/* * sata_mv.c - Marvell SATA support * * Copyright 2008-2009: Marvell Corporation, all rights reserved. * Copyright 2005: EMC Corporation, all rights reserved. * Copyright 2005 Red Hat, Inc. All rights reserved. * * Originally written by Brett Russ. * Extensive overhaul and enhancement by Mark Lord . * * Please ALWAYS copy linux-ide@vger.kernel.org on emails. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* * sata_mv TODO list: * * --> Develop a low-power-consumption strategy, and implement it. * * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. * * --> [Experiment, Marvell value added] Is it possible to use target * mode to cross-connect two Linux boxes with Marvell cards? If so, * creating LibATA target mode support would be very interesting. * * Target mode, for those without docs, is the ability to directly * connect two SATA ports. */ /* * 80x1-B2 errata PCI#11: * * Users of the 6041/6081 Rev.B2 chips (current is C0) * should be careful to insert those cards only onto PCI-X bus #0, * and only in device slots 0..7, not higher. The chips may not * work correctly otherwise (note: this is a pretty rare condition). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "sata_mv" #define DRV_VERSION "1.28" /* * module options */ static int msi; #ifdef CONFIG_PCI module_param(msi, int, S_IRUGO); MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); #endif static int irq_coalescing_io_count; module_param(irq_coalescing_io_count, int, S_IRUGO); MODULE_PARM_DESC(irq_coalescing_io_count, "IRQ coalescing I/O count threshold (0..255)"); static int irq_coalescing_usecs; module_param(irq_coalescing_usecs, int, S_IRUGO); MODULE_PARM_DESC(irq_coalescing_usecs, "IRQ coalescing time threshold in usecs"); enum { /* BAR's are enumerated in terms of pci_resource_start() terms */ MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ MV_IO_BAR = 2, /* offset 0x18: IO space */ MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ MAX_COAL_IO_COUNT = 255, /* completed I/O count */ MV_PCI_REG_BASE = 0, /* * Per-chip ("all ports") interrupt coalescing feature. * This is only for GEN_II / GEN_IIE hardware. * * Coalescing defers the interrupt until either the IO_THRESHOLD * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. */ COAL_REG_BASE = 0x18000, IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), /* * Registers for the (unused here) transaction coalescing feature: */ TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), SATAHC0_REG_BASE = 0x20000, FLASH_CTL = 0x1046c, GPIO_PORT_CTL = 0x104f0, RESET_CFG = 0x180d8, MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, MV_MAX_Q_DEPTH = 32, MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, /* CRQB needs alignment on a 1KB boundary. Size == 1KB * CRPB needs alignment on a 256B boundary. Size == 256B * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B */ MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), MV_MAX_SG_CT = 256, MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ MV_PORT_HC_SHIFT = 2, MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ /* Host Flags */ MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING, MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, CRQB_FLAG_READ = (1 << 0), CRQB_TAG_SHIFT = 1, CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ CRQB_CMD_ADDR_SHIFT = 8, CRQB_CMD_CS = (0x2 << 11), CRQB_CMD_LAST = (1 << 15), CRPB_FLAG_STATUS_SHIFT = 8, CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ EPRD_FLAG_END_OF_TBL = (1 << 31), /* PCI interface registers */ MV_PCI_COMMAND = 0xc00, MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ PCI_MAIN_CMD_STS = 0xd30, STOP_PCI_MASTER = (1 << 2), PCI_MASTER_EMPTY = (1 << 3), GLOB_SFT_RST = (1 << 4), MV_PCI_MODE = 0xd00, MV_PCI_MODE_MASK = 0x30, MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, MV_PCI_DISC_TIMER = 0xd04, MV_PCI_MSI_TRIGGER = 0xc38, MV_PCI_SERR_MASK = 0xc28, MV_PCI_XBAR_TMOUT = 0x1d04, MV_PCI_ERR_LOW_ADDRESS = 0x1d40, MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, MV_PCI_ERR_ATTRIBUTE = 0x1d48, MV_PCI_ERR_COMMAND = 0x1d50, PCI_IRQ_CAUSE = 0x1d58, PCI_IRQ_MASK = 0x1d5c, PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ PCIE_IRQ_CAUSE = 0x1900, PCIE_IRQ_MASK = 0x1910, PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, PCI_HC_MAIN_IRQ_MASK = 0x1d64, SOC_HC_MAIN_IRQ_CAUSE = 0x20020, SOC_HC_MAIN_IRQ_MASK = 0x20024, ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ PCI_ERR = (1 << 18), TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ GPIO_INT = (1 << 22), SELF_INT = (1 << 23), TWSI_INT = (1 << 24), HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ /* SATAHC registers */ HC_CFG = 0x00, HC_IRQ_CAUSE = 0x14, DMA_IRQ = (1 << 0), /* shift by port # */ HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ DEV_IRQ = (1 << 8), /* shift by port # */ /* * Per-HC (Host-Controller) interrupt coalescing feature. * This is present on all chip generations. * * Coalescing defers the interrupt until either the IO_THRESHOLD * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. */ HC_IRQ_COAL_IO_THRESHOLD = 0x000c, HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, SOC_LED_CTRL = 0x2c, SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ /* with dev activity LED */ /* Shadow block registers */ SHD_BLK = 0x100, SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ /* SATA registers */ SATA_STATUS = 0x300, /* ctrl, err regs follow status */ SATA_ACTIVE = 0x350, FIS_IRQ_CAUSE = 0x364, FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ LTMODE = 0x30c, /* requires read-after-write */ LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ PHY_MODE2 = 0x330, PHY_MODE3 = 0x310, PHY_MODE4 = 0x314, /* requires read-after-write */ PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ SATA_IFCTL = 0x344, SATA_TESTCTL = 0x348, SATA_IFSTAT = 0x34c, VENDOR_UNIQUE_FIS = 0x35c, FISCFG = 0x360, FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ MV5_PHY_MODE = 0x74, MV5_LTMODE = 0x30, MV5_PHY_CTL = 0x0C, SATA_IFCFG = 0x050, MV_M2_PREAMP_MASK = 0x7e0, /* Port registers */ EDMA_CFG = 0, EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ EDMA_ERR_IRQ_CAUSE = 0x8, EDMA_ERR_IRQ_MASK = 0xc, EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ EDMA_ERR_DEV = (1 << 2), /* device error */ EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ EDMA_ERR_OVERRUN_5 = (1 << 5), EDMA_ERR_UNDERRUN_5 = (1 << 6), EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | EDMA_ERR_LNK_CTRL_RX_1 | EDMA_ERR_LNK_CTRL_RX_3 | EDMA_ERR_LNK_CTRL_TX, EDMA_EH_FREEZE = EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON | EDMA_ERR_SERR | EDMA_ERR_SELF_DIS | EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR | EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 | EDMA_ERR_LNK_DATA_RX | EDMA_ERR_LNK_DATA_TX | EDMA_ERR_TRANS_PROTO, EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON | EDMA_ERR_OVERRUN_5 | EDMA_ERR_UNDERRUN_5 | EDMA_ERR_SELF_DIS_5 | EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR | EDMA_ERR_IORDY, EDMA_REQ_Q_BASE_HI = 0x10, EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ EDMA_REQ_Q_OUT_PTR = 0x18, EDMA_REQ_Q_PTR_SHIFT = 5, EDMA_RSP_Q_BASE_HI = 0x1c, EDMA_RSP_Q_IN_PTR = 0x20, EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ EDMA_RSP_Q_PTR_SHIFT = 3, EDMA_CMD = 0x28, /* EDMA command register */ EDMA_EN = (1 << 0), /* enable EDMA */ EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ EDMA_STATUS = 0x30, /* EDMA engine status */ EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ EDMA_IORDY_TMOUT = 0x34, EDMA_ARB_CFG = 0x38, EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ BMDMA_CMD = 0x224, /* bmdma command register */ BMDMA_STATUS = 0x228, /* bmdma status register */ BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ /* Host private flags (hp_flags) */ MV_HP_FLAG_MSI = (1 << 0), MV_HP_ERRATA_50XXB0 = (1 << 1), MV_HP_ERRATA_50XXB2 = (1 << 2), MV_HP_ERRATA_60X1B2 = (1 << 3), MV_HP_ERRATA_60X1C0 = (1 << 4), MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ /* Port private flags (pp_flags) */ MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ }; #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) enum { /* DMA boundary 0xffff is required by the s/g splitting * we need on /length/ in mv_fill-sg(). */ MV_DMA_BOUNDARY = 0xffffU, /* mask of register bits containing lower 32 bits * of EDMA request queue DMA address */ EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, /* ditto, for response queue */ EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, }; enum chip_type { chip_504x, chip_508x, chip_5080, chip_604x, chip_608x, chip_6042, chip_7042, chip_soc, }; /* Command ReQuest Block: 32B */ struct mv_crqb { __le32 sg_addr; __le32 sg_addr_hi; __le16 ctrl_flags; __le16 ata_cmd[11]; }; struct mv_crqb_iie { __le32 addr; __le32 addr_hi; __le32 flags; __le32 len; __le32 ata_cmd[4]; }; /* Command ResPonse Block: 8B */ struct mv_crpb { __le16 id; __le16 flags; __le32 tmstmp; }; /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ struct mv_sg { __le32 addr; __le32 flags_size; __le32 addr_hi; __le32 reserved; }; /* * We keep a local cache of a few frequently accessed port * registers here, to avoid having to read them (very slow) * when switching between EDMA and non-EDMA modes. */ struct mv_cached_regs { u32 fiscfg; u32 ltmode; u32 haltcond; u32 unknown_rsvd; }; struct mv_port_priv { struct mv_crqb *crqb; dma_addr_t crqb_dma; struct mv_crpb *crpb; dma_addr_t crpb_dma; struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; unsigned int req_idx; unsigned int resp_idx; u32 pp_flags; struct mv_cached_regs cached; unsigned int delayed_eh_pmp_map; }; struct mv_port_signal { u32 amps; u32 pre; }; struct mv_host_priv { u32 hp_flags; u32 main_irq_mask; struct mv_port_signal signal[8]; const struct mv_hw_ops *ops; int n_ports; void __iomem *base; void __iomem *main_irq_cause_addr; void __iomem *main_irq_mask_addr; u32 irq_cause_offset; u32 irq_mask_offset; u32 unmask_all_irqs; /* * These consistent DMA memory pools give us guaranteed * alignment for hardware-accessed data structures, * and less memory waste in accomplishing the alignment. */ struct dma_pool *crqb_pool; struct dma_pool *crpb_pool; struct dma_pool *sg_tbl_pool; }; struct mv_hw_ops { void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port); void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); void (*read_preamp)(struct mv_host_priv *hpriv, int idx, void __iomem *mmio); int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc); void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); void (*reset_bus)(struct ata_host *host, void __iomem *mmio); }; static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); static int mv_port_start(struct ata_port *ap); static void mv_port_stop(struct ata_port *ap); static int mv_qc_defer(struct ata_queued_cmd *qc); static void mv_qc_prep(struct ata_queued_cmd *qc); static void mv_qc_prep_iie(struct ata_queued_cmd *qc); static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); static int mv_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline); static void mv_eh_freeze(struct ata_port *ap); static void mv_eh_thaw(struct ata_port *ap); static void mv6_dev_config(struct ata_device *dev); static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port); static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, void __iomem *mmio); static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc); static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port); static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, void __iomem *mmio); static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc); static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); static void mv_soc_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, void __iomem *mmio); static int mv_soc_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc); static void mv_soc_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port_no); static int mv_stop_edma(struct ata_port *ap); static int mv_stop_edma_engine(void __iomem *port_mmio); static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); static void mv_pmp_select(struct ata_port *ap, int pmp); static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline); static int mv_softreset(struct ata_link *link, unsigned int *class, unsigned long deadline); static void mv_pmp_error_handler(struct ata_port *ap); static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp); static void mv_sff_irq_clear(struct ata_port *ap); static int mv_check_atapi_dma(struct ata_queued_cmd *qc); static void mv_bmdma_setup(struct ata_queued_cmd *qc); static void mv_bmdma_start(struct ata_queued_cmd *qc); static void mv_bmdma_stop(struct ata_queued_cmd *qc); static u8 mv_bmdma_status(struct ata_port *ap); static u8 mv_sff_check_status(struct ata_port *ap); /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below * because we have to allow room for worst case splitting of * PRDs for 64K boundaries in mv_fill_sg(). */ static struct scsi_host_template mv5_sht = { ATA_BASE_SHT(DRV_NAME), .sg_tablesize = MV_MAX_SG_CT / 2, .dma_boundary = MV_DMA_BOUNDARY, }; static struct scsi_host_template mv6_sht = { ATA_NCQ_SHT(DRV_NAME), .can_queue = MV_MAX_Q_DEPTH - 1, .sg_tablesize = MV_MAX_SG_CT / 2, .dma_boundary = MV_DMA_BOUNDARY, }; static struct ata_port_operations mv5_ops = { .inherits = &ata_sff_port_ops, .lost_interrupt = ATA_OP_NULL, .qc_defer = mv_qc_defer, .qc_prep = mv_qc_prep, .qc_issue = mv_qc_issue, .freeze = mv_eh_freeze, .thaw = mv_eh_thaw, .hardreset = mv_hardreset, .error_handler = ata_std_error_handler, /* avoid SFF EH */ .post_internal_cmd = ATA_OP_NULL, .scr_read = mv5_scr_read, .scr_write = mv5_scr_write, .port_start = mv_port_start, .port_stop = mv_port_stop, }; static struct ata_port_operations mv6_ops = { .inherits = &mv5_ops, .dev_config = mv6_dev_config, .scr_read = mv_scr_read, .scr_write = mv_scr_write, .pmp_hardreset = mv_pmp_hardreset, .pmp_softreset = mv_softreset, .softreset = mv_softreset, .error_handler = mv_pmp_error_handler, .sff_check_status = mv_sff_check_status, .sff_irq_clear = mv_sff_irq_clear, .check_atapi_dma = mv_check_atapi_dma, .bmdma_setup = mv_bmdma_setup, .bmdma_start = mv_bmdma_start, .bmdma_stop = mv_bmdma_stop, .bmdma_status = mv_bmdma_status, }; static struct ata_port_operations mv_iie_ops = { .inherits = &mv6_ops, .dev_config = ATA_OP_NULL, .qc_prep = mv_qc_prep_iie, }; static const struct ata_port_info mv_port_info[] = { { /* chip_504x */ .flags = MV_GEN_I_FLAGS, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &mv5_ops, }, { /* chip_508x */ .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &mv5_ops, }, { /* chip_5080 */ .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &mv5_ops, }, { /* chip_604x */ .flags = MV_GEN_II_FLAGS, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &mv6_ops, }, { /* chip_608x */ .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &mv6_ops, }, { /* chip_6042 */ .flags = MV_GEN_IIE_FLAGS, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &mv_iie_ops, }, { /* chip_7042 */ .flags = MV_GEN_IIE_FLAGS, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &mv_iie_ops, }, { /* chip_soc */ .flags = MV_GEN_IIE_FLAGS, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &mv_iie_ops, }, }; static const struct pci_device_id mv_pci_tbl[] = { { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, /* RocketRAID 1720/174x have different identifiers */ { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, /* Adaptec 1430SA */ { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, /* Marvell 7042 support */ { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, /* Highpoint RocketRAID PCIe series */ { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, { } /* terminate list */ }; static const struct mv_hw_ops mv5xxx_ops = { .phy_errata = mv5_phy_errata, .enable_leds = mv5_enable_leds, .read_preamp = mv5_read_preamp, .reset_hc = mv5_reset_hc, .reset_flash = mv5_reset_flash, .reset_bus = mv5_reset_bus, }; static const struct mv_hw_ops mv6xxx_ops = { .phy_errata = mv6_phy_errata, .enable_leds = mv6_enable_leds, .read_preamp = mv6_read_preamp, .reset_hc = mv6_reset_hc, .reset_flash = mv6_reset_flash, .reset_bus = mv_reset_pci_bus, }; static const struct mv_hw_ops mv_soc_ops = { .phy_errata = mv6_phy_errata, .enable_leds = mv_soc_enable_leds, .read_preamp = mv_soc_read_preamp, .reset_hc = mv_soc_reset_hc, .reset_flash = mv_soc_reset_flash, .reset_bus = mv_soc_reset_bus, }; /* * Functions */ static inline void writelfl(unsigned long data, void __iomem *addr) { writel(data, addr); (void) readl(addr); /* flush to avoid PCI posted write */ } static inline unsigned int mv_hc_from_port(unsigned int port) { return port >> MV_PORT_HC_SHIFT; } static inline unsigned int mv_hardport_from_port(unsigned int port) { return port & MV_PORT_MASK; } /* * Consolidate some rather tricky bit shift calculations. * This is hot-path stuff, so not a function. * Simple code, with two return values, so macro rather than inline. * * port is the sole input, in range 0..7. * shift is one output, for use with main_irq_cause / main_irq_mask registers. * hardport is the other output, in range 0..3. * * Note that port and hardport may be the same variable in some cases. */ #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ { \ shift = mv_hc_from_port(port) * HC_SHIFT; \ hardport = mv_hardport_from_port(port); \ shift += hardport * 2; \ } static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) { return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); } static inline void __iomem *mv_hc_base_from_port(void __iomem *base, unsigned int port) { return mv_hc_base(base, mv_hc_from_port(port)); } static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) { return mv_hc_base_from_port(base, port) + MV_SATAHC_ARBTR_REG_SZ + (mv_hardport_from_port(port) * MV_PORT_REG_SZ); } static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) { void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; return hc_mmio + ofs; } static inline void __iomem *mv_host_base(struct ata_host *host) { struct mv_host_priv *hpriv = host->private_data; return hpriv->base; } static inline void __iomem *mv_ap_base(struct ata_port *ap) { return mv_port_base(mv_host_base(ap->host), ap->port_no); } static inline int mv_get_hc_count(unsigned long port_flags) { return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); } /** * mv_save_cached_regs - (re-)initialize cached port registers * @ap: the port whose registers we are caching * * Initialize the local cache of port registers, * so that reading them over and over again can * be avoided on the hotter paths of this driver. * This saves a few microseconds each time we switch * to/from EDMA mode to perform (eg.) a drive cache flush. */ static void mv_save_cached_regs(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); struct mv_port_priv *pp = ap->private_data; pp->cached.fiscfg = readl(port_mmio + FISCFG); pp->cached.ltmode = readl(port_mmio + LTMODE); pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); } /** * mv_write_cached_reg - write to a cached port register * @addr: hardware address of the register * @old: pointer to cached value of the register * @new: new value for the register * * Write a new value to a cached register, * but only if the value is different from before. */ static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) { if (new != *old) { unsigned long laddr; *old = new; /* * Workaround for 88SX60x1-B2 FEr SATA#13: * Read-after-write is needed to prevent generating 64-bit * write cycles on the PCI bus for SATA interface registers * at offsets ending in 0x4 or 0xc. * * Looks like a lot of fuss, but it avoids an unnecessary * +1 usec read-after-write delay for unaffected registers. */ laddr = (long)addr & 0xffff; if (laddr >= 0x300 && laddr <= 0x33c) { laddr &= 0x000f; if (laddr == 0x4 || laddr == 0xc) { writelfl(new, addr); /* read after write */ return; } } writel(new, addr); /* unaffected by the errata */ } } static void mv_set_edma_ptrs(void __iomem *port_mmio, struct mv_host_priv *hpriv, struct mv_port_priv *pp) { u32 index; /* * initialize request queue */ pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; WARN_ON(pp->crqb_dma & 0x3ff); writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, port_mmio + EDMA_REQ_Q_IN_PTR); writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); /* * initialize response queue */ pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; WARN_ON(pp->crpb_dma & 0xff); writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, port_mmio + EDMA_RSP_Q_OUT_PTR); } static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) { /* * When writing to the main_irq_mask in hardware, * we must ensure exclusivity between the interrupt coalescing bits * and the corresponding individual port DONE_IRQ bits. * * Note that this register is really an "IRQ enable" register, * not an "IRQ mask" register as Marvell's naming might suggest. */ if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) mask &= ~DONE_IRQ_0_3; if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) mask &= ~DONE_IRQ_4_7; writelfl(mask, hpriv->main_irq_mask_addr); } static void mv_set_main_irq_mask(struct ata_host *host, u32 disable_bits, u32 enable_bits) { struct mv_host_priv *hpriv = host->private_data; u32 old_mask, new_mask; old_mask = hpriv->main_irq_mask; new_mask = (old_mask & ~disable_bits) | enable_bits; if (new_mask != old_mask) { hpriv->main_irq_mask = new_mask; mv_write_main_irq_mask(new_mask, hpriv); } } static void mv_enable_port_irqs(struct ata_port *ap, unsigned int port_bits) { unsigned int shift, hardport, port = ap->port_no; u32 disable_bits, enable_bits; MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); disable_bits = (DONE_IRQ | ERR_IRQ) << shift; enable_bits = port_bits << shift; mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); } static void mv_clear_and_enable_port_irqs(struct ata_port *ap, void __iomem *port_mmio, unsigned int port_irqs) { struct mv_host_priv *hpriv = ap->host->private_data; int hardport = mv_hardport_from_port(ap->port_no); void __iomem *hc_mmio = mv_hc_base_from_port( mv_host_base(ap->host), ap->port_no); u32 hc_irq_cause; /* clear EDMA event indicators, if any */ writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); /* clear pending irq events */ hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); /* clear FIS IRQ Cause */ if (IS_GEN_IIE(hpriv)) writelfl(0, port_mmio + FIS_IRQ_CAUSE); mv_enable_port_irqs(ap, port_irqs); } static void mv_set_irq_coalescing(struct ata_host *host, unsigned int count, unsigned int usecs) { struct mv_host_priv *hpriv = host->private_data; void __iomem *mmio = hpriv->base, *hc_mmio; u32 coal_enable = 0; unsigned long flags; unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | ALL_PORTS_COAL_DONE; /* Disable IRQ coalescing if either threshold is zero */ if (!usecs || !count) { clks = count = 0; } else { /* Respect maximum limits of the hardware */ clks = usecs * COAL_CLOCKS_PER_USEC; if (clks > MAX_COAL_TIME_THRESHOLD) clks = MAX_COAL_TIME_THRESHOLD; if (count > MAX_COAL_IO_COUNT) count = MAX_COAL_IO_COUNT; } spin_lock_irqsave(&host->lock, flags); mv_set_main_irq_mask(host, coal_disable, 0); if (is_dual_hc && !IS_GEN_I(hpriv)) { /* * GEN_II/GEN_IIE with dual host controllers: * one set of global thresholds for the entire chip. */ writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); writel(count, mmio + IRQ_COAL_IO_THRESHOLD); /* clear leftover coal IRQ bit */ writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); if (count) coal_enable = ALL_PORTS_COAL_DONE; clks = count = 0; /* force clearing of regular regs below */ } /* * All chips: independent thresholds for each HC on the chip. */ hc_mmio = mv_hc_base_from_port(mmio, 0); writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); if (count) coal_enable |= PORTS_0_3_COAL_DONE; if (is_dual_hc) { hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); if (count) coal_enable |= PORTS_4_7_COAL_DONE; } mv_set_main_irq_mask(host, 0, coal_enable); spin_unlock_irqrestore(&host->lock, flags); } /** * mv_start_edma - Enable eDMA engine * @base: port base address * @pp: port private data * * Verify the local cache of the eDMA state is accurate with a * WARN_ON. * * LOCKING: * Inherited from caller. */ static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, struct mv_port_priv *pp, u8 protocol) { int want_ncq = (protocol == ATA_PROT_NCQ); if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); if (want_ncq != using_ncq) mv_stop_edma(ap); } if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { struct mv_host_priv *hpriv = ap->host->private_data; mv_edma_cfg(ap, want_ncq, 1); mv_set_edma_ptrs(port_mmio, hpriv, pp); mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); writelfl(EDMA_EN, port_mmio + EDMA_CMD); pp->pp_flags |= MV_PP_FLAG_EDMA_EN; } } static void mv_wait_for_edma_empty_idle(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); const int per_loop = 5, timeout = (15 * 1000 / per_loop); int i; /* * Wait for the EDMA engine to finish transactions in progress. * No idea what a good "timeout" value might be, but measurements * indicate that it often requires hundreds of microseconds * with two drives in-use. So we use the 15msec value above * as a rough guess at what even more drives might require. */ for (i = 0; i < timeout; ++i) { u32 edma_stat = readl(port_mmio + EDMA_STATUS); if ((edma_stat & empty_idle) == empty_idle) break; udelay(per_loop); } /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */ } /** * mv_stop_edma_engine - Disable eDMA engine * @port_mmio: io base address * * LOCKING: * Inherited from caller. */ static int mv_stop_edma_engine(void __iomem *port_mmio) { int i; /* Disable eDMA. The disable bit auto clears. */ writelfl(EDMA_DS, port_mmio + EDMA_CMD); /* Wait for the chip to confirm eDMA is off. */ for (i = 10000; i > 0; i--) { u32 reg = readl(port_mmio + EDMA_CMD); if (!(reg & EDMA_EN)) return 0; udelay(10); } return -EIO; } static int mv_stop_edma(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); struct mv_port_priv *pp = ap->private_data; int err = 0; if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) return 0; pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; mv_wait_for_edma_empty_idle(ap); if (mv_stop_edma_engine(port_mmio)) { ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n"); err = -EIO; } mv_edma_cfg(ap, 0, 0); return err; } #ifdef ATA_DEBUG static void mv_dump_mem(void __iomem *start, unsigned bytes) { int b, w; for (b = 0; b < bytes; ) { DPRINTK("%p: ", start + b); for (w = 0; b < bytes && w < 4; w++) { printk("%08x ", readl(start + b)); b += sizeof(u32); } printk("\n"); } } #endif static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) { #ifdef ATA_DEBUG int b, w; u32 dw; for (b = 0; b < bytes; ) { DPRINTK("%02x: ", b); for (w = 0; b < bytes && w < 4; w++) { (void) pci_read_config_dword(pdev, b, &dw); printk("%08x ", dw); b += sizeof(u32); } printk("\n"); } #endif } static void mv_dump_all_regs(void __iomem *mmio_base, int port, struct pci_dev *pdev) { #ifdef ATA_DEBUG void __iomem *hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT); void __iomem *port_base; int start_port, num_ports, p, start_hc, num_hcs, hc; if (0 > port) { start_hc = start_port = 0; num_ports = 8; /* shld be benign for 4 port devs */ num_hcs = 2; } else { start_hc = port >> MV_PORT_HC_SHIFT; start_port = port; num_ports = num_hcs = 1; } DPRINTK("All registers for port(s) %u-%u:\n", start_port, num_ports > 1 ? num_ports - 1 : start_port); if (NULL != pdev) { DPRINTK("PCI config space regs:\n"); mv_dump_pci_cfg(pdev, 0x68); } DPRINTK("PCI regs:\n"); mv_dump_mem(mmio_base+0xc00, 0x3c); mv_dump_mem(mmio_base+0xd00, 0x34); mv_dump_mem(mmio_base+0xf00, 0x4); mv_dump_mem(mmio_base+0x1d00, 0x6c); for (hc = start_hc; hc < start_hc + num_hcs; hc++) { hc_base = mv_hc_base(mmio_base, hc); DPRINTK("HC regs (HC %i):\n", hc); mv_dump_mem(hc_base, 0x1c); } for (p = start_port; p < start_port + num_ports; p++) { port_base = mv_port_base(mmio_base, p); DPRINTK("EDMA regs (port %i):\n", p); mv_dump_mem(port_base, 0x54); DPRINTK("SATA regs (port %i):\n", p); mv_dump_mem(port_base+0x300, 0x60); } #endif } static unsigned int mv_scr_offset(unsigned int sc_reg_in) { unsigned int ofs; switch (sc_reg_in) { case SCR_STATUS: case SCR_CONTROL: case SCR_ERROR: ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); break; case SCR_ACTIVE: ofs = SATA_ACTIVE; /* active is not with the others */ break; default: ofs = 0xffffffffU; break; } return ofs; } static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) { unsigned int ofs = mv_scr_offset(sc_reg_in); if (ofs != 0xffffffffU) { *val = readl(mv_ap_base(link->ap) + ofs); return 0; } else return -EINVAL; } static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) { unsigned int ofs = mv_scr_offset(sc_reg_in); if (ofs != 0xffffffffU) { void __iomem *addr = mv_ap_base(link->ap) + ofs; if (sc_reg_in == SCR_CONTROL) { /* * Workaround for 88SX60x1 FEr SATA#26: * * COMRESETs have to take care not to accidently * put the drive to sleep when writing SCR_CONTROL. * Setting bits 12..15 prevents this problem. * * So if we see an outbound COMMRESET, set those bits. * Ditto for the followup write that clears the reset. * * The proprietary driver does this for * all chip versions, and so do we. */ if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) val |= 0xf000; } writelfl(val, addr); return 0; } else return -EINVAL; } static void mv6_dev_config(struct ata_device *adev) { /* * Deal with Gen-II ("mv6") hardware quirks/restrictions: * * Gen-II does not support NCQ over a port multiplier * (no FIS-based switching). */ if (adev->flags & ATA_DFLAG_NCQ) { if (sata_pmp_attached(adev->link->ap)) { adev->flags &= ~ATA_DFLAG_NCQ; ata_dev_printk(adev, KERN_INFO, "NCQ disabled for command-based switching\n"); } } } static int mv_qc_defer(struct ata_queued_cmd *qc) { struct ata_link *link = qc->dev->link; struct ata_port *ap = link->ap; struct mv_port_priv *pp = ap->private_data; /* * Don't allow new commands if we're in a delayed EH state * for NCQ and/or FIS-based switching. */ if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) return ATA_DEFER_PORT; /* * If the port is completely idle, then allow the new qc. */ if (ap->nr_active_links == 0) return 0; /* * The port is operating in host queuing mode (EDMA) with NCQ * enabled, allow multiple NCQ commands. EDMA also allows * queueing multiple DMA commands but libata core currently * doesn't allow it. */ if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol)) return 0; return ATA_DEFER_PORT; } static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) { struct mv_port_priv *pp = ap->private_data; void __iomem *port_mmio; u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; u32 ltmode, *old_ltmode = &pp->cached.ltmode; u32 haltcond, *old_haltcond = &pp->cached.haltcond; ltmode = *old_ltmode & ~LTMODE_BIT8; haltcond = *old_haltcond | EDMA_ERR_DEV; if (want_fbs) { fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; ltmode = *old_ltmode | LTMODE_BIT8; if (want_ncq) haltcond &= ~EDMA_ERR_DEV; else fiscfg |= FISCFG_WAIT_DEV_ERR; } else { fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); } port_mmio = mv_ap_base(ap); mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); } static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) { struct mv_host_priv *hpriv = ap->host->private_data; u32 old, new; /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ old = readl(hpriv->base + GPIO_PORT_CTL); if (want_ncq) new = old | (1 << 22); else new = old & ~(1 << 22); if (new != old) writel(new, hpriv->base + GPIO_PORT_CTL); } /** * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma * @ap: Port being initialized * * There are two DMA modes on these chips: basic DMA, and EDMA. * * Bit-0 of the "EDMA RESERVED" register enables/disables use * of basic DMA on the GEN_IIE versions of the chips. * * This bit survives EDMA resets, and must be set for basic DMA * to function, and should be cleared when EDMA is active. */ static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) { struct mv_port_priv *pp = ap->private_data; u32 new, *old = &pp->cached.unknown_rsvd; if (enable_bmdma) new = *old | 1; else new = *old & ~1; mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); } /* * SOC chips have an issue whereby the HDD LEDs don't always blink * during I/O when NCQ is enabled. Enabling a special "LED blink" mode * of the SOC takes care of it, generating a steady blink rate when * any drive on the chip is active. * * Unfortunately, the blink mode is a global hardware setting for the SOC, * so we must use it whenever at least one port on the SOC has NCQ enabled. * * We turn "LED blink" off when NCQ is not in use anywhere, because the normal * LED operation works then, and provides better (more accurate) feedback. * * Note that this code assumes that an SOC never has more than one HC onboard. */ static void mv_soc_led_blink_enable(struct ata_port *ap) { struct ata_host *host = ap->host; struct mv_host_priv *hpriv = host->private_data; void __iomem *hc_mmio; u32 led_ctrl; if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) return; hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); led_ctrl = readl(hc_mmio + SOC_LED_CTRL); writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); } static void mv_soc_led_blink_disable(struct ata_port *ap) { struct ata_host *host = ap->host; struct mv_host_priv *hpriv = host->private_data; void __iomem *hc_mmio; u32 led_ctrl; unsigned int port; if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) return; /* disable led-blink only if no ports are using NCQ */ for (port = 0; port < hpriv->n_ports; port++) { struct ata_port *this_ap = host->ports[port]; struct mv_port_priv *pp = this_ap->private_data; if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) return; } hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); led_ctrl = readl(hc_mmio + SOC_LED_CTRL); writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); } static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) { u32 cfg; struct mv_port_priv *pp = ap->private_data; struct mv_host_priv *hpriv = ap->host->private_data; void __iomem *port_mmio = mv_ap_base(ap); /* set up non-NCQ EDMA configuration */ cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ pp->pp_flags &= ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); if (IS_GEN_I(hpriv)) cfg |= (1 << 8); /* enab config burst size mask */ else if (IS_GEN_II(hpriv)) { cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; mv_60x1_errata_sata25(ap, want_ncq); } else if (IS_GEN_IIE(hpriv)) { int want_fbs = sata_pmp_attached(ap); /* * Possible future enhancement: * * The chip can use FBS with non-NCQ, if we allow it, * But first we need to have the error handling in place * for this mode (datasheet section 7.3.15.4.2.3). * So disallow non-NCQ FBS for now. */ want_fbs &= want_ncq; mv_config_fbs(ap, want_ncq, want_fbs); if (want_fbs) { pp->pp_flags |= MV_PP_FLAG_FBS_EN; cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ } cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ if (want_edma) { cfg |= (1 << 22); /* enab 4-entry host queue cache */ if (!IS_SOC(hpriv)) cfg |= (1 << 18); /* enab early completion */ } if (hpriv->hp_flags & MV_HP_CUT_THROUGH) cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ mv_bmdma_enable_iie(ap, !want_edma); if (IS_SOC(hpriv)) { if (want_ncq) mv_soc_led_blink_enable(ap); else mv_soc_led_blink_disable(ap); } } if (want_ncq) { cfg |= EDMA_CFG_NCQ; pp->pp_flags |= MV_PP_FLAG_NCQ_EN; } writelfl(cfg, port_mmio + EDMA_CFG); } static void mv_port_free_dma_mem(struct ata_port *ap) { struct mv_host_priv *hpriv = ap->host->private_data; struct mv_port_priv *pp = ap->private_data; int tag; if (pp->crqb) { dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); pp->crqb = NULL; } if (pp->crpb) { dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); pp->crpb = NULL; } /* * For GEN_I, there's no NCQ, so we have only a single sg_tbl. * For later hardware, we have one unique sg_tbl per NCQ tag. */ for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { if (pp->sg_tbl[tag]) { if (tag == 0 || !IS_GEN_I(hpriv)) dma_pool_free(hpriv->sg_tbl_pool, pp->sg_tbl[tag], pp->sg_tbl_dma[tag]); pp->sg_tbl[tag] = NULL; } } } /** * mv_port_start - Port specific init/start routine. * @ap: ATA channel to manipulate * * Allocate and point to DMA memory, init port private memory, * zero indices. * * LOCKING: * Inherited from caller. */ static int mv_port_start(struct ata_port *ap) { struct device *dev = ap->host->dev; struct mv_host_priv *hpriv = ap->host->private_data; struct mv_port_priv *pp; unsigned long flags; int tag; pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); if (!pp) return -ENOMEM; ap->private_data = pp; pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); if (!pp->crqb) return -ENOMEM; memset(pp->crqb, 0, MV_CRQB_Q_SZ); pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); if (!pp->crpb) goto out_port_free_dma_mem; memset(pp->crpb, 0, MV_CRPB_Q_SZ); /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) ap->flags |= ATA_FLAG_AN; /* * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. * For later hardware, we need one unique sg_tbl per NCQ tag. */ for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { if (tag == 0 || !IS_GEN_I(hpriv)) { pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, GFP_KERNEL, &pp->sg_tbl_dma[tag]); if (!pp->sg_tbl[tag]) goto out_port_free_dma_mem; } else { pp->sg_tbl[tag] = pp->sg_tbl[0]; pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; } } spin_lock_irqsave(ap->lock, flags); mv_save_cached_regs(ap); mv_edma_cfg(ap, 0, 0); spin_unlock_irqrestore(ap->lock, flags); return 0; out_port_free_dma_mem: mv_port_free_dma_mem(ap); return -ENOMEM; } /** * mv_port_stop - Port specific cleanup/stop routine. * @ap: ATA channel to manipulate * * Stop DMA, cleanup port memory. * * LOCKING: * This routine uses the host lock to protect the DMA stop. */ static void mv_port_stop(struct ata_port *ap) { unsigned long flags; spin_lock_irqsave(ap->lock, flags); mv_stop_edma(ap); mv_enable_port_irqs(ap, 0); spin_unlock_irqrestore(ap->lock, flags); mv_port_free_dma_mem(ap); } /** * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries * @qc: queued command whose SG list to source from * * Populate the SG list and mark the last entry. * * LOCKING: * Inherited from caller. */ static void mv_fill_sg(struct ata_queued_cmd *qc) { struct mv_port_priv *pp = qc->ap->private_data; struct scatterlist *sg; struct mv_sg *mv_sg, *last_sg = NULL; unsigned int si; mv_sg = pp->sg_tbl[qc->tag]; for_each_sg(qc->sg, sg, qc->n_elem, si) { dma_addr_t addr = sg_dma_address(sg); u32 sg_len = sg_dma_len(sg); while (sg_len) { u32 offset = addr & 0xffff; u32 len = sg_len; if (offset + len > 0x10000) len = 0x10000 - offset; mv_sg->addr = cpu_to_le32(addr & 0xffffffff); mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); mv_sg->flags_size = cpu_to_le32(len & 0xffff); mv_sg->reserved = 0; sg_len -= len; addr += len; last_sg = mv_sg; mv_sg++; } } if (likely(last_sg)) last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); mb(); /* ensure data structure is visible to the chipset */ } static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) { u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | (last ? CRQB_CMD_LAST : 0); *cmdw = cpu_to_le16(tmp); } /** * mv_sff_irq_clear - Clear hardware interrupt after DMA. * @ap: Port associated with this ATA transaction. * * We need this only for ATAPI bmdma transactions, * as otherwise we experience spurious interrupts * after libata-sff handles the bmdma interrupts. */ static void mv_sff_irq_clear(struct ata_port *ap) { mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); } /** * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. * @qc: queued command to check for chipset/DMA compatibility. * * The bmdma engines cannot handle speculative data sizes * (bytecount under/over flow). So only allow DMA for * data transfer commands with known data sizes. * * LOCKING: * Inherited from caller. */ static int mv_check_atapi_dma(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; if (scmd) { switch (scmd->cmnd[0]) { case READ_6: case READ_10: case READ_12: case WRITE_6: case WRITE_10: case WRITE_12: case GPCMD_READ_CD: case GPCMD_SEND_DVD_STRUCTURE: case GPCMD_SEND_CUE_SHEET: return 0; /* DMA is safe */ } } return -EOPNOTSUPP; /* use PIO instead */ } /** * mv_bmdma_setup - Set up BMDMA transaction * @qc: queued command to prepare DMA for. * * LOCKING: * Inherited from caller. */ static void mv_bmdma_setup(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; void __iomem *port_mmio = mv_ap_base(ap); struct mv_port_priv *pp = ap->private_data; mv_fill_sg(qc); /* clear all DMA cmd bits */ writel(0, port_mmio + BMDMA_CMD); /* load PRD table addr. */ writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, port_mmio + BMDMA_PRD_HIGH); writelfl(pp->sg_tbl_dma[qc->tag], port_mmio + BMDMA_PRD_LOW); /* issue r/w command */ ap->ops->sff_exec_command(ap, &qc->tf); } /** * mv_bmdma_start - Start a BMDMA transaction * @qc: queued command to start DMA on. * * LOCKING: * Inherited from caller. */ static void mv_bmdma_start(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; void __iomem *port_mmio = mv_ap_base(ap); unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; /* start host DMA transaction */ writelfl(cmd, port_mmio + BMDMA_CMD); } /** * mv_bmdma_stop - Stop BMDMA transfer * @qc: queued command to stop DMA on. * * Clears the ATA_DMA_START flag in the bmdma control register * * LOCKING: * Inherited from caller. */ static void mv_bmdma_stop(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; void __iomem *port_mmio = mv_ap_base(ap); u32 cmd; /* clear start/stop bit */ cmd = readl(port_mmio + BMDMA_CMD); cmd &= ~ATA_DMA_START; writelfl(cmd, port_mmio + BMDMA_CMD); /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ ata_sff_dma_pause(ap); } /** * mv_bmdma_status - Read BMDMA status * @ap: port for which to retrieve DMA status. * * Read and return equivalent of the sff BMDMA status register. * * LOCKING: * Inherited from caller. */ static u8 mv_bmdma_status(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); u32 reg, status; /* * Other bits are valid only if ATA_DMA_ACTIVE==0, * and the ATA_DMA_INTR bit doesn't exist. */ reg = readl(port_mmio + BMDMA_STATUS); if (reg & ATA_DMA_ACTIVE) status = ATA_DMA_ACTIVE; else status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; return status; } /** * mv_qc_prep - Host specific command preparation. * @qc: queued command to prepare * * This routine simply redirects to the general purpose routine * if command is not DMA. Else, it handles prep of the CRQB * (command request block), does some sanity checking, and calls * the SG load routine. * * LOCKING: * Inherited from caller. */ static void mv_qc_prep(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct mv_port_priv *pp = ap->private_data; __le16 *cw; struct ata_taskfile *tf = &qc->tf; u16 flags = 0; unsigned in_index; if ((tf->protocol != ATA_PROT_DMA) && (tf->protocol != ATA_PROT_NCQ)) return; /* Fill in command request block */ if (!(tf->flags & ATA_TFLAG_WRITE)) flags |= CRQB_FLAG_READ; WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); flags |= qc->tag << CRQB_TAG_SHIFT; flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; /* get current queue index from software */ in_index = pp->req_idx; pp->crqb[in_index].sg_addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); pp->crqb[in_index].sg_addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); cw = &pp->crqb[in_index].ata_cmd[0]; /* Sadly, the CRQB cannot accomodate all registers--there are * only 11 bytes...so we must pick and choose required * registers based on the command. So, we drop feature and * hob_feature for [RW] DMA commands, but they are needed for * NCQ. NCQ will drop hob_nsect, which is not needed there * (nsect is used only for the tag; feat/hob_feat hold true nsect). */ switch (tf->command) { case ATA_CMD_READ: case ATA_CMD_READ_EXT: case ATA_CMD_WRITE: case ATA_CMD_WRITE_EXT: case ATA_CMD_WRITE_FUA_EXT: mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); break; case ATA_CMD_FPDMA_READ: case ATA_CMD_FPDMA_WRITE: mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); break; default: /* The only other commands EDMA supports in non-queued and * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none * of which are defined/used by Linux. If we get here, this * driver needs work. * * FIXME: modify libata to give qc_prep a return value and * return error here. */ BUG_ON(tf->command); break; } mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ if (!(qc->flags & ATA_QCFLAG_DMAMAP)) return; mv_fill_sg(qc); } /** * mv_qc_prep_iie - Host specific command preparation. * @qc: queued command to prepare * * This routine simply redirects to the general purpose routine * if command is not DMA. Else, it handles prep of the CRQB * (command request block), does some sanity checking, and calls * the SG load routine. * * LOCKING: * Inherited from caller. */ static void mv_qc_prep_iie(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct mv_port_priv *pp = ap->private_data; struct mv_crqb_iie *crqb; struct ata_taskfile *tf = &qc->tf; unsigned in_index; u32 flags = 0; if ((tf->protocol != ATA_PROT_DMA) && (tf->protocol != ATA_PROT_NCQ)) return; /* Fill in Gen IIE command request block */ if (!(tf->flags & ATA_TFLAG_WRITE)) flags |= CRQB_FLAG_READ; WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); flags |= qc->tag << CRQB_TAG_SHIFT; flags |= qc->tag << CRQB_HOSTQ_SHIFT; flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; /* get current queue index from software */ in_index = pp->req_idx; crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); crqb->flags = cpu_to_le32(flags); crqb->ata_cmd[0] = cpu_to_le32( (tf->command << 16) | (tf->feature << 24) ); crqb->ata_cmd[1] = cpu_to_le32( (tf->lbal << 0) | (tf->lbam << 8) | (tf->lbah << 16) | (tf->device << 24) ); crqb->ata_cmd[2] = cpu_to_le32( (tf->hob_lbal << 0) | (tf->hob_lbam << 8) | (tf->hob_lbah << 16) | (tf->hob_feature << 24) ); crqb->ata_cmd[3] = cpu_to_le32( (tf->nsect << 0) | (tf->hob_nsect << 8) ); if (!(qc->flags & ATA_QCFLAG_DMAMAP)) return; mv_fill_sg(qc); } /** * mv_sff_check_status - fetch device status, if valid * @ap: ATA port to fetch status from * * When using command issue via mv_qc_issue_fis(), * the initial ATA_BUSY state does not show up in the * ATA status (shadow) register. This can confuse libata! * * So we have a hook here to fake ATA_BUSY for that situation, * until the first time a BUSY, DRQ, or ERR bit is seen. * * The rest of the time, it simply returns the ATA status register. */ static u8 mv_sff_check_status(struct ata_port *ap) { u8 stat = ioread8(ap->ioaddr.status_addr); struct mv_port_priv *pp = ap->private_data; if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; else stat = ATA_BUSY; } return stat; } /** * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register * @fis: fis to be sent * @nwords: number of 32-bit words in the fis */ static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) { void __iomem *port_mmio = mv_ap_base(ap); u32 ifctl, old_ifctl, ifstat; int i, timeout = 200, final_word = nwords - 1; /* Initiate FIS transmission mode */ old_ifctl = readl(port_mmio + SATA_IFCTL); ifctl = 0x100 | (old_ifctl & 0xf); writelfl(ifctl, port_mmio + SATA_IFCTL); /* Send all words of the FIS except for the final word */ for (i = 0; i < final_word; ++i) writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); /* Flag end-of-transmission, and then send the final word */ writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); /* * Wait for FIS transmission to complete. * This typically takes just a single iteration. */ do { ifstat = readl(port_mmio + SATA_IFSTAT); } while (!(ifstat & 0x1000) && --timeout); /* Restore original port configuration */ writelfl(old_ifctl, port_mmio + SATA_IFCTL); /* See if it worked */ if ((ifstat & 0x3000) != 0x1000) { ata_port_printk(ap, KERN_WARNING, "%s transmission error, ifstat=%08x\n", __func__, ifstat); return AC_ERR_OTHER; } return 0; } /** * mv_qc_issue_fis - Issue a command directly as a FIS * @qc: queued command to start * * Note that the ATA shadow registers are not updated * after command issue, so the device will appear "READY" * if polled, even while it is BUSY processing the command. * * So we use a status hook to fake ATA_BUSY until the drive changes state. * * Note: we don't get updated shadow regs on *completion* * of non-data commands. So avoid sending them via this function, * as they will appear to have completed immediately. * * GEN_IIE has special registers that we could get the result tf from, * but earlier chipsets do not. For now, we ignore those registers. */ static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct mv_port_priv *pp = ap->private_data; struct ata_link *link = qc->dev->link; u32 fis[5]; int err = 0; ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); err = mv_send_fis(ap, fis, sizeof(fis) / sizeof(fis[0])); if (err) return err; switch (qc->tf.protocol) { case ATAPI_PROT_PIO: pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; /* fall through */ case ATAPI_PROT_NODATA: ap->hsm_task_state = HSM_ST_FIRST; break; case ATA_PROT_PIO: pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; if (qc->tf.flags & ATA_TFLAG_WRITE) ap->hsm_task_state = HSM_ST_FIRST; else ap->hsm_task_state = HSM_ST; break; default: ap->hsm_task_state = HSM_ST_LAST; break; } if (qc->tf.flags & ATA_TFLAG_POLLING) ata_pio_queue_task(ap, qc, 0); return 0; } /** * mv_qc_issue - Initiate a command to the host * @qc: queued command to start * * This routine simply redirects to the general purpose routine * if command is not DMA. Else, it sanity checks our local * caches of the request producer/consumer indices then enables * DMA and bumps the request producer index. * * LOCKING: * Inherited from caller. */ static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) { static int limit_warnings = 10; struct ata_port *ap = qc->ap; void __iomem *port_mmio = mv_ap_base(ap); struct mv_port_priv *pp = ap->private_data; u32 in_index; unsigned int port_irqs; pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ switch (qc->tf.protocol) { case ATA_PROT_DMA: case ATA_PROT_NCQ: mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; /* Write the request in pointer to kick the EDMA to life */ writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, port_mmio + EDMA_REQ_Q_IN_PTR); return 0; case ATA_PROT_PIO: /* * Errata SATA#16, SATA#24: warn if multiple DRQs expected. * * Someday, we might implement special polling workarounds * for these, but it all seems rather unnecessary since we * normally use only DMA for commands which transfer more * than a single block of data. * * Much of the time, this could just work regardless. * So for now, just log the incident, and allow the attempt. */ if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { --limit_warnings; ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME ": attempting PIO w/multiple DRQ: " "this may fail due to h/w errata\n"); } /* drop through */ case ATA_PROT_NODATA: case ATAPI_PROT_PIO: case ATAPI_PROT_NODATA: if (ap->flags & ATA_FLAG_PIO_POLLING) qc->tf.flags |= ATA_TFLAG_POLLING; break; } if (qc->tf.flags & ATA_TFLAG_POLLING) port_irqs = ERR_IRQ; /* mask device interrupt when polling */ else port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ /* * We're about to send a non-EDMA capable command to the * port. Turn off EDMA so there won't be problems accessing * shadow block, etc registers. */ mv_stop_edma(ap); mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); mv_pmp_select(ap, qc->dev->link->pmp); if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { struct mv_host_priv *hpriv = ap->host->private_data; /* * Workaround for 88SX60x1 FEr SATA#25 (part 2). * * After any NCQ error, the READ_LOG_EXT command * from libata-eh *must* use mv_qc_issue_fis(). * Otherwise it might fail, due to chip errata. * * Rather than special-case it, we'll just *always* * use this method here for READ_LOG_EXT, making for * easier testing. */ if (IS_GEN_II(hpriv)) return mv_qc_issue_fis(qc); } return ata_sff_qc_issue(qc); } static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) { struct mv_port_priv *pp = ap->private_data; struct ata_queued_cmd *qc; if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) return NULL; qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc) { if (qc->tf.flags & ATA_TFLAG_POLLING) qc = NULL; else if (!(qc->flags & ATA_QCFLAG_ACTIVE)) qc = NULL; } return qc; } static void mv_pmp_error_handler(struct ata_port *ap) { unsigned int pmp, pmp_map; struct mv_port_priv *pp = ap->private_data; if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { /* * Perform NCQ error analysis on failed PMPs * before we freeze the port entirely. * * The failed PMPs are marked earlier by mv_pmp_eh_prep(). */ pmp_map = pp->delayed_eh_pmp_map; pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; for (pmp = 0; pmp_map != 0; pmp++) { unsigned int this_pmp = (1 << pmp); if (pmp_map & this_pmp) { struct ata_link *link = &ap->pmp_link[pmp]; pmp_map &= ~this_pmp; ata_eh_analyze_ncq_error(link); } } ata_port_freeze(ap); } sata_pmp_error_handler(ap); } static unsigned int mv_get_err_pmp_map(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); return readl(port_mmio + SATA_TESTCTL) >> 16; } static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) { struct ata_eh_info *ehi; unsigned int pmp; /* * Initialize EH info for PMPs which saw device errors */ ehi = &ap->link.eh_info; for (pmp = 0; pmp_map != 0; pmp++) { unsigned int this_pmp = (1 << pmp); if (pmp_map & this_pmp) { struct ata_link *link = &ap->pmp_link[pmp]; pmp_map &= ~this_pmp; ehi = &link->eh_info; ata_ehi_clear_desc(ehi); ata_ehi_push_desc(ehi, "dev err"); ehi->err_mask |= AC_ERR_DEV; ehi->action |= ATA_EH_RESET; ata_link_abort(link); } } } static int mv_req_q_empty(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); u32 in_ptr, out_ptr; in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; return (in_ptr == out_ptr); /* 1 == queue_is_empty */ } static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) { struct mv_port_priv *pp = ap->private_data; int failed_links; unsigned int old_map, new_map; /* * Device error during FBS+NCQ operation: * * Set a port flag to prevent further I/O being enqueued. * Leave the EDMA running to drain outstanding commands from this port. * Perform the post-mortem/EH only when all responses are complete. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). */ if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; pp->delayed_eh_pmp_map = 0; } old_map = pp->delayed_eh_pmp_map; new_map = old_map | mv_get_err_pmp_map(ap); if (old_map != new_map) { pp->delayed_eh_pmp_map = new_map; mv_pmp_eh_prep(ap, new_map & ~old_map); } failed_links = hweight16(new_map); ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x " "failed_links=%d nr_active_links=%d\n", __func__, pp->delayed_eh_pmp_map, ap->qc_active, failed_links, ap->nr_active_links); if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { mv_process_crpb_entries(ap, pp); mv_stop_edma(ap); mv_eh_freeze(ap); ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__); return 1; /* handled */ } ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__); return 1; /* handled */ } static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) { /* * Possible future enhancement: * * FBS+non-NCQ operation is not yet implemented. * See related notes in mv_edma_cfg(). * * Device error during FBS+non-NCQ operation: * * We need to snapshot the shadow registers for each failed command. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). */ return 0; /* not handled */ } static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) { struct mv_port_priv *pp = ap->private_data; if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) return 0; /* EDMA was not active: not handled */ if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) return 0; /* FBS was not active: not handled */ if (!(edma_err_cause & EDMA_ERR_DEV)) return 0; /* non DEV error: not handled */ edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) return 0; /* other problems: not handled */ if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { /* * EDMA should NOT have self-disabled for this case. * If it did, then something is wrong elsewhere, * and we cannot handle it here. */ if (edma_err_cause & EDMA_ERR_SELF_DIS) { ata_port_printk(ap, KERN_WARNING, "%s: err_cause=0x%x pp_flags=0x%x\n", __func__, edma_err_cause, pp->pp_flags); return 0; /* not handled */ } return mv_handle_fbs_ncq_dev_err(ap); } else { /* * EDMA should have self-disabled for this case. * If it did not, then something is wrong elsewhere, * and we cannot handle it here. */ if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { ata_port_printk(ap, KERN_WARNING, "%s: err_cause=0x%x pp_flags=0x%x\n", __func__, edma_err_cause, pp->pp_flags); return 0; /* not handled */ } return mv_handle_fbs_non_ncq_dev_err(ap); } return 0; /* not handled */ } static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) { struct ata_eh_info *ehi = &ap->link.eh_info; char *when = "idle"; ata_ehi_clear_desc(ehi); if (!ap || (ap->flags & ATA_FLAG_DISABLED)) { when = "disabled"; } else if (edma_was_enabled) { when = "EDMA enabled"; } else { struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) when = "polling"; } ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); ehi->err_mask |= AC_ERR_OTHER; ehi->action |= ATA_EH_RESET; ata_port_freeze(ap); } /** * mv_err_intr - Handle error interrupts on the port * @ap: ATA channel to manipulate * * Most cases require a full reset of the chip's state machine, * which also performs a COMRESET. * Also, if the port disabled DMA, update our cached copy to match. * * LOCKING: * Inherited from caller. */ static void mv_err_intr(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); u32 edma_err_cause, eh_freeze_mask, serr = 0; u32 fis_cause = 0; struct mv_port_priv *pp = ap->private_data; struct mv_host_priv *hpriv = ap->host->private_data; unsigned int action = 0, err_mask = 0; struct ata_eh_info *ehi = &ap->link.eh_info; struct ata_queued_cmd *qc; int abort = 0; /* * Read and clear the SError and err_cause bits. * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear * the FIS_IRQ_CAUSE register before clearing edma_err_cause. */ sata_scr_read(&ap->link, SCR_ERROR, &serr); sata_scr_write_flush(&ap->link, SCR_ERROR, serr); edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); } writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); if (edma_err_cause & EDMA_ERR_DEV) { /* * Device errors during FIS-based switching operation * require special handling. */ if (mv_handle_dev_err(ap, edma_err_cause)) return; } qc = mv_get_active_qc(ap); ata_ehi_clear_desc(ehi); ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", edma_err_cause, pp->pp_flags); if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); if (fis_cause & FIS_IRQ_CAUSE_AN) { u32 ec = edma_err_cause & ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); sata_async_notification(ap); if (!ec) return; /* Just an AN; no need for the nukes */ ata_ehi_push_desc(ehi, "SDB notify"); } } /* * All generations share these EDMA error cause bits: */ if (edma_err_cause & EDMA_ERR_DEV) { err_mask |= AC_ERR_DEV; action |= ATA_EH_RESET; ata_ehi_push_desc(ehi, "dev error"); } if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR)) { err_mask |= AC_ERR_ATA_BUS; action |= ATA_EH_RESET; ata_ehi_push_desc(ehi, "parity error"); } if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { ata_ehi_hotplugged(ehi); ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? "dev disconnect" : "dev connect"); action |= ATA_EH_RESET; } /* * Gen-I has a different SELF_DIS bit, * different FREEZE bits, and no SERR bit: */ if (IS_GEN_I(hpriv)) { eh_freeze_mask = EDMA_EH_FREEZE_5; if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; ata_ehi_push_desc(ehi, "EDMA self-disable"); } } else { eh_freeze_mask = EDMA_EH_FREEZE; if (edma_err_cause & EDMA_ERR_SELF_DIS) { pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; ata_ehi_push_desc(ehi, "EDMA self-disable"); } if (edma_err_cause & EDMA_ERR_SERR) { ata_ehi_push_desc(ehi, "SError=%08x", serr); err_mask |= AC_ERR_ATA_BUS; action |= ATA_EH_RESET; } } if (!err_mask) { err_mask = AC_ERR_OTHER; action |= ATA_EH_RESET; } ehi->serror |= serr; ehi->action |= action; if (qc) qc->err_mask |= err_mask; else ehi->err_mask |= err_mask; if (err_mask == AC_ERR_DEV) { /* * Cannot do ata_port_freeze() here, * because it would kill PIO access, * which is needed for further diagnosis. */ mv_eh_freeze(ap); abort = 1; } else if (edma_err_cause & eh_freeze_mask) { /* * Note to self: ata_port_freeze() calls ata_port_abort() */ ata_port_freeze(ap); } else { abort = 1; } if (abort) { if (qc) ata_link_abort(qc->dev->link); else ata_port_abort(ap); } } static void mv_process_crpb_response(struct ata_port *ap, struct mv_crpb *response, unsigned int tag, int ncq_enabled) { struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag); if (qc) { u8 ata_status; u16 edma_status = le16_to_cpu(response->flags); /* * edma_status from a response queue entry: * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). * MSB is saved ATA status from command completion. */ if (!ncq_enabled) { u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; if (err_cause) { /* * Error will be seen/handled by mv_err_intr(). * So do nothing at all here. */ return; } } ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; if (!ac_err_mask(ata_status)) ata_qc_complete(qc); /* else: leave it for mv_err_intr() */ } else { ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n", __func__, tag); } } static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) { void __iomem *port_mmio = mv_ap_base(ap); struct mv_host_priv *hpriv = ap->host->private_data; u32 in_index; bool work_done = false; int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); /* Get the hardware queue position index */ in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; /* Process new responses from since the last time we looked */ while (in_index != pp->resp_idx) { unsigned int tag; struct mv_crpb *response = &pp->crpb[pp->resp_idx]; pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; if (IS_GEN_I(hpriv)) { /* 50xx: no NCQ, only one command active at a time */ tag = ap->link.active_tag; } else { /* Gen II/IIE: get command tag from CRPB entry */ tag = le16_to_cpu(response->id) & 0x1f; } mv_process_crpb_response(ap, response, tag, ncq_enabled); work_done = true; } /* Update the software queue position index in hardware */ if (work_done) writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), port_mmio + EDMA_RSP_Q_OUT_PTR); } static void mv_port_intr(struct ata_port *ap, u32 port_cause) { struct mv_port_priv *pp; int edma_was_enabled; if (!ap || (ap->flags & ATA_FLAG_DISABLED)) { mv_unexpected_intr(ap, 0); return; } /* * Grab a snapshot of the EDMA_EN flag setting, * so that we have a consistent view for this port, * even if something we call of our routines changes it. */ pp = ap->private_data; edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); /* * Process completed CRPB response(s) before other events. */ if (edma_was_enabled && (port_cause & DONE_IRQ)) { mv_process_crpb_entries(ap, pp); if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) mv_handle_fbs_ncq_dev_err(ap); } /* * Handle chip-reported errors, or continue on to handle PIO. */ if (unlikely(port_cause & ERR_IRQ)) { mv_err_intr(ap); } else if (!edma_was_enabled) { struct ata_queued_cmd *qc = mv_get_active_qc(ap); if (qc) ata_sff_host_intr(ap, qc); else mv_unexpected_intr(ap, edma_was_enabled); } } /** * mv_host_intr - Handle all interrupts on the given host controller * @host: host specific structure * @main_irq_cause: Main interrupt cause register for the chip. * * LOCKING: * Inherited from caller. */ static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) { struct mv_host_priv *hpriv = host->private_data; void __iomem *mmio = hpriv->base, *hc_mmio; unsigned int handled = 0, port; /* If asserted, clear the "all ports" IRQ coalescing bit */ if (main_irq_cause & ALL_PORTS_COAL_DONE) writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); for (port = 0; port < hpriv->n_ports; port++) { struct ata_port *ap = host->ports[port]; unsigned int p, shift, hardport, port_cause; MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); /* * Each hc within the host has its own hc_irq_cause register, * where the interrupting ports bits get ack'd. */ if (hardport == 0) { /* first port on this hc ? */ u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; u32 port_mask, ack_irqs; /* * Skip this entire hc if nothing pending for any ports */ if (!hc_cause) { port += MV_PORTS_PER_HC - 1; continue; } /* * We don't need/want to read the hc_irq_cause register, * because doing so hurts performance, and * main_irq_cause already gives us everything we need. * * But we do have to *write* to the hc_irq_cause to ack * the ports that we are handling this time through. * * This requires that we create a bitmap for those * ports which interrupted us, and use that bitmap * to ack (only) those ports via hc_irq_cause. */ ack_irqs = 0; if (hc_cause & PORTS_0_3_COAL_DONE) ack_irqs = HC_COAL_IRQ; for (p = 0; p < MV_PORTS_PER_HC; ++p) { if ((port + p) >= hpriv->n_ports) break; port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); if (hc_cause & port_mask) ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; } hc_mmio = mv_hc_base_from_port(mmio, port); writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); handled = 1; } /* * Handle interrupts signalled for this port: */ port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); if (port_cause) mv_port_intr(ap, port_cause); } return handled; } static int mv_pci_error(struct ata_host *host, void __iomem *mmio) { struct mv_host_priv *hpriv = host->private_data; struct ata_port *ap; struct ata_queued_cmd *qc; struct ata_eh_info *ehi; unsigned int i, err_mask, printed = 0; u32 err_cause; err_cause = readl(mmio + hpriv->irq_cause_offset); dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause); DPRINTK("All regs @ PCI error\n"); mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); writelfl(0, mmio + hpriv->irq_cause_offset); for (i = 0; i < host->n_ports; i++) { ap = host->ports[i]; if (!ata_link_offline(&ap->link)) { ehi = &ap->link.eh_info; ata_ehi_clear_desc(ehi); if (!printed++) ata_ehi_push_desc(ehi, "PCI err cause 0x%08x", err_cause); err_mask = AC_ERR_HOST_BUS; ehi->action = ATA_EH_RESET; qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc) qc->err_mask |= err_mask; else ehi->err_mask |= err_mask; ata_port_freeze(ap); } } return 1; /* handled */ } /** * mv_interrupt - Main interrupt event handler * @irq: unused * @dev_instance: private data; in this case the host structure * * Read the read only register to determine if any host * controllers have pending interrupts. If so, call lower level * routine to handle. Also check for PCI errors which are only * reported here. * * LOCKING: * This routine holds the host lock while processing pending * interrupts. */ static irqreturn_t mv_interrupt(int irq, void *dev_instance) { struct ata_host *host = dev_instance; struct mv_host_priv *hpriv = host->private_data; unsigned int handled = 0; int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; u32 main_irq_cause, pending_irqs; spin_lock(&host->lock); /* for MSI: block new interrupts while in here */ if (using_msi) mv_write_main_irq_mask(0, hpriv); main_irq_cause = readl(hpriv->main_irq_cause_addr); pending_irqs = main_irq_cause & hpriv->main_irq_mask; /* * Deal with cases where we either have nothing pending, or have read * a bogus register value which can indicate HW removal or PCI fault. */ if (pending_irqs && main_irq_cause != 0xffffffffU) { if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) handled = mv_pci_error(host, hpriv->base); else handled = mv_host_intr(host, pending_irqs); } /* for MSI: unmask; interrupt cause bits will retrigger now */ if (using_msi) mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); spin_unlock(&host->lock); return IRQ_RETVAL(handled); } static unsigned int mv5_scr_offset(unsigned int sc_reg_in) { unsigned int ofs; switch (sc_reg_in) { case SCR_STATUS: case SCR_ERROR: case SCR_CONTROL: ofs = sc_reg_in * sizeof(u32); break; default: ofs = 0xffffffffU; break; } return ofs; } static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) { struct mv_host_priv *hpriv = link->ap->host->private_data; void __iomem *mmio = hpriv->base; void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); unsigned int ofs = mv5_scr_offset(sc_reg_in); if (ofs != 0xffffffffU) { *val = readl(addr + ofs); return 0; } else return -EINVAL; } static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) { struct mv_host_priv *hpriv = link->ap->host->private_data; void __iomem *mmio = hpriv->base; void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); unsigned int ofs = mv5_scr_offset(sc_reg_in); if (ofs != 0xffffffffU) { writelfl(val, addr + ofs); return 0; } else return -EINVAL; } static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) { struct pci_dev *pdev = to_pci_dev(host->dev); int early_5080; early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); if (!early_5080) { u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); tmp |= (1 << 0); writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); } mv_reset_pci_bus(host, mmio); } static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) { writel(0x0fcfffff, mmio + FLASH_CTL); } static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, void __iomem *mmio) { void __iomem *phy_mmio = mv5_phy_base(mmio, idx); u32 tmp; tmp = readl(phy_mmio + MV5_PHY_MODE); hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ } static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) { u32 tmp; writel(0, mmio + GPIO_PORT_CTL); /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); tmp |= ~(1 << 0); writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); } static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port) { void __iomem *phy_mmio = mv5_phy_base(mmio, port); const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); u32 tmp; int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); if (fix_apm_sq) { tmp = readl(phy_mmio + MV5_LTMODE); tmp |= (1 << 19); writel(tmp, phy_mmio + MV5_LTMODE); tmp = readl(phy_mmio + MV5_PHY_CTL); tmp &= ~0x3; tmp |= 0x1; writel(tmp, phy_mmio + MV5_PHY_CTL); } tmp = readl(phy_mmio + MV5_PHY_MODE); tmp &= ~mask; tmp |= hpriv->signal[port].pre; tmp |= hpriv->signal[port].amps; writel(tmp, phy_mmio + MV5_PHY_MODE); } #undef ZERO #define ZERO(reg) writel(0, port_mmio + (reg)) static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port) { void __iomem *port_mmio = mv_port_base(mmio, port); mv_reset_channel(hpriv, mmio, port); ZERO(0x028); /* command */ writel(0x11f, port_mmio + EDMA_CFG); ZERO(0x004); /* timer */ ZERO(0x008); /* irq err cause */ ZERO(0x00c); /* irq err mask */ ZERO(0x010); /* rq bah */ ZERO(0x014); /* rq inp */ ZERO(0x018); /* rq outp */ ZERO(0x01c); /* respq bah */ ZERO(0x024); /* respq outp */ ZERO(0x020); /* respq inp */ ZERO(0x02c); /* test control */ writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); } #undef ZERO #define ZERO(reg) writel(0, hc_mmio + (reg)) static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int hc) { void __iomem *hc_mmio = mv_hc_base(mmio, hc); u32 tmp; ZERO(0x00c); ZERO(0x010); ZERO(0x014); ZERO(0x018); tmp = readl(hc_mmio + 0x20); tmp &= 0x1c1c1c1c; tmp |= 0x03030303; writel(tmp, hc_mmio + 0x20); } #undef ZERO static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc) { unsigned int hc, port; for (hc = 0; hc < n_hc; hc++) { for (port = 0; port < MV_PORTS_PER_HC; port++) mv5_reset_hc_port(hpriv, mmio, (hc * MV_PORTS_PER_HC) + port); mv5_reset_one_hc(hpriv, mmio, hc); } return 0; } #undef ZERO #define ZERO(reg) writel(0, mmio + (reg)) static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) { struct mv_host_priv *hpriv = host->private_data; u32 tmp; tmp = readl(mmio + MV_PCI_MODE); tmp &= 0xff00ffff; writel(tmp, mmio + MV_PCI_MODE); ZERO(MV_PCI_DISC_TIMER); ZERO(MV_PCI_MSI_TRIGGER); writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); ZERO(MV_PCI_SERR_MASK); ZERO(hpriv->irq_cause_offset); ZERO(hpriv->irq_mask_offset); ZERO(MV_PCI_ERR_LOW_ADDRESS); ZERO(MV_PCI_ERR_HIGH_ADDRESS); ZERO(MV_PCI_ERR_ATTRIBUTE); ZERO(MV_PCI_ERR_COMMAND); } #undef ZERO static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) { u32 tmp; mv5_reset_flash(hpriv, mmio); tmp = readl(mmio + GPIO_PORT_CTL); tmp &= 0x3; tmp |= (1 << 5) | (1 << 6); writel(tmp, mmio + GPIO_PORT_CTL); } /** * mv6_reset_hc - Perform the 6xxx global soft reset * @mmio: base address of the HBA * * This routine only applies to 6xxx parts. * * LOCKING: * Inherited from caller. */ static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc) { void __iomem *reg = mmio + PCI_MAIN_CMD_STS; int i, rc = 0; u32 t; /* Following procedure defined in PCI "main command and status * register" table. */ t = readl(reg); writel(t | STOP_PCI_MASTER, reg); for (i = 0; i < 1000; i++) { udelay(1); t = readl(reg); if (PCI_MASTER_EMPTY & t) break; } if (!(PCI_MASTER_EMPTY & t)) { printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); rc = 1; goto done; } /* set reset */ i = 5; do { writel(t | GLOB_SFT_RST, reg); t = readl(reg); udelay(1); } while (!(GLOB_SFT_RST & t) && (i-- > 0)); if (!(GLOB_SFT_RST & t)) { printk(KERN_ERR DRV_NAME ": can't set global reset\n"); rc = 1; goto done; } /* clear reset and *reenable the PCI master* (not mentioned in spec) */ i = 5; do { writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); t = readl(reg); udelay(1); } while ((GLOB_SFT_RST & t) && (i-- > 0)); if (GLOB_SFT_RST & t) { printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); rc = 1; } done: return rc; } static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, void __iomem *mmio) { void __iomem *port_mmio; u32 tmp; tmp = readl(mmio + RESET_CFG); if ((tmp & (1 << 0)) == 0) { hpriv->signal[idx].amps = 0x7 << 8; hpriv->signal[idx].pre = 0x1 << 5; return; } port_mmio = mv_port_base(mmio, idx); tmp = readl(port_mmio + PHY_MODE2); hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ } static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) { writel(0x00000060, mmio + GPIO_PORT_CTL); } static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port) { void __iomem *port_mmio = mv_port_base(mmio, port); u32 hp_flags = hpriv->hp_flags; int fix_phy_mode2 = hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); int fix_phy_mode4 = hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); u32 m2, m3; if (fix_phy_mode2) { m2 = readl(port_mmio + PHY_MODE2); m2 &= ~(1 << 16); m2 |= (1 << 31); writel(m2, port_mmio + PHY_MODE2); udelay(200); m2 = readl(port_mmio + PHY_MODE2); m2 &= ~((1 << 16) | (1 << 31)); writel(m2, port_mmio + PHY_MODE2); udelay(200); } /* * Gen-II/IIe PHY_MODE3 errata RM#2: * Achieves better receiver noise performance than the h/w default: */ m3 = readl(port_mmio + PHY_MODE3); m3 = (m3 & 0x1f) | (0x5555601 << 5); /* Guideline 88F5182 (GL# SATA-S11) */ if (IS_SOC(hpriv)) m3 &= ~0x1c; if (fix_phy_mode4) { u32 m4 = readl(port_mmio + PHY_MODE4); /* * Enforce reserved-bit restrictions on GenIIe devices only. * For earlier chipsets, force only the internal config field * (workaround for errata FEr SATA#10 part 1). */ if (IS_GEN_IIE(hpriv)) m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; else m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; writel(m4, port_mmio + PHY_MODE4); } /* * Workaround for 60x1-B2 errata SATA#13: * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, * so we must always rewrite PHY_MODE3 after PHY_MODE4. * Or ensure we use writelfl() when writing PHY_MODE4. */ writel(m3, port_mmio + PHY_MODE3); /* Revert values of pre-emphasis and signal amps to the saved ones */ m2 = readl(port_mmio + PHY_MODE2); m2 &= ~MV_M2_PREAMP_MASK; m2 |= hpriv->signal[port].amps; m2 |= hpriv->signal[port].pre; m2 &= ~(1 << 16); /* according to mvSata 3.6.1, some IIE values are fixed */ if (IS_GEN_IIE(hpriv)) { m2 &= ~0xC30FF01F; m2 |= 0x0000900F; } writel(m2, port_mmio + PHY_MODE2); } /* TODO: use the generic LED interface to configure the SATA Presence */ /* & Acitivy LEDs on the board */ static void mv_soc_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) { return; } static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, void __iomem *mmio) { void __iomem *port_mmio; u32 tmp; port_mmio = mv_port_base(mmio, idx); tmp = readl(port_mmio + PHY_MODE2); hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ } #undef ZERO #define ZERO(reg) writel(0, port_mmio + (reg)) static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port) { void __iomem *port_mmio = mv_port_base(mmio, port); mv_reset_channel(hpriv, mmio, port); ZERO(0x028); /* command */ writel(0x101f, port_mmio + EDMA_CFG); ZERO(0x004); /* timer */ ZERO(0x008); /* irq err cause */ ZERO(0x00c); /* irq err mask */ ZERO(0x010); /* rq bah */ ZERO(0x014); /* rq inp */ ZERO(0x018); /* rq outp */ ZERO(0x01c); /* respq bah */ ZERO(0x024); /* respq outp */ ZERO(0x020); /* respq inp */ ZERO(0x02c); /* test control */ writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); } #undef ZERO #define ZERO(reg) writel(0, hc_mmio + (reg)) static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio) { void __iomem *hc_mmio = mv_hc_base(mmio, 0); ZERO(0x00c); ZERO(0x010); ZERO(0x014); } #undef ZERO static int mv_soc_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc) { unsigned int port; for (port = 0; port < hpriv->n_ports; port++) mv_soc_reset_hc_port(hpriv, mmio, port); mv_soc_reset_one_hc(hpriv, mmio); return 0; } static void mv_soc_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) { return; } static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) { return; } static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) { u32 ifcfg = readl(port_mmio + SATA_IFCFG); ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ if (want_gen2i) ifcfg |= (1 << 7); /* enable gen2i speed */ writelfl(ifcfg, port_mmio + SATA_IFCFG); } static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port_no) { void __iomem *port_mmio = mv_port_base(mmio, port_no); /* * The datasheet warns against setting EDMA_RESET when EDMA is active * (but doesn't say what the problem might be). So we first try * to disable the EDMA engine before doing the EDMA_RESET operation. */ mv_stop_edma_engine(port_mmio); writelfl(EDMA_RESET, port_mmio + EDMA_CMD); if (!IS_GEN_I(hpriv)) { /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ mv_setup_ifcfg(port_mmio, 1); } /* * Strobing EDMA_RESET here causes a hard reset of the SATA transport, * link, and physical layers. It resets all SATA interface registers * (except for SATA_IFCFG), and issues a COMRESET to the dev. */ writelfl(EDMA_RESET, port_mmio + EDMA_CMD); udelay(25); /* allow reset propagation */ writelfl(0, port_mmio + EDMA_CMD); hpriv->ops->phy_errata(hpriv, mmio, port_no); if (IS_GEN_I(hpriv)) mdelay(1); } static void mv_pmp_select(struct ata_port *ap, int pmp) { if (sata_pmp_supported(ap)) { void __iomem *port_mmio = mv_ap_base(ap); u32 reg = readl(port_mmio + SATA_IFCTL); int old = reg & 0xf; if (old != pmp) { reg = (reg & ~0xf) | pmp; writelfl(reg, port_mmio + SATA_IFCTL); } } } static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline) { mv_pmp_select(link->ap, sata_srst_pmp(link)); return sata_std_hardreset(link, class, deadline); } static int mv_softreset(struct ata_link *link, unsigned int *class, unsigned long deadline) { mv_pmp_select(link->ap, sata_srst_pmp(link)); return ata_sff_softreset(link, class, deadline); } static int mv_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline) { struct ata_port *ap = link->ap; struct mv_host_priv *hpriv = ap->host->private_data; struct mv_port_priv *pp = ap->private_data; void __iomem *mmio = hpriv->base; int rc, attempts = 0, extra = 0; u32 sstatus; bool online; mv_reset_channel(hpriv, mmio, ap->port_no); pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; pp->pp_flags &= ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); /* Workaround for errata FEr SATA#10 (part 2) */ do { const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); rc = sata_link_hardreset(link, timing, deadline + extra, &online, NULL); rc = online ? -EAGAIN : rc; if (rc) return rc; sata_scr_read(link, SCR_STATUS, &sstatus); if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { /* Force 1.5gb/s link speed and try again */ mv_setup_ifcfg(mv_ap_base(ap), 0); if (time_after(jiffies + HZ, deadline)) extra = HZ; /* only extend it once, max */ } } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); mv_save_cached_regs(ap); mv_edma_cfg(ap, 0, 0); return rc; } static void mv_eh_freeze(struct ata_port *ap) { mv_stop_edma(ap); mv_enable_port_irqs(ap, 0); } static void mv_eh_thaw(struct ata_port *ap) { struct mv_host_priv *hpriv = ap->host->private_data; unsigned int port = ap->port_no; unsigned int hardport = mv_hardport_from_port(port); void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); void __iomem *port_mmio = mv_ap_base(ap); u32 hc_irq_cause; /* clear EDMA errors on this port */ writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); /* clear pending irq events */ hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); mv_enable_port_irqs(ap, ERR_IRQ); } /** * mv_port_init - Perform some early initialization on a single port. * @port: libata data structure storing shadow register addresses * @port_mmio: base address of the port * * Initialize shadow register mmio addresses, clear outstanding * interrupts on the port, and unmask interrupts for the future * start of the port. * * LOCKING: * Inherited from caller. */ static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) { void __iomem *serr, *shd_base = port_mmio + SHD_BLK; /* PIO related setup */ port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); port->error_addr = port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); port->status_addr = port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); /* special case: control/altstatus doesn't have ATA_REG_ address */ port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; /* unused: */ port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL; /* Clear any currently outstanding port interrupt conditions */ serr = port_mmio + mv_scr_offset(SCR_ERROR); writelfl(readl(serr), serr); writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); /* unmask all non-transient EDMA error interrupts */ writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", readl(port_mmio + EDMA_CFG), readl(port_mmio + EDMA_ERR_IRQ_CAUSE), readl(port_mmio + EDMA_ERR_IRQ_MASK)); } static unsigned int mv_in_pcix_mode(struct ata_host *host) { struct mv_host_priv *hpriv = host->private_data; void __iomem *mmio = hpriv->base; u32 reg; if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) return 0; /* not PCI-X capable */ reg = readl(mmio + MV_PCI_MODE); if ((reg & MV_PCI_MODE_MASK) == 0) return 0; /* conventional PCI mode */ return 1; /* chip is in PCI-X mode */ } static int mv_pci_cut_through_okay(struct ata_host *host) { struct mv_host_priv *hpriv = host->private_data; void __iomem *mmio = hpriv->base; u32 reg; if (!mv_in_pcix_mode(host)) { reg = readl(mmio + MV_PCI_COMMAND); if (reg & MV_PCI_COMMAND_MRDTRIG) return 0; /* not okay */ } return 1; /* okay */ } static void mv_60x1b2_errata_pci7(struct ata_host *host) { struct mv_host_priv *hpriv = host->private_data; void __iomem *mmio = hpriv->base; /* workaround for 60x1-B2 errata PCI#7 */ if (mv_in_pcix_mode(host)) { u32 reg = readl(mmio + MV_PCI_COMMAND); writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); } } static int mv_chip_id(struct ata_host *host, unsigned int board_idx) { struct pci_dev *pdev = to_pci_dev(host->dev); struct mv_host_priv *hpriv = host->private_data; u32 hp_flags = hpriv->hp_flags; switch (board_idx) { case chip_5080: hpriv->ops = &mv5xxx_ops; hp_flags |= MV_HP_GEN_I; switch (pdev->revision) { case 0x1: hp_flags |= MV_HP_ERRATA_50XXB0; break; case 0x3: hp_flags |= MV_HP_ERRATA_50XXB2; break; default: dev_printk(KERN_WARNING, &pdev->dev, "Applying 50XXB2 workarounds to unknown rev\n"); hp_flags |= MV_HP_ERRATA_50XXB2; break; } break; case chip_504x: case chip_508x: hpriv->ops = &mv5xxx_ops; hp_flags |= MV_HP_GEN_I; switch (pdev->revision) { case 0x0: hp_flags |= MV_HP_ERRATA_50XXB0; break; case 0x3: hp_flags |= MV_HP_ERRATA_50XXB2; break; default: dev_printk(KERN_WARNING, &pdev->dev, "Applying B2 workarounds to unknown rev\n"); hp_flags |= MV_HP_ERRATA_50XXB2; break; } break; case chip_604x: case chip_608x: hpriv->ops = &mv6xxx_ops; hp_flags |= MV_HP_GEN_II; switch (pdev->revision) { case 0x7: mv_60x1b2_errata_pci7(host); hp_flags |= MV_HP_ERRATA_60X1B2; break; case 0x9: hp_flags |= MV_HP_ERRATA_60X1C0; break; default: dev_printk(KERN_WARNING, &pdev->dev, "Applying B2 workarounds to unknown rev\n"); hp_flags |= MV_HP_ERRATA_60X1B2; break; } break; case chip_7042: hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; if (pdev->vendor == PCI_VENDOR_ID_TTI && (pdev->device == 0x2300 || pdev->device == 0x2310)) { /* * Highpoint RocketRAID PCIe 23xx series cards: * * Unconfigured drives are treated as "Legacy" * by the BIOS, and it overwrites sector 8 with * a "Lgcy" metadata block prior to Linux boot. * * Configured drives (RAID or JBOD) leave sector 8 * alone, but instead overwrite a high numbered * sector for the RAID metadata. This sector can * be determined exactly, by truncating the physical * drive capacity to a nice even GB value. * * RAID metadata is at: (dev->n_sectors & ~0xfffff) * * Warn the user, lest they think we're just buggy. */ printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" " BIOS CORRUPTS DATA on all attached drives," " regardless of if/how they are configured." " BEWARE!\n"); printk(KERN_WARNING DRV_NAME ": For data safety, do not" " use sectors 8-9 on \"Legacy\" drives," " and avoid the final two gigabytes on" " all RocketRAID BIOS initialized drives.\n"); } /* drop through */ case chip_6042: hpriv->ops = &mv6xxx_ops; hp_flags |= MV_HP_GEN_IIE; if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) hp_flags |= MV_HP_CUT_THROUGH; switch (pdev->revision) { case 0x2: /* Rev.B0: the first/only public release */ hp_flags |= MV_HP_ERRATA_60X1C0; break; default: dev_printk(KERN_WARNING, &pdev->dev, "Applying 60X1C0 workarounds to unknown rev\n"); hp_flags |= MV_HP_ERRATA_60X1C0; break; } break; case chip_soc: hpriv->ops = &mv_soc_ops; hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | MV_HP_ERRATA_60X1C0; break; default: dev_printk(KERN_ERR, host->dev, "BUG: invalid board index %u\n", board_idx); return 1; } hpriv->hp_flags = hp_flags; if (hp_flags & MV_HP_PCIE) { hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; hpriv->irq_mask_offset = PCIE_IRQ_MASK; hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; } else { hpriv->irq_cause_offset = PCI_IRQ_CAUSE; hpriv->irq_mask_offset = PCI_IRQ_MASK; hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; } return 0; } /** * mv_init_host - Perform some early initialization of the host. * @host: ATA host to initialize * @board_idx: controller index * * If possible, do an early global reset of the host. Then do * our port init and clear/unmask all/relevant host interrupts. * * LOCKING: * Inherited from caller. */ static int mv_init_host(struct ata_host *host, unsigned int board_idx) { int rc = 0, n_hc, port, hc; struct mv_host_priv *hpriv = host->private_data; void __iomem *mmio = hpriv->base; rc = mv_chip_id(host, board_idx); if (rc) goto done; if (IS_SOC(hpriv)) { hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; } else { hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; } /* initialize shadow irq mask with register's value */ hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); /* global interrupt mask: 0 == mask everything */ mv_set_main_irq_mask(host, ~0, 0); n_hc = mv_get_hc_count(host->ports[0]->flags); for (port = 0; port < host->n_ports; port++) hpriv->ops->read_preamp(hpriv, port, mmio); rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); if (rc) goto done; hpriv->ops->reset_flash(hpriv, mmio); hpriv->ops->reset_bus(host, mmio); hpriv->ops->enable_leds(hpriv, mmio); for (port = 0; port < host->n_ports; port++) { struct ata_port *ap = host->ports[port]; void __iomem *port_mmio = mv_port_base(mmio, port); mv_port_init(&ap->ioaddr, port_mmio); #ifdef CONFIG_PCI if (!IS_SOC(hpriv)) { unsigned int offset = port_mmio - mmio; ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); } #endif } for (hc = 0; hc < n_hc; hc++) { void __iomem *hc_mmio = mv_hc_base(mmio, hc); VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " "(before clear)=0x%08x\n", hc, readl(hc_mmio + HC_CFG), readl(hc_mmio + HC_IRQ_CAUSE)); /* Clear any currently outstanding hc interrupt conditions */ writelfl(0, hc_mmio + HC_IRQ_CAUSE); } if (!IS_SOC(hpriv)) { /* Clear any currently outstanding host interrupt conditions */ writelfl(0, mmio + hpriv->irq_cause_offset); /* and unmask interrupt generation for host regs */ writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); } /* * enable only global host interrupts for now. * The per-port interrupts get done later as ports are set up. */ mv_set_main_irq_mask(host, 0, PCI_ERR); mv_set_irq_coalescing(host, irq_coalescing_io_count, irq_coalescing_usecs); done: return rc; } static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) { hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, MV_CRQB_Q_SZ, 0); if (!hpriv->crqb_pool) return -ENOMEM; hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, MV_CRPB_Q_SZ, 0); if (!hpriv->crpb_pool) return -ENOMEM; hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, MV_SG_TBL_SZ, 0); if (!hpriv->sg_tbl_pool) return -ENOMEM; return 0; } static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, struct mbus_dram_target_info *dram) { int i; for (i = 0; i < 4; i++) { writel(0, hpriv->base + WINDOW_CTRL(i)); writel(0, hpriv->base + WINDOW_BASE(i)); } for (i = 0; i < dram->num_cs; i++) { struct mbus_dram_window *cs = dram->cs + i; writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) | (dram->mbus_dram_target_id << 4) | 1, hpriv->base + WINDOW_CTRL(i)); writel(cs->base, hpriv->base + WINDOW_BASE(i)); } } /** * mv_platform_probe - handle a positive probe of an soc Marvell * host * @pdev: platform device found * * LOCKING: * Inherited from caller. */ static int mv_platform_probe(struct platform_device *pdev) { static int printed_version; const struct mv_sata_platform_data *mv_platform_data; const struct ata_port_info *ppi[] = { &mv_port_info[chip_soc], NULL }; struct ata_host *host; struct mv_host_priv *hpriv; struct resource *res; int n_ports, rc; if (!printed_version++) dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); /* * Simple resource validation .. */ if (unlikely(pdev->num_resources != 2)) { dev_err(&pdev->dev, "invalid number of resources\n"); return -EINVAL; } /* * Get the register base first */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) return -EINVAL; /* allocate host */ mv_platform_data = pdev->dev.platform_data; n_ports = mv_platform_data->n_ports; host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); if (!host || !hpriv) return -ENOMEM; host->private_data = hpriv; hpriv->n_ports = n_ports; host->iomap = NULL; hpriv->base = devm_ioremap(&pdev->dev, res->start, res->end - res->start + 1); hpriv->base -= SATAHC0_REG_BASE; /* * (Re-)program MBUS remapping windows if we are asked to. */ if (mv_platform_data->dram != NULL) mv_conf_mbus_windows(hpriv, mv_platform_data->dram); rc = mv_create_dma_pools(hpriv, &pdev->dev); if (rc) return rc; /* initialize adapter */ rc = mv_init_host(host, chip_soc); if (rc) return rc; dev_printk(KERN_INFO, &pdev->dev, "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH, host->n_ports); return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt, IRQF_SHARED, &mv6_sht); } /* * * mv_platform_remove - unplug a platform interface * @pdev: platform device * * A platform bus SATA device has been unplugged. Perform the needed * cleanup. Also called on module unload for any active devices. */ static int __devexit mv_platform_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ata_host *host = dev_get_drvdata(dev); ata_host_detach(host); return 0; } static struct platform_driver mv_platform_driver = { .probe = mv_platform_probe, .remove = __devexit_p(mv_platform_remove), .driver = { .name = DRV_NAME, .owner = THIS_MODULE, }, }; #ifdef CONFIG_PCI static int mv_pci_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); static struct pci_driver mv_pci_driver = { .name = DRV_NAME, .id_table = mv_pci_tbl, .probe = mv_pci_init_one, .remove = ata_pci_remove_one, }; /* move to PCI layer or libata core? */ static int pci_go_64(struct pci_dev *pdev) { int rc; if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (rc) { rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) { dev_printk(KERN_ERR, &pdev->dev, "64-bit DMA enable failed\n"); return rc; } } } else { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) { dev_printk(KERN_ERR, &pdev->dev, "32-bit DMA enable failed\n"); return rc; } rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) { dev_printk(KERN_ERR, &pdev->dev, "32-bit consistent DMA enable failed\n"); return rc; } } return rc; } /** * mv_print_info - Dump key info to kernel log for perusal. * @host: ATA host to print info about * * FIXME: complete this. * * LOCKING: * Inherited from caller. */ static void mv_print_info(struct ata_host *host) { struct pci_dev *pdev = to_pci_dev(host->dev); struct mv_host_priv *hpriv = host->private_data; u8 scc; const char *scc_s, *gen; /* Use this to determine the HW stepping of the chip so we know * what errata to workaround */ pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); if (scc == 0) scc_s = "SCSI"; else if (scc == 0x01) scc_s = "RAID"; else scc_s = "?"; if (IS_GEN_I(hpriv)) gen = "I"; else if (IS_GEN_II(hpriv)) gen = "II"; else if (IS_GEN_IIE(hpriv)) gen = "IIE"; else gen = "?"; dev_printk(KERN_INFO, &pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n", gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); } /** * mv_pci_init_one - handle a positive probe of a PCI Marvell host * @pdev: PCI device found * @ent: PCI device ID entry for the matched host * * LOCKING: * Inherited from caller. */ static int mv_pci_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int printed_version; unsigned int board_idx = (unsigned int)ent->driver_data; const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; struct ata_host *host; struct mv_host_priv *hpriv; int n_ports, rc; if (!printed_version++) dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); /* allocate host */ n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); if (!host || !hpriv) return -ENOMEM; host->private_data = hpriv; hpriv->n_ports = n_ports; /* acquire resources */ rc = pcim_enable_device(pdev); if (rc) return rc; rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); if (rc == -EBUSY) pcim_pin_device(pdev); if (rc) return rc; host->iomap = pcim_iomap_table(pdev); hpriv->base = host->iomap[MV_PRIMARY_BAR]; rc = pci_go_64(pdev); if (rc) return rc; rc = mv_create_dma_pools(hpriv, &pdev->dev); if (rc) return rc; /* initialize adapter */ rc = mv_init_host(host, board_idx); if (rc) return rc; /* Enable message-switched interrupts, if requested */ if (msi && pci_enable_msi(pdev) == 0) hpriv->hp_flags |= MV_HP_FLAG_MSI; mv_dump_pci_cfg(pdev, 0x68); mv_print_info(host); pci_set_master(pdev); pci_try_set_mwi(pdev); return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); } #endif static int mv_platform_probe(struct platform_device *pdev); static int __devexit mv_platform_remove(struct platform_device *pdev); static int __init mv_init(void) { int rc = -ENODEV; #ifdef CONFIG_PCI rc = pci_register_driver(&mv_pci_driver); if (rc < 0) return rc; #endif rc = platform_driver_register(&mv_platform_driver); #ifdef CONFIG_PCI if (rc < 0) pci_unregister_driver(&mv_pci_driver); #endif return rc; } static void __exit mv_exit(void) { #ifdef CONFIG_PCI pci_unregister_driver(&mv_pci_driver); #endif platform_driver_unregister(&mv_platform_driver); } MODULE_AUTHOR("Brett Russ"); MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, mv_pci_tbl); MODULE_VERSION(DRV_VERSION); MODULE_ALIAS("platform:" DRV_NAME); module_init(mv_init); module_exit(mv_exit);