summaryrefslogtreecommitdiff
path: root/target-sparc/ldst_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target-sparc/ldst_helper.c')
-rw-r--r--target-sparc/ldst_helper.c2434
1 files changed, 2434 insertions, 0 deletions
diff --git a/target-sparc/ldst_helper.c b/target-sparc/ldst_helper.c
new file mode 100644
index 000000000..1fb3996fd
--- /dev/null
+++ b/target-sparc/ldst_helper.c
@@ -0,0 +1,2434 @@
+/*
+ * Helpers for loads and stores
+ *
+ * Copyright (c) 2003-2005 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "cpu.h"
+#include "dyngen-exec.h"
+#include "helper.h"
+
+#if !defined(CONFIG_USER_ONLY)
+#include "softmmu_exec.h"
+#endif
+
+//#define DEBUG_MMU
+//#define DEBUG_MXCC
+//#define DEBUG_UNALIGNED
+//#define DEBUG_UNASSIGNED
+//#define DEBUG_ASI
+//#define DEBUG_CACHE_CONTROL
+
+#ifdef DEBUG_MMU
+#define DPRINTF_MMU(fmt, ...) \
+ do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF_MMU(fmt, ...) do {} while (0)
+#endif
+
+#ifdef DEBUG_MXCC
+#define DPRINTF_MXCC(fmt, ...) \
+ do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF_MXCC(fmt, ...) do {} while (0)
+#endif
+
+#ifdef DEBUG_ASI
+#define DPRINTF_ASI(fmt, ...) \
+ do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
+#endif
+
+#ifdef DEBUG_CACHE_CONTROL
+#define DPRINTF_CACHE_CONTROL(fmt, ...) \
+ do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
+#endif
+
+#ifdef TARGET_SPARC64
+#ifndef TARGET_ABI32
+#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
+#else
+#define AM_CHECK(env1) (1)
+#endif
+#endif
+
+#define DT0 (env->dt0)
+#define DT1 (env->dt1)
+#define QT0 (env->qt0)
+#define QT1 (env->qt1)
+
+#if !defined(CONFIG_USER_ONLY)
+static void do_unassigned_access(target_phys_addr_t addr, int is_write,
+ int is_exec, int is_asi, int size);
+#else
+#ifdef TARGET_SPARC64
+static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
+ int is_asi, int size);
+#endif
+#endif
+
+#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
+/* Calculates TSB pointer value for fault page size 8k or 64k */
+static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
+ uint64_t tag_access_register,
+ int page_size)
+{
+ uint64_t tsb_base = tsb_register & ~0x1fffULL;
+ int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
+ int tsb_size = tsb_register & 0xf;
+
+ /* discard lower 13 bits which hold tag access context */
+ uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
+
+ /* now reorder bits */
+ uint64_t tsb_base_mask = ~0x1fffULL;
+ uint64_t va = tag_access_va;
+
+ /* move va bits to correct position */
+ if (page_size == 8*1024) {
+ va >>= 9;
+ } else if (page_size == 64*1024) {
+ va >>= 12;
+ }
+
+ if (tsb_size) {
+ tsb_base_mask <<= tsb_size;
+ }
+
+ /* calculate tsb_base mask and adjust va if split is in use */
+ if (tsb_split) {
+ if (page_size == 8*1024) {
+ va &= ~(1ULL << (13 + tsb_size));
+ } else if (page_size == 64*1024) {
+ va |= (1ULL << (13 + tsb_size));
+ }
+ tsb_base_mask <<= 1;
+ }
+
+ return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
+}
+
+/* Calculates tag target register value by reordering bits
+ in tag access register */
+static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
+{
+ return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
+}
+
+static void replace_tlb_entry(SparcTLBEntry *tlb,
+ uint64_t tlb_tag, uint64_t tlb_tte,
+ CPUState *env1)
+{
+ target_ulong mask, size, va, offset;
+
+ /* flush page range if translation is valid */
+ if (TTE_IS_VALID(tlb->tte)) {
+
+ mask = 0xffffffffffffe000ULL;
+ mask <<= 3 * ((tlb->tte >> 61) & 3);
+ size = ~mask + 1;
+
+ va = tlb->tag & mask;
+
+ for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
+ tlb_flush_page(env1, va + offset);
+ }
+ }
+
+ tlb->tag = tlb_tag;
+ tlb->tte = tlb_tte;
+}
+
+static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
+ const char *strmmu, CPUState *env1)
+{
+ unsigned int i;
+ target_ulong mask;
+ uint64_t context;
+
+ int is_demap_context = (demap_addr >> 6) & 1;
+
+ /* demap context */
+ switch ((demap_addr >> 4) & 3) {
+ case 0: /* primary */
+ context = env1->dmmu.mmu_primary_context;
+ break;
+ case 1: /* secondary */
+ context = env1->dmmu.mmu_secondary_context;
+ break;
+ case 2: /* nucleus */
+ context = 0;
+ break;
+ case 3: /* reserved */
+ default:
+ return;
+ }
+
+ for (i = 0; i < 64; i++) {
+ if (TTE_IS_VALID(tlb[i].tte)) {
+
+ if (is_demap_context) {
+ /* will remove non-global entries matching context value */
+ if (TTE_IS_GLOBAL(tlb[i].tte) ||
+ !tlb_compare_context(&tlb[i], context)) {
+ continue;
+ }
+ } else {
+ /* demap page
+ will remove any entry matching VA */
+ mask = 0xffffffffffffe000ULL;
+ mask <<= 3 * ((tlb[i].tte >> 61) & 3);
+
+ if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
+ continue;
+ }
+
+ /* entry should be global or matching context value */
+ if (!TTE_IS_GLOBAL(tlb[i].tte) &&
+ !tlb_compare_context(&tlb[i], context)) {
+ continue;
+ }
+ }
+
+ replace_tlb_entry(&tlb[i], 0, 0, env1);
+#ifdef DEBUG_MMU
+ DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
+ dump_mmu(stdout, fprintf, env1);
+#endif
+ }
+ }
+}
+
+static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
+ uint64_t tlb_tag, uint64_t tlb_tte,
+ const char *strmmu, CPUState *env1)
+{
+ unsigned int i, replace_used;
+
+ /* Try replacing invalid entry */
+ for (i = 0; i < 64; i++) {
+ if (!TTE_IS_VALID(tlb[i].tte)) {
+ replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
+#ifdef DEBUG_MMU
+ DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
+ dump_mmu(stdout, fprintf, env1);
+#endif
+ return;
+ }
+ }
+
+ /* All entries are valid, try replacing unlocked entry */
+
+ for (replace_used = 0; replace_used < 2; ++replace_used) {
+
+ /* Used entries are not replaced on first pass */
+
+ for (i = 0; i < 64; i++) {
+ if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
+
+ replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
+#ifdef DEBUG_MMU
+ DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
+ strmmu, (replace_used ? "used" : "unused"), i);
+ dump_mmu(stdout, fprintf, env1);
+#endif
+ return;
+ }
+ }
+
+ /* Now reset used bit and search for unused entries again */
+
+ for (i = 0; i < 64; i++) {
+ TTE_SET_UNUSED(tlb[i].tte);
+ }
+ }
+
+#ifdef DEBUG_MMU
+ DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
+#endif
+ /* error state? */
+}
+
+#endif
+
+static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
+{
+#ifdef TARGET_SPARC64
+ if (AM_CHECK(env1)) {
+ addr &= 0xffffffffULL;
+ }
+#endif
+ return addr;
+}
+
+/* returns true if access using this ASI is to have address translated by MMU
+ otherwise access is to raw physical address */
+static inline int is_translating_asi(int asi)
+{
+#ifdef TARGET_SPARC64
+ /* Ultrasparc IIi translating asi
+ - note this list is defined by cpu implementation
+ */
+ switch (asi) {
+ case 0x04 ... 0x11:
+ case 0x16 ... 0x19:
+ case 0x1E ... 0x1F:
+ case 0x24 ... 0x2C:
+ case 0x70 ... 0x73:
+ case 0x78 ... 0x79:
+ case 0x80 ... 0xFF:
+ return 1;
+
+ default:
+ return 0;
+ }
+#else
+ /* TODO: check sparc32 bits */
+ return 0;
+#endif
+}
+
+static inline target_ulong asi_address_mask(CPUState *env1,
+ int asi, target_ulong addr)
+{
+ if (is_translating_asi(asi)) {
+ return address_mask(env, addr);
+ } else {
+ return addr;
+ }
+}
+
+void helper_check_align(target_ulong addr, uint32_t align)
+{
+ if (addr & align) {
+#ifdef DEBUG_UNALIGNED
+ printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
+ "\n", addr, env->pc);
+#endif
+ helper_raise_exception(env, TT_UNALIGNED);
+ }
+}
+
+#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
+ defined(DEBUG_MXCC)
+static void dump_mxcc(CPUState *env)
+{
+ printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
+ "\n",
+ env->mxccdata[0], env->mxccdata[1],
+ env->mxccdata[2], env->mxccdata[3]);
+ printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
+ "\n"
+ " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
+ "\n",
+ env->mxccregs[0], env->mxccregs[1],
+ env->mxccregs[2], env->mxccregs[3],
+ env->mxccregs[4], env->mxccregs[5],
+ env->mxccregs[6], env->mxccregs[7]);
+}
+#endif
+
+#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
+ && defined(DEBUG_ASI)
+static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
+ uint64_t r1)
+{
+ switch (size) {
+ case 1:
+ DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
+ addr, asi, r1 & 0xff);
+ break;
+ case 2:
+ DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
+ addr, asi, r1 & 0xffff);
+ break;
+ case 4:
+ DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
+ addr, asi, r1 & 0xffffffff);
+ break;
+ case 8:
+ DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
+ addr, asi, r1);
+ break;
+ }
+}
+#endif
+
+#ifndef TARGET_SPARC64
+#ifndef CONFIG_USER_ONLY
+
+
+/* Leon3 cache control */
+
+static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size)
+{
+ DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
+ addr, val, size);
+
+ if (size != 4) {
+ DPRINTF_CACHE_CONTROL("32bits only\n");
+ return;
+ }
+
+ switch (addr) {
+ case 0x00: /* Cache control */
+
+ /* These values must always be read as zeros */
+ val &= ~CACHE_CTRL_FD;
+ val &= ~CACHE_CTRL_FI;
+ val &= ~CACHE_CTRL_IB;
+ val &= ~CACHE_CTRL_IP;
+ val &= ~CACHE_CTRL_DP;
+
+ env->cache_control = val;
+ break;
+ case 0x04: /* Instruction cache configuration */
+ case 0x08: /* Data cache configuration */
+ /* Read Only */
+ break;
+ default:
+ DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
+ break;
+ };
+}
+
+static uint64_t leon3_cache_control_ld(target_ulong addr, int size)
+{
+ uint64_t ret = 0;
+
+ if (size != 4) {
+ DPRINTF_CACHE_CONTROL("32bits only\n");
+ return 0;
+ }
+
+ switch (addr) {
+ case 0x00: /* Cache control */
+ ret = env->cache_control;
+ break;
+
+ /* Configuration registers are read and only always keep those
+ predefined values */
+
+ case 0x04: /* Instruction cache configuration */
+ ret = 0x10220000;
+ break;
+ case 0x08: /* Data cache configuration */
+ ret = 0x18220000;
+ break;
+ default:
+ DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
+ break;
+ };
+ DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
+ addr, ret, size);
+ return ret;
+}
+
+uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
+{
+ uint64_t ret = 0;
+#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
+ uint32_t last_addr = addr;
+#endif
+
+ helper_check_align(addr, size - 1);
+ switch (asi) {
+ case 2: /* SuperSparc MXCC registers and Leon3 cache control */
+ switch (addr) {
+ case 0x00: /* Leon3 Cache Control */
+ case 0x08: /* Leon3 Instruction Cache config */
+ case 0x0C: /* Leon3 Date Cache config */
+ if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
+ ret = leon3_cache_control_ld(addr, size);
+ }
+ break;
+ case 0x01c00a00: /* MXCC control register */
+ if (size == 8) {
+ ret = env->mxccregs[3];
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ case 0x01c00a04: /* MXCC control register */
+ if (size == 4) {
+ ret = env->mxccregs[3];
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ case 0x01c00c00: /* Module reset register */
+ if (size == 8) {
+ ret = env->mxccregs[5];
+ /* should we do something here? */
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ case 0x01c00f00: /* MBus port address register */
+ if (size == 8) {
+ ret = env->mxccregs[7];
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ default:
+ DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
+ size);
+ break;
+ }
+ DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
+ "addr = %08x -> ret = %" PRIx64 ","
+ "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
+#ifdef DEBUG_MXCC
+ dump_mxcc(env);
+#endif
+ break;
+ case 3: /* MMU probe */
+ {
+ int mmulev;
+
+ mmulev = (addr >> 8) & 15;
+ if (mmulev > 4) {
+ ret = 0;
+ } else {
+ ret = mmu_probe(env, addr, mmulev);
+ }
+ DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
+ addr, mmulev, ret);
+ }
+ break;
+ case 4: /* read MMU regs */
+ {
+ int reg = (addr >> 8) & 0x1f;
+
+ ret = env->mmuregs[reg];
+ if (reg == 3) { /* Fault status cleared on read */
+ env->mmuregs[3] = 0;
+ } else if (reg == 0x13) { /* Fault status read */
+ ret = env->mmuregs[3];
+ } else if (reg == 0x14) { /* Fault address read */
+ ret = env->mmuregs[4];
+ }
+ DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
+ }
+ break;
+ case 5: /* Turbosparc ITLB Diagnostic */
+ case 6: /* Turbosparc DTLB Diagnostic */
+ case 7: /* Turbosparc IOTLB Diagnostic */
+ break;
+ case 9: /* Supervisor code access */
+ switch (size) {
+ case 1:
+ ret = ldub_code(addr);
+ break;
+ case 2:
+ ret = lduw_code(addr);
+ break;
+ default:
+ case 4:
+ ret = ldl_code(addr);
+ break;
+ case 8:
+ ret = ldq_code(addr);
+ break;
+ }
+ break;
+ case 0xa: /* User data access */
+ switch (size) {
+ case 1:
+ ret = ldub_user(addr);
+ break;
+ case 2:
+ ret = lduw_user(addr);
+ break;
+ default:
+ case 4:
+ ret = ldl_user(addr);
+ break;
+ case 8:
+ ret = ldq_user(addr);
+ break;
+ }
+ break;
+ case 0xb: /* Supervisor data access */
+ switch (size) {
+ case 1:
+ ret = ldub_kernel(addr);
+ break;
+ case 2:
+ ret = lduw_kernel(addr);
+ break;
+ default:
+ case 4:
+ ret = ldl_kernel(addr);
+ break;
+ case 8:
+ ret = ldq_kernel(addr);
+ break;
+ }
+ break;
+ case 0xc: /* I-cache tag */
+ case 0xd: /* I-cache data */
+ case 0xe: /* D-cache tag */
+ case 0xf: /* D-cache data */
+ break;
+ case 0x20: /* MMU passthrough */
+ switch (size) {
+ case 1:
+ ret = ldub_phys(addr);
+ break;
+ case 2:
+ ret = lduw_phys(addr);
+ break;
+ default:
+ case 4:
+ ret = ldl_phys(addr);
+ break;
+ case 8:
+ ret = ldq_phys(addr);
+ break;
+ }
+ break;
+ case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
+ switch (size) {
+ case 1:
+ ret = ldub_phys((target_phys_addr_t)addr
+ | ((target_phys_addr_t)(asi & 0xf) << 32));
+ break;
+ case 2:
+ ret = lduw_phys((target_phys_addr_t)addr
+ | ((target_phys_addr_t)(asi & 0xf) << 32));
+ break;
+ default:
+ case 4:
+ ret = ldl_phys((target_phys_addr_t)addr
+ | ((target_phys_addr_t)(asi & 0xf) << 32));
+ break;
+ case 8:
+ ret = ldq_phys((target_phys_addr_t)addr
+ | ((target_phys_addr_t)(asi & 0xf) << 32));
+ break;
+ }
+ break;
+ case 0x30: /* Turbosparc secondary cache diagnostic */
+ case 0x31: /* Turbosparc RAM snoop */
+ case 0x32: /* Turbosparc page table descriptor diagnostic */
+ case 0x39: /* data cache diagnostic register */
+ ret = 0;
+ break;
+ case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
+ {
+ int reg = (addr >> 8) & 3;
+
+ switch (reg) {
+ case 0: /* Breakpoint Value (Addr) */
+ ret = env->mmubpregs[reg];
+ break;
+ case 1: /* Breakpoint Mask */
+ ret = env->mmubpregs[reg];
+ break;
+ case 2: /* Breakpoint Control */
+ ret = env->mmubpregs[reg];
+ break;
+ case 3: /* Breakpoint Status */
+ ret = env->mmubpregs[reg];
+ env->mmubpregs[reg] = 0ULL;
+ break;
+ }
+ DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
+ ret);
+ }
+ break;
+ case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
+ ret = env->mmubpctrv;
+ break;
+ case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
+ ret = env->mmubpctrc;
+ break;
+ case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
+ ret = env->mmubpctrs;
+ break;
+ case 0x4c: /* SuperSPARC MMU Breakpoint Action */
+ ret = env->mmubpaction;
+ break;
+ case 8: /* User code access, XXX */
+ default:
+ do_unassigned_access(addr, 0, 0, asi, size);
+ ret = 0;
+ break;
+ }
+ if (sign) {
+ switch (size) {
+ case 1:
+ ret = (int8_t) ret;
+ break;
+ case 2:
+ ret = (int16_t) ret;
+ break;
+ case 4:
+ ret = (int32_t) ret;
+ break;
+ default:
+ break;
+ }
+ }
+#ifdef DEBUG_ASI
+ dump_asi("read ", last_addr, asi, size, ret);
+#endif
+ return ret;
+}
+
+void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
+{
+ helper_check_align(addr, size - 1);
+ switch (asi) {
+ case 2: /* SuperSparc MXCC registers and Leon3 cache control */
+ switch (addr) {
+ case 0x00: /* Leon3 Cache Control */
+ case 0x08: /* Leon3 Instruction Cache config */
+ case 0x0C: /* Leon3 Date Cache config */
+ if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
+ leon3_cache_control_st(addr, val, size);
+ }
+ break;
+
+ case 0x01c00000: /* MXCC stream data register 0 */
+ if (size == 8) {
+ env->mxccdata[0] = val;
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ case 0x01c00008: /* MXCC stream data register 1 */
+ if (size == 8) {
+ env->mxccdata[1] = val;
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ case 0x01c00010: /* MXCC stream data register 2 */
+ if (size == 8) {
+ env->mxccdata[2] = val;
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ case 0x01c00018: /* MXCC stream data register 3 */
+ if (size == 8) {
+ env->mxccdata[3] = val;
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ case 0x01c00100: /* MXCC stream source */
+ if (size == 8) {
+ env->mxccregs[0] = val;
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
+ 0);
+ env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
+ 8);
+ env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
+ 16);
+ env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
+ 24);
+ break;
+ case 0x01c00200: /* MXCC stream destination */
+ if (size == 8) {
+ env->mxccregs[1] = val;
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
+ env->mxccdata[0]);
+ stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
+ env->mxccdata[1]);
+ stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
+ env->mxccdata[2]);
+ stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
+ env->mxccdata[3]);
+ break;
+ case 0x01c00a00: /* MXCC control register */
+ if (size == 8) {
+ env->mxccregs[3] = val;
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ case 0x01c00a04: /* MXCC control register */
+ if (size == 4) {
+ env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
+ | val;
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ case 0x01c00e00: /* MXCC error register */
+ /* writing a 1 bit clears the error */
+ if (size == 8) {
+ env->mxccregs[6] &= ~val;
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ case 0x01c00f00: /* MBus port address register */
+ if (size == 8) {
+ env->mxccregs[7] = val;
+ } else {
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
+ size);
+ }
+ break;
+ default:
+ DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
+ size);
+ break;
+ }
+ DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
+ asi, size, addr, val);
+#ifdef DEBUG_MXCC
+ dump_mxcc(env);
+#endif
+ break;
+ case 3: /* MMU flush */
+ {
+ int mmulev;
+
+ mmulev = (addr >> 8) & 15;
+ DPRINTF_MMU("mmu flush level %d\n", mmulev);
+ switch (mmulev) {
+ case 0: /* flush page */
+ tlb_flush_page(env, addr & 0xfffff000);
+ break;
+ case 1: /* flush segment (256k) */
+ case 2: /* flush region (16M) */
+ case 3: /* flush context (4G) */
+ case 4: /* flush entire */
+ tlb_flush(env, 1);
+ break;
+ default:
+ break;
+ }
+#ifdef DEBUG_MMU
+ dump_mmu(stdout, fprintf, env);
+#endif
+ }
+ break;
+ case 4: /* write MMU regs */
+ {
+ int reg = (addr >> 8) & 0x1f;
+ uint32_t oldreg;
+
+ oldreg = env->mmuregs[reg];
+ switch (reg) {
+ case 0: /* Control Register */
+ env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
+ (val & 0x00ffffff);
+ /* Mappings generated during no-fault mode or MMU
+ disabled mode are invalid in normal mode */
+ if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
+ (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
+ tlb_flush(env, 1);
+ }
+ break;
+ case 1: /* Context Table Pointer Register */
+ env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
+ break;
+ case 2: /* Context Register */
+ env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
+ if (oldreg != env->mmuregs[reg]) {
+ /* we flush when the MMU context changes because
+ QEMU has no MMU context support */
+ tlb_flush(env, 1);
+ }
+ break;
+ case 3: /* Synchronous Fault Status Register with Clear */
+ case 4: /* Synchronous Fault Address Register */
+ break;
+ case 0x10: /* TLB Replacement Control Register */
+ env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
+ break;
+ case 0x13: /* Synchronous Fault Status Register with Read
+ and Clear */
+ env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
+ break;
+ case 0x14: /* Synchronous Fault Address Register */
+ env->mmuregs[4] = val;
+ break;
+ default:
+ env->mmuregs[reg] = val;
+ break;
+ }
+ if (oldreg != env->mmuregs[reg]) {
+ DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
+ reg, oldreg, env->mmuregs[reg]);
+ }
+#ifdef DEBUG_MMU
+ dump_mmu(stdout, fprintf, env);
+#endif
+ }
+ break;
+ case 5: /* Turbosparc ITLB Diagnostic */
+ case 6: /* Turbosparc DTLB Diagnostic */
+ case 7: /* Turbosparc IOTLB Diagnostic */
+ break;
+ case 0xa: /* User data access */
+ switch (size) {
+ case 1:
+ stb_user(addr, val);
+ break;
+ case 2:
+ stw_user(addr, val);
+ break;
+ default:
+ case 4:
+ stl_user(addr, val);
+ break;
+ case 8:
+ stq_user(addr, val);
+ break;
+ }
+ break;
+ case 0xb: /* Supervisor data access */
+ switch (size) {
+ case 1:
+ stb_kernel(addr, val);
+ break;
+ case 2:
+ stw_kernel(addr, val);
+ break;
+ default:
+ case 4:
+ stl_kernel(addr, val);
+ break;
+ case 8:
+ stq_kernel(addr, val);
+ break;
+ }
+ break;
+ case 0xc: /* I-cache tag */
+ case 0xd: /* I-cache data */
+ case 0xe: /* D-cache tag */
+ case 0xf: /* D-cache data */
+ case 0x10: /* I/D-cache flush page */
+ case 0x11: /* I/D-cache flush segment */
+ case 0x12: /* I/D-cache flush region */
+ case 0x13: /* I/D-cache flush context */
+ case 0x14: /* I/D-cache flush user */
+ break;
+ case 0x17: /* Block copy, sta access */
+ {
+ /* val = src
+ addr = dst
+ copy 32 bytes */
+ unsigned int i;
+ uint32_t src = val & ~3, dst = addr & ~3, temp;
+
+ for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
+ temp = ldl_kernel(src);
+ stl_kernel(dst, temp);
+ }
+ }
+ break;
+ case 0x1f: /* Block fill, stda access */
+ {
+ /* addr = dst
+ fill 32 bytes with val */
+ unsigned int i;
+ uint32_t dst = addr & 7;
+
+ for (i = 0; i < 32; i += 8, dst += 8) {
+ stq_kernel(dst, val);
+ }
+ }
+ break;
+ case 0x20: /* MMU passthrough */
+ {
+ switch (size) {
+ case 1:
+ stb_phys(addr, val);
+ break;
+ case 2:
+ stw_phys(addr, val);
+ break;
+ case 4:
+ default:
+ stl_phys(addr, val);
+ break;
+ case 8:
+ stq_phys(addr, val);
+ break;
+ }
+ }
+ break;
+ case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
+ {
+ switch (size) {
+ case 1:
+ stb_phys((target_phys_addr_t)addr
+ | ((target_phys_addr_t)(asi & 0xf) << 32), val);
+ break;
+ case 2:
+ stw_phys((target_phys_addr_t)addr
+ | ((target_phys_addr_t)(asi & 0xf) << 32), val);
+ break;
+ case 4:
+ default:
+ stl_phys((target_phys_addr_t)addr
+ | ((target_phys_addr_t)(asi & 0xf) << 32), val);
+ break;
+ case 8:
+ stq_phys((target_phys_addr_t)addr
+ | ((target_phys_addr_t)(asi & 0xf) << 32), val);
+ break;
+ }
+ }
+ break;
+ case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
+ case 0x31: /* store buffer data, Ross RT620 I-cache flush or
+ Turbosparc snoop RAM */
+ case 0x32: /* store buffer control or Turbosparc page table
+ descriptor diagnostic */
+ case 0x36: /* I-cache flash clear */
+ case 0x37: /* D-cache flash clear */
+ break;
+ case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
+ {
+ int reg = (addr >> 8) & 3;
+
+ switch (reg) {
+ case 0: /* Breakpoint Value (Addr) */
+ env->mmubpregs[reg] = (val & 0xfffffffffULL);
+ break;
+ case 1: /* Breakpoint Mask */
+ env->mmubpregs[reg] = (val & 0xfffffffffULL);
+ break;
+ case 2: /* Breakpoint Control */
+ env->mmubpregs[reg] = (val & 0x7fULL);
+ break;
+ case 3: /* Breakpoint Status */
+ env->mmubpregs[reg] = (val & 0xfULL);
+ break;
+ }
+ DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
+ env->mmuregs[reg]);
+ }
+ break;
+ case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
+ env->mmubpctrv = val & 0xffffffff;
+ break;
+ case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
+ env->mmubpctrc = val & 0x3;
+ break;
+ case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
+ env->mmubpctrs = val & 0x3;
+ break;
+ case 0x4c: /* SuperSPARC MMU Breakpoint Action */
+ env->mmubpaction = val & 0x1fff;
+ break;
+ case 8: /* User code access, XXX */
+ case 9: /* Supervisor code access, XXX */
+ default:
+ do_unassigned_access(addr, 1, 0, asi, size);
+ break;
+ }
+#ifdef DEBUG_ASI
+ dump_asi("write", addr, asi, size, val);
+#endif
+}
+
+#endif /* CONFIG_USER_ONLY */
+#else /* TARGET_SPARC64 */
+
+#ifdef CONFIG_USER_ONLY
+uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
+{
+ uint64_t ret = 0;
+#if defined(DEBUG_ASI)
+ target_ulong last_addr = addr;
+#endif
+
+ if (asi < 0x80) {
+ helper_raise_exception(env, TT_PRIV_ACT);
+ }
+
+ helper_check_align(addr, size - 1);
+ addr = asi_address_mask(env, asi, addr);
+
+ switch (asi) {
+ case 0x82: /* Primary no-fault */
+ case 0x8a: /* Primary no-fault LE */
+ if (page_check_range(addr, size, PAGE_READ) == -1) {
+#ifdef DEBUG_ASI
+ dump_asi("read ", last_addr, asi, size, ret);
+#endif
+ return 0;
+ }
+ /* Fall through */
+ case 0x80: /* Primary */
+ case 0x88: /* Primary LE */
+ {
+ switch (size) {
+ case 1:
+ ret = ldub_raw(addr);
+ break;
+ case 2:
+ ret = lduw_raw(addr);
+ break;
+ case 4:
+ ret = ldl_raw(addr);
+ break;
+ default:
+ case 8:
+ ret = ldq_raw(addr);
+ break;
+ }
+ }
+ break;
+ case 0x83: /* Secondary no-fault */
+ case 0x8b: /* Secondary no-fault LE */
+ if (page_check_range(addr, size, PAGE_READ) == -1) {
+#ifdef DEBUG_ASI
+ dump_asi("read ", last_addr, asi, size, ret);
+#endif
+ return 0;
+ }
+ /* Fall through */
+ case 0x81: /* Secondary */
+ case 0x89: /* Secondary LE */
+ /* XXX */
+ break;
+ default:
+ break;
+ }
+
+ /* Convert from little endian */
+ switch (asi) {
+ case 0x88: /* Primary LE */
+ case 0x89: /* Secondary LE */
+ case 0x8a: /* Primary no-fault LE */
+ case 0x8b: /* Secondary no-fault LE */
+ switch (size) {
+ case 2:
+ ret = bswap16(ret);
+ break;
+ case 4:
+ ret = bswap32(ret);
+ break;
+ case 8:
+ ret = bswap64(ret);
+ break;
+ default:
+ break;
+ }
+ default:
+ break;
+ }
+
+ /* Convert to signed number */
+ if (sign) {
+ switch (size) {
+ case 1:
+ ret = (int8_t) ret;
+ break;
+ case 2:
+ ret = (int16_t) ret;
+ break;
+ case 4:
+ ret = (int32_t) ret;
+ break;
+ default:
+ break;
+ }
+ }
+#ifdef DEBUG_ASI
+ dump_asi("read ", last_addr, asi, size, ret);
+#endif
+ return ret;
+}
+
+void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
+{
+#ifdef DEBUG_ASI
+ dump_asi("write", addr, asi, size, val);
+#endif
+ if (asi < 0x80) {
+ helper_raise_exception(env, TT_PRIV_ACT);
+ }
+
+ helper_check_align(addr, size - 1);
+ addr = asi_address_mask(env, asi, addr);
+
+ /* Convert to little endian */
+ switch (asi) {
+ case 0x88: /* Primary LE */
+ case 0x89: /* Secondary LE */
+ switch (size) {
+ case 2:
+ val = bswap16(val);
+ break;
+ case 4:
+ val = bswap32(val);
+ break;
+ case 8:
+ val = bswap64(val);
+ break;
+ default:
+ break;
+ }
+ default:
+ break;
+ }
+
+ switch (asi) {
+ case 0x80: /* Primary */
+ case 0x88: /* Primary LE */
+ {
+ switch (size) {
+ case 1:
+ stb_raw(addr, val);
+ break;
+ case 2:
+ stw_raw(addr, val);
+ break;
+ case 4:
+ stl_raw(addr, val);
+ break;
+ case 8:
+ default:
+ stq_raw(addr, val);
+ break;
+ }
+ }
+ break;
+ case 0x81: /* Secondary */
+ case 0x89: /* Secondary LE */
+ /* XXX */
+ return;
+
+ case 0x82: /* Primary no-fault, RO */
+ case 0x83: /* Secondary no-fault, RO */
+ case 0x8a: /* Primary no-fault LE, RO */
+ case 0x8b: /* Secondary no-fault LE, RO */
+ default:
+ do_unassigned_access(addr, 1, 0, 1, size);
+ return;
+ }
+}
+
+#else /* CONFIG_USER_ONLY */
+
+uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
+{
+ uint64_t ret = 0;
+#if defined(DEBUG_ASI)
+ target_ulong last_addr = addr;
+#endif
+
+ asi &= 0xff;
+
+ if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+ || (cpu_has_hypervisor(env)
+ && asi >= 0x30 && asi < 0x80
+ && !(env->hpstate & HS_PRIV))) {
+ helper_raise_exception(env, TT_PRIV_ACT);
+ }
+
+ helper_check_align(addr, size - 1);
+ addr = asi_address_mask(env, asi, addr);
+
+ /* process nonfaulting loads first */
+ if ((asi & 0xf6) == 0x82) {
+ int mmu_idx;
+
+ /* secondary space access has lowest asi bit equal to 1 */
+ if (env->pstate & PS_PRIV) {
+ mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
+ } else {
+ mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
+ }
+
+ if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
+#ifdef DEBUG_ASI
+ dump_asi("read ", last_addr, asi, size, ret);
+#endif
+ /* env->exception_index is set in get_physical_address_data(). */
+ helper_raise_exception(env, env->exception_index);
+ }
+
+ /* convert nonfaulting load ASIs to normal load ASIs */
+ asi &= ~0x02;
+ }
+
+ switch (asi) {
+ case 0x10: /* As if user primary */
+ case 0x11: /* As if user secondary */
+ case 0x18: /* As if user primary LE */
+ case 0x19: /* As if user secondary LE */
+ case 0x80: /* Primary */
+ case 0x81: /* Secondary */
+ case 0x88: /* Primary LE */
+ case 0x89: /* Secondary LE */
+ case 0xe2: /* UA2007 Primary block init */
+ case 0xe3: /* UA2007 Secondary block init */
+ if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
+ if (cpu_hypervisor_mode(env)) {
+ switch (size) {
+ case 1:
+ ret = ldub_hypv(addr);
+ break;
+ case 2:
+ ret = lduw_hypv(addr);
+ break;
+ case 4:
+ ret = ldl_hypv(addr);
+ break;
+ default:
+ case 8:
+ ret = ldq_hypv(addr);
+ break;
+ }
+ } else {
+ /* secondary space access has lowest asi bit equal to 1 */
+ if (asi & 1) {
+ switch (size) {
+ case 1:
+ ret = ldub_kernel_secondary(addr);
+ break;
+ case 2:
+ ret = lduw_kernel_secondary(addr);
+ break;
+ case 4:
+ ret = ldl_kernel_secondary(addr);
+ break;
+ default:
+ case 8:
+ ret = ldq_kernel_secondary(addr);
+ break;
+ }
+ } else {
+ switch (size) {
+ case 1:
+ ret = ldub_kernel(addr);
+ break;
+ case 2:
+ ret = lduw_kernel(addr);
+ break;
+ case 4:
+ ret = ldl_kernel(addr);
+ break;
+ default:
+ case 8:
+ ret = ldq_kernel(addr);
+ break;
+ }
+ }
+ }
+ } else {
+ /* secondary space access has lowest asi bit equal to 1 */
+ if (asi & 1) {
+ switch (size) {
+ case 1:
+ ret = ldub_user_secondary(addr);
+ break;
+ case 2:
+ ret = lduw_user_secondary(addr);
+ break;
+ case 4:
+ ret = ldl_user_secondary(addr);
+ break;
+ default:
+ case 8:
+ ret = ldq_user_secondary(addr);
+ break;
+ }
+ } else {
+ switch (size) {
+ case 1:
+ ret = ldub_user(addr);
+ break;
+ case 2:
+ ret = lduw_user(addr);
+ break;
+ case 4:
+ ret = ldl_user(addr);
+ break;
+ default:
+ case 8:
+ ret = ldq_user(addr);
+ break;
+ }
+ }
+ }
+ break;
+ case 0x14: /* Bypass */
+ case 0x15: /* Bypass, non-cacheable */
+ case 0x1c: /* Bypass LE */
+ case 0x1d: /* Bypass, non-cacheable LE */
+ {
+ switch (size) {
+ case 1:
+ ret = ldub_phys(addr);
+ break;
+ case 2:
+ ret = lduw_phys(addr);
+ break;
+ case 4:
+ ret = ldl_phys(addr);
+ break;
+ default:
+ case 8:
+ ret = ldq_phys(addr);
+ break;
+ }
+ break;
+ }
+ case 0x24: /* Nucleus quad LDD 128 bit atomic */
+ case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
+ Only ldda allowed */
+ helper_raise_exception(env, TT_ILL_INSN);
+ return 0;
+ case 0x04: /* Nucleus */
+ case 0x0c: /* Nucleus Little Endian (LE) */
+ {
+ switch (size) {
+ case 1:
+ ret = ldub_nucleus(addr);
+ break;
+ case 2:
+ ret = lduw_nucleus(addr);
+ break;
+ case 4:
+ ret = ldl_nucleus(addr);
+ break;
+ default:
+ case 8:
+ ret = ldq_nucleus(addr);
+ break;
+ }
+ break;
+ }
+ case 0x4a: /* UPA config */
+ /* XXX */
+ break;
+ case 0x45: /* LSU */
+ ret = env->lsu;
+ break;
+ case 0x50: /* I-MMU regs */
+ {
+ int reg = (addr >> 3) & 0xf;
+
+ if (reg == 0) {
+ /* I-TSB Tag Target register */
+ ret = ultrasparc_tag_target(env->immu.tag_access);
+ } else {
+ ret = env->immuregs[reg];
+ }
+
+ break;
+ }
+ case 0x51: /* I-MMU 8k TSB pointer */
+ {
+ /* env->immuregs[5] holds I-MMU TSB register value
+ env->immuregs[6] holds I-MMU Tag Access register value */
+ ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
+ 8*1024);
+ break;
+ }
+ case 0x52: /* I-MMU 64k TSB pointer */
+ {
+ /* env->immuregs[5] holds I-MMU TSB register value
+ env->immuregs[6] holds I-MMU Tag Access register value */
+ ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
+ 64*1024);
+ break;
+ }
+ case 0x55: /* I-MMU data access */
+ {
+ int reg = (addr >> 3) & 0x3f;
+
+ ret = env->itlb[reg].tte;
+ break;
+ }
+ case 0x56: /* I-MMU tag read */
+ {
+ int reg = (addr >> 3) & 0x3f;
+
+ ret = env->itlb[reg].tag;
+ break;
+ }
+ case 0x58: /* D-MMU regs */
+ {
+ int reg = (addr >> 3) & 0xf;
+
+ if (reg == 0) {
+ /* D-TSB Tag Target register */
+ ret = ultrasparc_tag_target(env->dmmu.tag_access);
+ } else {
+ ret = env->dmmuregs[reg];
+ }
+ break;
+ }
+ case 0x59: /* D-MMU 8k TSB pointer */
+ {
+ /* env->dmmuregs[5] holds D-MMU TSB register value
+ env->dmmuregs[6] holds D-MMU Tag Access register value */
+ ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
+ 8*1024);
+ break;
+ }
+ case 0x5a: /* D-MMU 64k TSB pointer */
+ {
+ /* env->dmmuregs[5] holds D-MMU TSB register value
+ env->dmmuregs[6] holds D-MMU Tag Access register value */
+ ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
+ 64*1024);
+ break;
+ }
+ case 0x5d: /* D-MMU data access */
+ {
+ int reg = (addr >> 3) & 0x3f;
+
+ ret = env->dtlb[reg].tte;
+ break;
+ }
+ case 0x5e: /* D-MMU tag read */
+ {
+ int reg = (addr >> 3) & 0x3f;
+
+ ret = env->dtlb[reg].tag;
+ break;
+ }
+ case 0x46: /* D-cache data */
+ case 0x47: /* D-cache tag access */
+ case 0x4b: /* E-cache error enable */
+ case 0x4c: /* E-cache asynchronous fault status */
+ case 0x4d: /* E-cache asynchronous fault address */
+ case 0x4e: /* E-cache tag data */
+ case 0x66: /* I-cache instruction access */
+ case 0x67: /* I-cache tag access */
+ case 0x6e: /* I-cache predecode */
+ case 0x6f: /* I-cache LRU etc. */
+ case 0x76: /* E-cache tag */
+ case 0x7e: /* E-cache tag */
+ break;
+ case 0x5b: /* D-MMU data pointer */
+ case 0x48: /* Interrupt dispatch, RO */
+ case 0x49: /* Interrupt data receive */
+ case 0x7f: /* Incoming interrupt vector, RO */
+ /* XXX */
+ break;
+ case 0x54: /* I-MMU data in, WO */
+ case 0x57: /* I-MMU demap, WO */
+ case 0x5c: /* D-MMU data in, WO */
+ case 0x5f: /* D-MMU demap, WO */
+ case 0x77: /* Interrupt vector, WO */
+ default:
+ do_unassigned_access(addr, 0, 0, 1, size);
+ ret = 0;
+ break;
+ }
+
+ /* Convert from little endian */
+ switch (asi) {
+ case 0x0c: /* Nucleus Little Endian (LE) */
+ case 0x18: /* As if user primary LE */
+ case 0x19: /* As if user secondary LE */
+ case 0x1c: /* Bypass LE */
+ case 0x1d: /* Bypass, non-cacheable LE */
+ case 0x88: /* Primary LE */
+ case 0x89: /* Secondary LE */
+ switch(size) {
+ case 2:
+ ret = bswap16(ret);
+ break;
+ case 4:
+ ret = bswap32(ret);
+ break;
+ case 8:
+ ret = bswap64(ret);
+ break;
+ default:
+ break;
+ }
+ default:
+ break;
+ }
+
+ /* Convert to signed number */
+ if (sign) {
+ switch (size) {
+ case 1:
+ ret = (int8_t) ret;
+ break;
+ case 2:
+ ret = (int16_t) ret;
+ break;
+ case 4:
+ ret = (int32_t) ret;
+ break;
+ default:
+ break;
+ }
+ }
+#ifdef DEBUG_ASI
+ dump_asi("read ", last_addr, asi, size, ret);
+#endif
+ return ret;
+}
+
+void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
+{
+#ifdef DEBUG_ASI
+ dump_asi("write", addr, asi, size, val);
+#endif
+
+ asi &= 0xff;
+
+ if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+ || (cpu_has_hypervisor(env)
+ && asi >= 0x30 && asi < 0x80
+ && !(env->hpstate & HS_PRIV))) {
+ helper_raise_exception(env, TT_PRIV_ACT);
+ }
+
+ helper_check_align(addr, size - 1);
+ addr = asi_address_mask(env, asi, addr);
+
+ /* Convert to little endian */
+ switch (asi) {
+ case 0x0c: /* Nucleus Little Endian (LE) */
+ case 0x18: /* As if user primary LE */
+ case 0x19: /* As if user secondary LE */
+ case 0x1c: /* Bypass LE */
+ case 0x1d: /* Bypass, non-cacheable LE */
+ case 0x88: /* Primary LE */
+ case 0x89: /* Secondary LE */
+ switch (size) {
+ case 2:
+ val = bswap16(val);
+ break;
+ case 4:
+ val = bswap32(val);
+ break;
+ case 8:
+ val = bswap64(val);
+ break;
+ default:
+ break;
+ }
+ default:
+ break;
+ }
+
+ switch (asi) {
+ case 0x10: /* As if user primary */
+ case 0x11: /* As if user secondary */
+ case 0x18: /* As if user primary LE */
+ case 0x19: /* As if user secondary LE */
+ case 0x80: /* Primary */
+ case 0x81: /* Secondary */
+ case 0x88: /* Primary LE */
+ case 0x89: /* Secondary LE */
+ case 0xe2: /* UA2007 Primary block init */
+ case 0xe3: /* UA2007 Secondary block init */
+ if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
+ if (cpu_hypervisor_mode(env)) {
+ switch (size) {
+ case 1:
+ stb_hypv(addr, val);
+ break;
+ case 2:
+ stw_hypv(addr, val);
+ break;
+ case 4:
+ stl_hypv(addr, val);
+ break;
+ case 8:
+ default:
+ stq_hypv(addr, val);
+ break;
+ }
+ } else {
+ /* secondary space access has lowest asi bit equal to 1 */
+ if (asi & 1) {
+ switch (size) {
+ case 1:
+ stb_kernel_secondary(addr, val);
+ break;
+ case 2:
+ stw_kernel_secondary(addr, val);
+ break;
+ case 4:
+ stl_kernel_secondary(addr, val);
+ break;
+ case 8:
+ default:
+ stq_kernel_secondary(addr, val);
+ break;
+ }
+ } else {
+ switch (size) {
+ case 1:
+ stb_kernel(addr, val);
+ break;
+ case 2:
+ stw_kernel(addr, val);
+ break;
+ case 4:
+ stl_kernel(addr, val);
+ break;
+ case 8:
+ default:
+ stq_kernel(addr, val);
+ break;
+ }
+ }
+ }
+ } else {
+ /* secondary space access has lowest asi bit equal to 1 */
+ if (asi & 1) {
+ switch (size) {
+ case 1:
+ stb_user_secondary(addr, val);
+ break;
+ case 2:
+ stw_user_secondary(addr, val);
+ break;
+ case 4:
+ stl_user_secondary(addr, val);
+ break;
+ case 8:
+ default:
+ stq_user_secondary(addr, val);
+ break;
+ }
+ } else {
+ switch (size) {
+ case 1:
+ stb_user(addr, val);
+ break;
+ case 2:
+ stw_user(addr, val);
+ break;
+ case 4:
+ stl_user(addr, val);
+ break;
+ case 8:
+ default:
+ stq_user(addr, val);
+ break;
+ }
+ }
+ }
+ break;
+ case 0x14: /* Bypass */
+ case 0x15: /* Bypass, non-cacheable */
+ case 0x1c: /* Bypass LE */
+ case 0x1d: /* Bypass, non-cacheable LE */
+ {
+ switch (size) {
+ case 1:
+ stb_phys(addr, val);
+ break;
+ case 2:
+ stw_phys(addr, val);
+ break;
+ case 4:
+ stl_phys(addr, val);
+ break;
+ case 8:
+ default:
+ stq_phys(addr, val);
+ break;
+ }
+ }
+ return;
+ case 0x24: /* Nucleus quad LDD 128 bit atomic */
+ case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
+ Only ldda allowed */
+ helper_raise_exception(env, TT_ILL_INSN);
+ return;
+ case 0x04: /* Nucleus */
+ case 0x0c: /* Nucleus Little Endian (LE) */
+ {
+ switch (size) {
+ case 1:
+ stb_nucleus(addr, val);
+ break;
+ case 2:
+ stw_nucleus(addr, val);
+ break;
+ case 4:
+ stl_nucleus(addr, val);
+ break;
+ default:
+ case 8:
+ stq_nucleus(addr, val);
+ break;
+ }
+ break;
+ }
+
+ case 0x4a: /* UPA config */
+ /* XXX */
+ return;
+ case 0x45: /* LSU */
+ {
+ uint64_t oldreg;
+
+ oldreg = env->lsu;
+ env->lsu = val & (DMMU_E | IMMU_E);
+ /* Mappings generated during D/I MMU disabled mode are
+ invalid in normal mode */
+ if (oldreg != env->lsu) {
+ DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
+ oldreg, env->lsu);
+#ifdef DEBUG_MMU
+ dump_mmu(stdout, fprintf, env1);
+#endif
+ tlb_flush(env, 1);
+ }
+ return;
+ }
+ case 0x50: /* I-MMU regs */
+ {
+ int reg = (addr >> 3) & 0xf;
+ uint64_t oldreg;
+
+ oldreg = env->immuregs[reg];
+ switch (reg) {
+ case 0: /* RO */
+ return;
+ case 1: /* Not in I-MMU */
+ case 2:
+ return;
+ case 3: /* SFSR */
+ if ((val & 1) == 0) {
+ val = 0; /* Clear SFSR */
+ }
+ env->immu.sfsr = val;
+ break;
+ case 4: /* RO */
+ return;
+ case 5: /* TSB access */
+ DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
+ PRIx64 "\n", env->immu.tsb, val);
+ env->immu.tsb = val;
+ break;
+ case 6: /* Tag access */
+ env->immu.tag_access = val;
+ break;
+ case 7:
+ case 8:
+ return;
+ default:
+ break;
+ }
+
+ if (oldreg != env->immuregs[reg]) {
+ DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
+ PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
+ }
+#ifdef DEBUG_MMU
+ dump_mmu(stdout, fprintf, env);
+#endif
+ return;
+ }
+ case 0x54: /* I-MMU data in */
+ replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
+ return;
+ case 0x55: /* I-MMU data access */
+ {
+ /* TODO: auto demap */
+
+ unsigned int i = (addr >> 3) & 0x3f;
+
+ replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
+
+#ifdef DEBUG_MMU
+ DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
+ dump_mmu(stdout, fprintf, env);
+#endif
+ return;
+ }
+ case 0x57: /* I-MMU demap */
+ demap_tlb(env->itlb, addr, "immu", env);
+ return;
+ case 0x58: /* D-MMU regs */
+ {
+ int reg = (addr >> 3) & 0xf;
+ uint64_t oldreg;
+
+ oldreg = env->dmmuregs[reg];
+ switch (reg) {
+ case 0: /* RO */
+ case 4:
+ return;
+ case 3: /* SFSR */
+ if ((val & 1) == 0) {
+ val = 0; /* Clear SFSR, Fault address */
+ env->dmmu.sfar = 0;
+ }
+ env->dmmu.sfsr = val;
+ break;
+ case 1: /* Primary context */
+ env->dmmu.mmu_primary_context = val;
+ /* can be optimized to only flush MMU_USER_IDX
+ and MMU_KERNEL_IDX entries */
+ tlb_flush(env, 1);
+ break;
+ case 2: /* Secondary context */
+ env->dmmu.mmu_secondary_context = val;
+ /* can be optimized to only flush MMU_USER_SECONDARY_IDX
+ and MMU_KERNEL_SECONDARY_IDX entries */
+ tlb_flush(env, 1);
+ break;
+ case 5: /* TSB access */
+ DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
+ PRIx64 "\n", env->dmmu.tsb, val);
+ env->dmmu.tsb = val;
+ break;
+ case 6: /* Tag access */
+ env->dmmu.tag_access = val;
+ break;
+ case 7: /* Virtual Watchpoint */
+ case 8: /* Physical Watchpoint */
+ default:
+ env->dmmuregs[reg] = val;
+ break;
+ }
+
+ if (oldreg != env->dmmuregs[reg]) {
+ DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
+ PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
+ }
+#ifdef DEBUG_MMU
+ dump_mmu(stdout, fprintf, env);
+#endif
+ return;
+ }
+ case 0x5c: /* D-MMU data in */
+ replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
+ return;
+ case 0x5d: /* D-MMU data access */
+ {
+ unsigned int i = (addr >> 3) & 0x3f;
+
+ replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
+
+#ifdef DEBUG_MMU
+ DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
+ dump_mmu(stdout, fprintf, env);
+#endif
+ return;
+ }
+ case 0x5f: /* D-MMU demap */
+ demap_tlb(env->dtlb, addr, "dmmu", env);
+ return;
+ case 0x49: /* Interrupt data receive */
+ /* XXX */
+ return;
+ case 0x46: /* D-cache data */
+ case 0x47: /* D-cache tag access */
+ case 0x4b: /* E-cache error enable */
+ case 0x4c: /* E-cache asynchronous fault status */
+ case 0x4d: /* E-cache asynchronous fault address */
+ case 0x4e: /* E-cache tag data */
+ case 0x66: /* I-cache instruction access */
+ case 0x67: /* I-cache tag access */
+ case 0x6e: /* I-cache predecode */
+ case 0x6f: /* I-cache LRU etc. */
+ case 0x76: /* E-cache tag */
+ case 0x7e: /* E-cache tag */
+ return;
+ case 0x51: /* I-MMU 8k TSB pointer, RO */
+ case 0x52: /* I-MMU 64k TSB pointer, RO */
+ case 0x56: /* I-MMU tag read, RO */
+ case 0x59: /* D-MMU 8k TSB pointer, RO */
+ case 0x5a: /* D-MMU 64k TSB pointer, RO */
+ case 0x5b: /* D-MMU data pointer, RO */
+ case 0x5e: /* D-MMU tag read, RO */
+ case 0x48: /* Interrupt dispatch, RO */
+ case 0x7f: /* Incoming interrupt vector, RO */
+ case 0x82: /* Primary no-fault, RO */
+ case 0x83: /* Secondary no-fault, RO */
+ case 0x8a: /* Primary no-fault LE, RO */
+ case 0x8b: /* Secondary no-fault LE, RO */
+ default:
+ do_unassigned_access(addr, 1, 0, 1, size);
+ return;
+ }
+}
+#endif /* CONFIG_USER_ONLY */
+
+void helper_ldda_asi(target_ulong addr, int asi, int rd)
+{
+ if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+ || (cpu_has_hypervisor(env)
+ && asi >= 0x30 && asi < 0x80
+ && !(env->hpstate & HS_PRIV))) {
+ helper_raise_exception(env, TT_PRIV_ACT);
+ }
+
+ addr = asi_address_mask(env, asi, addr);
+
+ switch (asi) {
+#if !defined(CONFIG_USER_ONLY)
+ case 0x24: /* Nucleus quad LDD 128 bit atomic */
+ case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
+ helper_check_align(addr, 0xf);
+ if (rd == 0) {
+ env->gregs[1] = ldq_nucleus(addr + 8);
+ if (asi == 0x2c) {
+ bswap64s(&env->gregs[1]);
+ }
+ } else if (rd < 8) {
+ env->gregs[rd] = ldq_nucleus(addr);
+ env->gregs[rd + 1] = ldq_nucleus(addr + 8);
+ if (asi == 0x2c) {
+ bswap64s(&env->gregs[rd]);
+ bswap64s(&env->gregs[rd + 1]);
+ }
+ } else {
+ env->regwptr[rd] = ldq_nucleus(addr);
+ env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
+ if (asi == 0x2c) {
+ bswap64s(&env->regwptr[rd]);
+ bswap64s(&env->regwptr[rd + 1]);
+ }
+ }
+ break;
+#endif
+ default:
+ helper_check_align(addr, 0x3);
+ if (rd == 0) {
+ env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
+ } else if (rd < 8) {
+ env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
+ env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
+ } else {
+ env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
+ env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
+ }
+ break;
+ }
+}
+
+void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
+{
+ unsigned int i;
+ CPU_DoubleU u;
+
+ helper_check_align(addr, 3);
+ addr = asi_address_mask(env, asi, addr);
+
+ switch (asi) {
+ case 0xf0: /* UA2007/JPS1 Block load primary */
+ case 0xf1: /* UA2007/JPS1 Block load secondary */
+ case 0xf8: /* UA2007/JPS1 Block load primary LE */
+ case 0xf9: /* UA2007/JPS1 Block load secondary LE */
+ if (rd & 7) {
+ helper_raise_exception(env, TT_ILL_INSN);
+ return;
+ }
+ helper_check_align(addr, 0x3f);
+ for (i = 0; i < 16; i++) {
+ *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
+ 0);
+ addr += 4;
+ }
+
+ return;
+ case 0x16: /* UA2007 Block load primary, user privilege */
+ case 0x17: /* UA2007 Block load secondary, user privilege */
+ case 0x1e: /* UA2007 Block load primary LE, user privilege */
+ case 0x1f: /* UA2007 Block load secondary LE, user privilege */
+ case 0x70: /* JPS1 Block load primary, user privilege */
+ case 0x71: /* JPS1 Block load secondary, user privilege */
+ case 0x78: /* JPS1 Block load primary LE, user privilege */
+ case 0x79: /* JPS1 Block load secondary LE, user privilege */
+ if (rd & 7) {
+ helper_raise_exception(env, TT_ILL_INSN);
+ return;
+ }
+ helper_check_align(addr, 0x3f);
+ for (i = 0; i < 16; i++) {
+ *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x19, 4,
+ 0);
+ addr += 4;
+ }
+
+ return;
+ default:
+ break;
+ }
+
+ switch (size) {
+ default:
+ case 4:
+ *((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
+ break;
+ case 8:
+ u.ll = helper_ld_asi(addr, asi, size, 0);
+ *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
+ *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
+ break;
+ case 16:
+ u.ll = helper_ld_asi(addr, asi, 8, 0);
+ *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
+ *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
+ u.ll = helper_ld_asi(addr + 8, asi, 8, 0);
+ *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
+ *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
+ break;
+ }
+}
+
+void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
+{
+ unsigned int i;
+ target_ulong val = 0;
+ CPU_DoubleU u;
+
+ helper_check_align(addr, 3);
+ addr = asi_address_mask(env, asi, addr);
+
+ switch (asi) {
+ case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
+ case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
+ case 0xf0: /* UA2007/JPS1 Block store primary */
+ case 0xf1: /* UA2007/JPS1 Block store secondary */
+ case 0xf8: /* UA2007/JPS1 Block store primary LE */
+ case 0xf9: /* UA2007/JPS1 Block store secondary LE */
+ if (rd & 7) {
+ helper_raise_exception(env, TT_ILL_INSN);
+ return;
+ }
+ helper_check_align(addr, 0x3f);
+ for (i = 0; i < 16; i++) {
+ val = *(uint32_t *)&env->fpr[rd++];
+ helper_st_asi(addr, val, asi & 0x8f, 4);
+ addr += 4;
+ }
+
+ return;
+ case 0x16: /* UA2007 Block load primary, user privilege */
+ case 0x17: /* UA2007 Block load secondary, user privilege */
+ case 0x1e: /* UA2007 Block load primary LE, user privilege */
+ case 0x1f: /* UA2007 Block load secondary LE, user privilege */
+ case 0x70: /* JPS1 Block store primary, user privilege */
+ case 0x71: /* JPS1 Block store secondary, user privilege */
+ case 0x78: /* JPS1 Block load primary LE, user privilege */
+ case 0x79: /* JPS1 Block load secondary LE, user privilege */
+ if (rd & 7) {
+ helper_raise_exception(env, TT_ILL_INSN);
+ return;
+ }
+ helper_check_align(addr, 0x3f);
+ for (i = 0; i < 16; i++) {
+ val = *(uint32_t *)&env->fpr[rd++];
+ helper_st_asi(addr, val, asi & 0x19, 4);
+ addr += 4;
+ }
+
+ return;
+ default:
+ break;
+ }
+
+ switch (size) {
+ default:
+ case 4:
+ helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
+ break;
+ case 8:
+ u.l.upper = *(uint32_t *)&env->fpr[rd++];
+ u.l.lower = *(uint32_t *)&env->fpr[rd++];
+ helper_st_asi(addr, u.ll, asi, size);
+ break;
+ case 16:
+ u.l.upper = *(uint32_t *)&env->fpr[rd++];
+ u.l.lower = *(uint32_t *)&env->fpr[rd++];
+ helper_st_asi(addr, u.ll, asi, 8);
+ u.l.upper = *(uint32_t *)&env->fpr[rd++];
+ u.l.lower = *(uint32_t *)&env->fpr[rd++];
+ helper_st_asi(addr + 8, u.ll, asi, 8);
+ break;
+ }
+}
+
+target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
+ target_ulong val2, uint32_t asi)
+{
+ target_ulong ret;
+
+ val2 &= 0xffffffffUL;
+ ret = helper_ld_asi(addr, asi, 4, 0);
+ ret &= 0xffffffffUL;
+ if (val2 == ret) {
+ helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
+ }
+ return ret;
+}
+
+target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
+ target_ulong val2, uint32_t asi)
+{
+ target_ulong ret;
+
+ ret = helper_ld_asi(addr, asi, 8, 0);
+ if (val2 == ret) {
+ helper_st_asi(addr, val1, asi, 8);
+ }
+ return ret;
+}
+#endif /* TARGET_SPARC64 */
+
+void helper_stdf(target_ulong addr, int mem_idx)
+{
+ helper_check_align(addr, 7);
+#if !defined(CONFIG_USER_ONLY)
+ switch (mem_idx) {
+ case MMU_USER_IDX:
+ stfq_user(addr, DT0);
+ break;
+ case MMU_KERNEL_IDX:
+ stfq_kernel(addr, DT0);
+ break;
+#ifdef TARGET_SPARC64
+ case MMU_HYPV_IDX:
+ stfq_hypv(addr, DT0);
+ break;
+#endif
+ default:
+ DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
+ break;
+ }
+#else
+ stfq_raw(address_mask(env, addr), DT0);
+#endif
+}
+
+void helper_lddf(target_ulong addr, int mem_idx)
+{
+ helper_check_align(addr, 7);
+#if !defined(CONFIG_USER_ONLY)
+ switch (mem_idx) {
+ case MMU_USER_IDX:
+ DT0 = ldfq_user(addr);
+ break;
+ case MMU_KERNEL_IDX:
+ DT0 = ldfq_kernel(addr);
+ break;
+#ifdef TARGET_SPARC64
+ case MMU_HYPV_IDX:
+ DT0 = ldfq_hypv(addr);
+ break;
+#endif
+ default:
+ DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
+ break;
+ }
+#else
+ DT0 = ldfq_raw(address_mask(env, addr));
+#endif
+}
+
+void helper_ldqf(target_ulong addr, int mem_idx)
+{
+ /* XXX add 128 bit load */
+ CPU_QuadU u;
+
+ helper_check_align(addr, 7);
+#if !defined(CONFIG_USER_ONLY)
+ switch (mem_idx) {
+ case MMU_USER_IDX:
+ u.ll.upper = ldq_user(addr);
+ u.ll.lower = ldq_user(addr + 8);
+ QT0 = u.q;
+ break;
+ case MMU_KERNEL_IDX:
+ u.ll.upper = ldq_kernel(addr);
+ u.ll.lower = ldq_kernel(addr + 8);
+ QT0 = u.q;
+ break;
+#ifdef TARGET_SPARC64
+ case MMU_HYPV_IDX:
+ u.ll.upper = ldq_hypv(addr);
+ u.ll.lower = ldq_hypv(addr + 8);
+ QT0 = u.q;
+ break;
+#endif
+ default:
+ DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
+ break;
+ }
+#else
+ u.ll.upper = ldq_raw(address_mask(env, addr));
+ u.ll.lower = ldq_raw(address_mask(env, addr + 8));
+ QT0 = u.q;
+#endif
+}
+
+void helper_stqf(target_ulong addr, int mem_idx)
+{
+ /* XXX add 128 bit store */
+ CPU_QuadU u;
+
+ helper_check_align(addr, 7);
+#if !defined(CONFIG_USER_ONLY)
+ switch (mem_idx) {
+ case MMU_USER_IDX:
+ u.q = QT0;
+ stq_user(addr, u.ll.upper);
+ stq_user(addr + 8, u.ll.lower);
+ break;
+ case MMU_KERNEL_IDX:
+ u.q = QT0;
+ stq_kernel(addr, u.ll.upper);
+ stq_kernel(addr + 8, u.ll.lower);
+ break;
+#ifdef TARGET_SPARC64
+ case MMU_HYPV_IDX:
+ u.q = QT0;
+ stq_hypv(addr, u.ll.upper);
+ stq_hypv(addr + 8, u.ll.lower);
+ break;
+#endif
+ default:
+ DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
+ break;
+ }
+#else
+ u.q = QT0;
+ stq_raw(address_mask(env, addr), u.ll.upper);
+ stq_raw(address_mask(env, addr + 8), u.ll.lower);
+#endif
+}
+
+#ifndef TARGET_SPARC64
+#if !defined(CONFIG_USER_ONLY)
+static void do_unassigned_access(target_phys_addr_t addr, int is_write,
+ int is_exec, int is_asi, int size)
+{
+ int fault_type;
+
+#ifdef DEBUG_UNASSIGNED
+ if (is_asi) {
+ printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
+ " asi 0x%02x from " TARGET_FMT_lx "\n",
+ is_exec ? "exec" : is_write ? "write" : "read", size,
+ size == 1 ? "" : "s", addr, is_asi, env->pc);
+ } else {
+ printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
+ " from " TARGET_FMT_lx "\n",
+ is_exec ? "exec" : is_write ? "write" : "read", size,
+ size == 1 ? "" : "s", addr, env->pc);
+ }
+#endif
+ /* Don't overwrite translation and access faults */
+ fault_type = (env->mmuregs[3] & 0x1c) >> 2;
+ if ((fault_type > 4) || (fault_type == 0)) {
+ env->mmuregs[3] = 0; /* Fault status register */
+ if (is_asi) {
+ env->mmuregs[3] |= 1 << 16;
+ }
+ if (env->psrs) {
+ env->mmuregs[3] |= 1 << 5;
+ }
+ if (is_exec) {
+ env->mmuregs[3] |= 1 << 6;
+ }
+ if (is_write) {
+ env->mmuregs[3] |= 1 << 7;
+ }
+ env->mmuregs[3] |= (5 << 2) | 2;
+ /* SuperSPARC will never place instruction fault addresses in the FAR */
+ if (!is_exec) {
+ env->mmuregs[4] = addr; /* Fault address register */
+ }
+ }
+ /* overflow (same type fault was not read before another fault) */
+ if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
+ env->mmuregs[3] |= 1;
+ }
+
+ if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
+ if (is_exec) {
+ helper_raise_exception(env, TT_CODE_ACCESS);
+ } else {
+ helper_raise_exception(env, TT_DATA_ACCESS);
+ }
+ }
+
+ /* flush neverland mappings created during no-fault mode,
+ so the sequential MMU faults report proper fault types */
+ if (env->mmuregs[0] & MMU_NF) {
+ tlb_flush(env, 1);
+ }
+}
+#endif
+#else
+#if defined(CONFIG_USER_ONLY)
+static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
+ int is_asi, int size)
+#else
+static void do_unassigned_access(target_phys_addr_t addr, int is_write,
+ int is_exec, int is_asi, int size)
+#endif
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
+ "\n", addr, env->pc);
+#endif
+
+ if (is_exec) {
+ helper_raise_exception(env, TT_CODE_ACCESS);
+ } else {
+ helper_raise_exception(env, TT_DATA_ACCESS);
+ }
+}
+#endif
+
+#if !defined(CONFIG_USER_ONLY)
+void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
+ int is_write, int is_exec, int is_asi, int size)
+{
+ CPUState *saved_env;
+
+ saved_env = env;
+ env = env1;
+ do_unassigned_access(addr, is_write, is_exec, is_asi, size);
+ env = saved_env;
+}
+#endif