.hdr.dwLength = 0; h->b.hdr.bSlot = recv->bSlot; h->b.hdr.bSeq = recv->bSeq; h->b.bStatus = ccid_calc_status(s); h->b.bError = s->bError; h->bClockStatus = CLOCK_STATUS_RUNNING; ccid_reset_error_status(s); } static void ccid_write_parameters(USBCCIDState* s, CCID_Header* recv) { CCID_Parameter *h; uint32_t len = s->ulProtocolDataStructureSize; h = (CCID_Parameter *)ccid_reserve_recv_buf(s, sizeof(CCID_Parameter) + len); if (h == NULL) { return; } h->b.hdr.bMessageType = CCID_MESSAGE_TYPE_RDR_to_PC_Parameters; h->b.hdr.dwLength = 0; h->b.hdr.bSlot = recv->bSlot; h->b.hdr.bSeq = recv->bSeq; h->b.bStatus = ccid_calc_status(s); h->b.bError = s->bError; h->bProtocolNum = s->bProtocolNum; memcpy(h->abProtocolDataStructure, s->abProtocolDataStructure, len); ccid_reset_error_status(s); } static void ccid_write_data_block( USBCCIDState* s, uint8_t slot, uint8_t seq, const uint8_t* data, uint32_t len) { CCID_DataBlock *p; p = (CCID_DataBlock*)ccid_reserve_recv_buf(s, sizeof(*p) + len); if (p == NULL) { return; } p->b.hdr.bMessageType = CCID_MESSAGE_TYPE_RDR_to_PC_DataBlock; p->b.hdr.dwLength = len; p->b.hdr.bSlot = slot; p->b.hdr.bSeq = seq; p->b.bStatus = ccid_calc_status(s); p->b.bError = s->bError; #ifdef DEBUG_CCID if (p->b.bError) { DPRINTF(s, 4, "error %d", p->b.bError); } #endif memcpy(p->abData, data, len); ccid_reset_error_status(s); } static void ccid_write_data_block_answer(USBCCIDState* s, const uint8_t* data, uint32_t len) { uint8_t seq; uint8_t slot; if (!ccid_has_pending_answers(s)) { abort(); } ccid_remove_pending_answer(s, &slot, &seq); ccid_write_data_block(s, slot, seq, data, len); } static void ccid_write_data_block_atr(USBCCIDState* s, CCID_Header* recv) { const uint8_t *atr = NULL; uint32_t len = 0; if (s->card) { atr = s->cardinfo->get_atr(s->card, &len); } ccid_write_data_block(s, recv->bSlot, recv->bSeq, atr, len); } static void ccid_set_parameters(USBCCIDState *s, CCID_Header *recv) { CCID_SetParameter *ph = (CCID_SetParameter *) recv; uint32_t len = 0; if (ph->bProtocolNum == 0) { len = 5; } if (ph->bProtocolNum == 1) { len = 7; } if (len == 0) { s->bmCommandStatus = COMMAND_STATUS_FAILED; s->bError = 7; /* Protocol invalid or not supported */ return; } s->bProtocolNum = ph->bProtocolNum; memcpy(s->abProtocolDataStructure, ph->abProtocolDataStructure, len); s->ulProtocolDataStructureSize = len; DPRINTF(s, 1, "%s: using len %d\n", __func__, len); } /* must be 5 bytes for T=0, 7 bytes for T=1 * See page 52 */ static const uint8_t abDefaultProtocolDataStructure[7] = { 0x77, 0x00, 0x00, 0x00, 0x00, 0xfe /*IFSC*/, 0x00 /*NAD*/ }; static void ccid_reset_parameters(USBCCIDState *s) { uint32_t len = sizeof(abDefaultProtocolDataStructure); s->bProtocolNum = 1; /* T=1 */ s->ulProtocolDataStructureSize = len; memcpy(s->abProtocolDataStructure, abDefaultProtocolDataStructure, len); } static void ccid_report_error_failed(USBCCIDState *s, uint8_t error) { s->bmCommandStatus = COMMAND_STATUS_FAILED; s->bError = error; } /* NOTE: only a single slot is supported (SLOT_0) */ static void ccid_on_slot_change(USBCCIDState* s, bool full) { /* RDR_to_PC_NotifySlotChange, 6.3.1 page 56 */ uint8_t current = s->bmSlotICCState; if (full) { s->bmSlotICCState |= SLOT_0_STATE_MASK; } else { s->bmSlotICCState &= ~SLOT_0_STATE_MASK; } if (current != s->bmSlotICCState) { s->bmSlotICCState |= SLOT_0_CHANGED_MASK; } s->notify_slot_change = true; } static void ccid_write_data_block_error( USBCCIDState *s, uint8_t slot, uint8_t seq) { ccid_write_data_block(s, slot, seq, NULL, 0); } static void ccid_on_apdu_from_guest(USBCCIDState *s, CCID_XferBlock *recv) { if (ccid_card_status(s) != ICC_STATUS_PRESENT_ACTIVE) { DPRINTF(s, 1, "usb-ccid: not sending apdu to client, no card connected\n"); ccid_write_data_block_error(s, recv->hdr.bSlot, recv->hdr.bSeq); return; } DPRINTF(s, 1, "%s: seq %d, len %d\n", __FUNCTION__, recv->hdr.bSeq, recv->hdr.dwLength); ccid_add_pending_answer(s, (CCID_Header*)recv); if (s->card) { s->cardinfo->apdu_from_guest(s->card, recv->abData, recv->hdr.dwLength); } else { printf("warning: discarded apdu\n"); } } static const char* ccid_header_message_type_string(uint8_t mtype) { switch (mtype) { case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOn: return "PC_to_RDR_IccPowerOn"; case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOff: return "PC_to_RDR_IccPowerOff"; case CCID_MESSAGE_TYPE_PC_to_RDR_GetSlotStatus: return "PC_to_RDR_GetSlotStatus"; case CCID_MESSAGE_TYPE_PC_to_RDR_XfrBlock: return "PC_to_RDR_XfrBlock"; case CCID_MESSAGE_TYPE_PC_to_RDR_GetParameters: return "PC_to_RDR_GetParameters"; case CCID_MESSAGE_TYPE_PC_to_RDR_ResetParameters: return "PC_to_RDR_ResetParameters"; case CCID_MESSAGE_TYPE_PC_to_RDR_SetParameters: return "PC_to_RDR_SetParameters"; case CCID_MESSAGE_TYPE_PC_to_RDR_Escape: return "PC_to_RDR_Escape"; case CCID_MESSAGE_TYPE_PC_to_RDR_IccClock: return "PC_to_RDR_IccClock"; case CCID_MESSAGE_TYPE_PC_to_RDR_T0APDU: return "PC_to_RDR_T0APDU"; case CCID_MESSAGE_TYPE_PC_to_RDR_Secure: return "PC_to_RDR_Secure"; case CCID_MESSAGE_TYPE_PC_to_RDR_Mechanical: return "PC_to_RDR_Mechanical"; case CCID_MESSAGE_TYPE_PC_to_RDR_Abort: return "PC_to_RDR_Abort"; case CCID_MESSAGE_TYPE_PC_to_RDR_SetDataRateAndClockFrequency: return "PC_to_RDR_SetDataRateAndClockFrequency"; }; return ""; } static void ccid_handle_bulk_out(USBCCIDState *s, USBPacket *p) { CCID_Header* ccid_header; assert(p->len + s->bulk_out_pos <= BULK_OUT_DATA_SIZE); ccid_header = (CCID_Header*)s->bulk_out_data; memcpy(s->bulk_out_data + s->bulk_out_pos, p->data, p->len); s->bulk_out_pos += p->len; if (p->len == 64) { DPRINTF(s, 4, "usb-ccid: bulk_in: expecting more packets (%d/%d)\n", p->len, ccid_header->dwLength); return; } if (s->bulk_out_pos < 10) { DPRINTF(s, 1, "%s: bad USB_TOKEN_OUT length, should be at least 10 bytes\n", __func__); } else { DPRINTF(s, 3, "%s %x - %s\n", __func__, ccid_header->bMessageType, ccid_header_message_type_string(ccid_header->bMessageType)); switch (ccid_header->bMessageType) { case CCID_MESSAGE_TYPE_PC_to_RDR_GetSlotStatus: ccid_write_slot_status(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOn: DPRINTF(s, 1, "PowerOn: %d, %s\n", ((CCID_IccPowerOn*)(ccid_header))->bPowerSelect, (ccid_card_inserted(s) ? "with card" : "without card")); s->powered = true; if (!ccid_card_inserted(s)) { ccid_report_error_failed(s, ERROR_ICC_MUTE); } /* atr is written regardless of error. */ ccid_write_data_block_atr(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOff: ccid_reset_error_status(s); s->powered = false; ccid_write_slot_status(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_XfrBlock: ccid_on_apdu_from_guest(s, (CCID_XferBlock*)s->bulk_out_data); break; case CCID_MESSAGE_TYPE_PC_to_RDR_SetParameters: ccid_reset_error_status(s); ccid_set_parameters(s, ccid_header); ccid_write_parameters(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_ResetParameters: ccid_reset_error_status(s); ccid_reset_parameters(s); ccid_write_parameters(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_GetParameters: ccid_reset_error_status(s); ccid_write_parameters(s, ccid_header); break; default: DPRINTF(s, 1, "handle_data: ERROR: unhandled message type %Xh\n", ccid_header->bMessageType); /* the caller is expecting the device to respond, tell it we * do't support the operation */ ccid_report_error_failed(s, ERROR_CMD_NOT_SUPPORTED); ccid_write_slot_status(s, ccid_header); break; } } s->bulk_out_pos = 0; } static int ccid_bulk_in_copy_out(USBCCIDState *s, uint8_t *data, int len) { int ret = 0; assert(len>0); ccid_bulk_in_get(s); if (s->current_bulk_in != NULL) { ret = MIN(s->current_bulk_in->len - s->current_bulk_in->pos, len); memcpy(data, s->current_bulk_in->data + s->current_bulk_in->pos, ret); s->current_bulk_in->pos += ret; if (s->current_bulk_in->pos == s->current_bulk_in->len) { ccid_bulk_in_release(s); } } else { ret = USB_RET_NAK; /* return when device has no data - usb 2.0 spec Table 8-4 */ } if (ret > 0) { DPRINTF(s, 3, "%s: %d/%d req/act to guest (BULK_IN)\n", __func__, len, ret); } if (ret != USB_RET_NAK && ret < len) { DPRINTF(s, 1, "%s: returning short (EREMOTEIO) %d < %d\n", __func__, ret, len); } return ret; } static int ccid_handle_data(USBDevice *dev, USBPacket *p) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev, dev); int ret = 0; uint8_t *data = p->data; int len = p->len; switch (p->pid) { case USB_TOKEN_OUT: ccid_handle_bulk_out(s, p); break; case USB_TOKEN_IN: switch (p->devep & 0xf) { case CCID_BULK_IN_EP: if (!len) { ret = USB_RET_NAK; } else { ret = ccid_bulk_in_copy_out(s, data, len); } break; case CCID_INT_IN_EP: if (s->notify_slot_change) { /* page 56, RDR_to_PC_NotifySlotChange */ data[0] = CCID_MESSAGE_TYPE_RDR_to_PC_NotifySlotChange; data[1] = s->bmSlotICCState; ret = 2; s->notify_slot_change = false; s->bmSlotICCState &= ~SLOT_0_CHANGED_MASK; DPRINTF(s, 2, "handle_data: int_in: notify_slot_change %X, requested len %d\n", s->bmSlotICCState, len); } break; default: DPRINTF(s, 1, "Bad endpoint\n"); break; } break; default: DPRINTF(s, 1, "Bad token\n"); ret = USB_RET_STALL; break; } return ret; } static void ccid_handle_destroy(USBDevice *dev) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev, dev); ccid_bulk_in_clear(s); } static void ccid_flush_pending_answers(USBCCIDState *s) { while (ccid_has_pending_answers(s)) { ccid_write_data_block_answer(s, NULL, 0); } } static answer_t *ccid_peek_next_answer(USBCCIDState *s) { return s->pending_answers_num == 0 ? NULL : &s->pending_answers[s->pending_answers_start % PENDING_ANSWERS_NUM]; } static void ccid_bus_dev_print(Monitor *mon, DeviceState *qdev, int indent) { CCIDCardState *card = DO_UPCAST(CCIDCardState, qdev, qdev); CCIDCardInfo *info = DO_UPCAST(CCIDCardInfo, qdev, qdev->info); if (info->print) { info->print(mon, card, indent); } } struct CCIDBus { BusState qbus; }; static struct BusInfo ccid_bus_info = { .name = "ccid-bus", .size = sizeof(CCIDBus), .print_dev = ccid_bus_dev_print, }; static CCIDBus *ccid_bus_new(DeviceState *dev) { CCIDBus *bus; bus = FROM_QBUS(CCIDBus, qbus_create(&ccid_bus_info, dev, NULL)); bus->qbus.allow_hotplug = 1; return bus; } void ccid_card_send_apdu_to_guest(CCIDCardState *card, uint8_t* apdu, uint32_t len) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev.qdev, card->qdev.parent_bus->parent); answer_t *answer; if (!ccid_has_pending_answers(s)) { DPRINTF(s, 1, "CCID ERROR: got an APDU without pending answers\n"); return; } s->bmCommandStatus = COMMAND_STATUS_NO_ERROR; answer = ccid_peek_next_answer(s); if (answer == NULL) { abort(); } DPRINTF(s, 1, "APDU returned to guest %d (answer seq %d, slot %d)\n", len, answer->seq, answer->slot); ccid_write_data_block_answer(s, apdu, len); } void ccid_card_card_removed(CCIDCardState *card) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev.qdev, card->qdev.parent_bus->parent); ccid_on_slot_change(s, false); ccid_flush_pending_answers(s); ccid_reset(s); } int ccid_card_ccid_attach(CCIDCardState *card) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev.qdev, card->qdev.parent_bus->parent); DPRINTF(s, 1, "CCID Attach\n"); if (s->auto_attach==0 && !s->dev.attached) { usb_device_attach(&s->dev); return 0; } else { if (s->migration_state == MIGRATION_MIGRATED) { s->migration_state = MIGRATION_NONE; return 0; } else { return -1; } } } void ccid_card_ccid_detach(CCIDCardState *card) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev.qdev, card->qdev.parent_bus->parent); DPRINTF(s, 1, "CCID Detach\n"); if (ccid_card_inserted(s)) { ccid_on_slot_change(s, false); } ccid_detach(s); } void ccid_card_card_error(CCIDCardState *card, uint64_t error) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev.qdev, card->qdev.parent_bus->parent); s->bmCommandStatus = COMMAND_STATUS_FAILED; s->last_answer_error = error; DPRINTF(s, 1, "VSC_Error: %lX\n", s->last_answer_error); ccid_write_data_block_answer(s, NULL, 0); } void ccid_card_card_inserted(CCIDCardState *card) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev.qdev, card->qdev.parent_bus->parent); s->bmCommandStatus = COMMAND_STATUS_NO_ERROR; ccid_flush_pending_answers(s); ccid_on_slot_change(s, true); } static int ccid_card_exit(DeviceState *qdev) { CCIDCardState *card = DO_UPCAST(CCIDCardState, qdev, qdev); CCIDCardInfo *info = DO_UPCAST(CCIDCardInfo, qdev, qdev->info); USBCCIDState *s = DO_UPCAST(USBCCIDState, dev.qdev, card->qdev.parent_bus->parent); if (ccid_card_inserted(s)) { ccid_card_card_removed(card); } if (info->exitfn) { return info->exitfn(card); } return 0; } static int ccid_card_init(DeviceState *qdev, DeviceInfo *base) { CCIDCardState *card = DO_UPCAST(CCIDCardState, qdev, qdev); CCIDCardInfo *info = DO_UPCAST(CCIDCardInfo, qdev, base); USBCCIDState *s = DO_UPCAST(USBCCIDState, dev.qdev, card->qdev.parent_bus->parent); s->card = card; s->cardinfo = info; if (info->initfn) { return info->initfn(card); } return 0; } void ccid_card_qdev_register(CCIDCardInfo *card) { card->qdev.bus_info = &ccid_bus_info; card->qdev.init = ccid_card_init; card->qdev.exit = ccid_card_exit; qdev_register(&card->qdev); } static int ccid_initfn(USBDevice *dev) { USBCCIDState *s = DO_UPCAST(USBCCIDState, dev, dev); s->bus = ccid_bus_new(&dev->qdev); s->card = NULL; s->cardinfo = NULL; s->migration_state = MIGRATION_NONE; dev->auto_attach = s->auto_attach; s->migration_target_ip = 0; s->migration_target_port = 0; s->dev.speed = USB_SPEED_FULL; s->notify_slot_change = false; s->powered = true; s->pending_answers_num = 0; s->last_answer_error = 0; s->bulk_in_pending_start = 0; s->bulk_in_pending_end = 0; s->current_bulk_in = NULL; ccid_reset_error_status(s); s->bulk_out_pos = 0; ccid_reset_parameters(s); ccid_reset(s); return 0; } static int ccid_post_load(void *opaque, int version_id) { USBCCIDState *s = opaque; if (s->auto_attach == 0 && s->attached_vmstate && !s->dev.attached) { usb_device_attach(&s->dev); } // This must be done after usb_device_attach, which sets state to ATTACHED, // while it must be DEFAULT in order to accept packets (like it is after // reset, but reset will reset our addr and call our reset handler which // may change state, and we don't want to do that when migrating). s->dev.state = s->state_vmstate; return 0; } static void ccid_pre_save(void *opaque) { USBCCIDState *s = opaque; s->attached_vmstate = s->dev.attached; s->state_vmstate = s->dev.state; if (s->dev.attached) { // migrating an open device, ignore reconnection CHR_EVENT to avoid an // erronous detach. s->migration_state = MIGRATION_MIGRATED; } } static VMStateDescription bulk_in_t_vmstate = { .name = "bulk_in_t", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField []) { VMSTATE_BUFFER(data, bulk_in_t), VMSTATE_UINT32(len, bulk_in_t), VMSTATE_UINT32(pos, bulk_in_t), VMSTATE_END_OF_LIST() } }; static VMStateDescription answer_t_vmstate = { .name = "answer_t", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField []) { VMSTATE_UINT8(slot, answer_t), VMSTATE_UINT8(seq, answer_t), VMSTATE_END_OF_LIST() } }; static VMStateDescription usb_device_vmstate = { .name = "usb_device", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField []) { //int speed; VMSTATE_UINT8(addr, USBDevice), //VMSTATE_BUFFER(product_desc, USBDevice), // char, not uint8_t - casting error //int auto_attach; //int attached; //int state; VMSTATE_BUFFER(setup_buf, USBDevice), VMSTATE_BUFFER(data_buf, USBDevice), // int remote_wakeup; // int setup_state; // int setup_len; // int setup_index; VMSTATE_END_OF_LIST() } }; static VMStateDescription ccid_vmstate = { .name = CCID_DEV_NAME, .version_id = 1, .minimum_version_id = 1, .post_load = ccid_post_load, .pre_save = ccid_pre_save, .fields = (VMStateField []) { VMSTATE_STRUCT(dev, USBCCIDState, 1, usb_device_vmstate, USBDevice), VMSTATE_UINT8(debug, USBCCIDState), VMSTATE_UINT8(auto_attach, USBCCIDState), VMSTATE_BUFFER(bulk_out_data, USBCCIDState), VMSTATE_UINT32(bulk_out_pos, USBCCIDState), VMSTATE_UINT8(bmSlotICCState, USBCCIDState), VMSTATE_UINT8(powered, USBCCIDState), VMSTATE_UINT8(notify_slot_change, USBCCIDState), VMSTATE_UINT64(last_answer_error, USBCCIDState), VMSTATE_UINT8(bError, USBCCIDState), VMSTATE_UINT8(bmCommandStatus, USBCCIDState), VMSTATE_UINT8(bProtocolNum, USBCCIDState), VMSTATE_BUFFER(abProtocolDataStructure, USBCCIDState), VMSTATE_UINT32(ulProtocolDataStructureSize, USBCCIDState), VMSTATE_STRUCT_ARRAY(bulk_in_pending, USBCCIDState, BULK_IN_PENDING_NUM, 1, bulk_in_t_vmstate, bulk_in_t), VMSTATE_UINT32(bulk_in_pending_start, USBCCIDState), VMSTATE_UINT32(bulk_in_pending_end, USBCCIDState), VMSTATE_STRUCT_ARRAY(pending_answers, USBCCIDState, PENDING_ANSWERS_NUM, 1, answer_t_vmstate, answer_t), VMSTATE_UINT32(pending_answers_num, USBCCIDState), VMSTATE_UINT8(migration_state, USBCCIDState), VMSTATE_UINT8(attached_vmstate, USBCCIDState), VMSTATE_UINT32(state_vmstate, USBCCIDState), VMSTATE_END_OF_LIST() } }; static struct USBDeviceInfo ccid_info = { .product_desc = "QEMU USB CCID", .qdev.name = CCID_DEV_NAME, .qdev.size = sizeof(USBCCIDState), .qdev.vmsd = &ccid_vmstate, .init = ccid_initfn, .handle_packet = usb_generic_handle_packet, .handle_reset = ccid_handle_reset, .handle_control = ccid_handle_control, .handle_data = ccid_handle_data, .handle_destroy = ccid_handle_destroy, .usbdevice_name = "ccid", .qdev.props = (Property[]) { DEFINE_PROP_UINT8("auto_attach", USBCCIDState, auto_attach, 0), DEFINE_PROP_UINT8("debug", USBCCIDState, debug, 0), DEFINE_PROP_END_OF_LIST(), }, }; void do_ccid_param(Monitor *mon, const QDict *qdict) { const char *id = qdict_get_str(qdict, "id"); const char *name = qdict_get_str(qdict, "name"); int value = qdict_get_int(qdict, "value"); DeviceState *dev = qdev_find_recursive(NULL, id); USBCCIDState *s = DO_UPCAST(USBCCIDState, dev.qdev, dev); int i; uint8_t before, after; DescriptorParam *param; uint8_t *addr; if (dev == NULL) { printf("%s: can't find device %s\n", __func__, id); return; } for (param = descriptor_params; param->name != NULL; ++param) { if (strcmp(param->name, name) == 0) { break; } } if (param->name == NULL) { printf("%s: can't find param %s\n", __func__, name); return; } addr = qemu_ccid_config_descriptor + CCID_CONFIG_DESCRIPTOR_CLASS_OFFSET + param->offset; for (i = 0 ; i < param->size ; ++i, ++addr) { before = *addr; after = (value >> (8*i)) & 0xff; *addr = after; printf("%02X: %02X -> %02X\n", i + param->offset, before, after); } ccid_reset_parameters(s); #if 0 for (i = 0; i < CCID_CLASS_LENGTH; ++i) { if (i%20 == 0) { printf("\n"); } printf("%2X ", qemu_ccid_config_descriptor[ CCID_CONFIG_DESCRIPTOR_CLASS_OFFSET+i]); } printf("\n"); #endif /* NOTE: the change affects all devices, we just reattach the specified * one.. */ if (s->dev.attached) { usb_device_detach(&s->dev); /* does this work one after the other? */ usb_device_attach(&s->dev); } } static void ccid_register_devices(void) { usb_qdev_register(&ccid_info); } device_init(ccid_register_devices)