/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ /* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #define _BSD_SOURCE /* for hypot() */ #include "cairoint.h" #include "cairo-path-fixed-private.h" typedef struct _cairo_stroker_dash { cairo_bool_t dashed; unsigned int dash_index; cairo_bool_t dash_on; cairo_bool_t dash_starts_on; double dash_remain; double dash_offset; const double *dashes; unsigned int num_dashes; } cairo_stroker_dash_t; typedef struct cairo_stroker { cairo_stroke_style_t *style; const cairo_matrix_t *ctm; const cairo_matrix_t *ctm_inverse; double tolerance; double ctm_determinant; cairo_bool_t ctm_det_positive; cairo_traps_t *traps; cairo_pen_t pen; cairo_point_t current_point; cairo_point_t first_point; cairo_bool_t has_initial_sub_path; cairo_bool_t has_current_face; cairo_stroke_face_t current_face; cairo_bool_t has_first_face; cairo_stroke_face_t first_face; cairo_stroker_dash_t dash; cairo_bool_t has_bounds; cairo_box_t bounds; } cairo_stroker_t; static void _cairo_stroker_dash_start (cairo_stroker_dash_t *dash) { double offset; cairo_bool_t on = TRUE; unsigned int i = 0; if (! dash->dashed) return; offset = dash->dash_offset; /* We stop searching for a starting point as soon as the offset reaches zero. Otherwise when an initial dash segment shrinks to zero it will be skipped over. */ while (offset > 0.0 && offset >= dash->dashes[i]) { offset -= dash->dashes[i]; on = !on; if (++i == dash->num_dashes) i = 0; } dash->dash_index = i; dash->dash_on = dash->dash_starts_on = on; dash->dash_remain = dash->dashes[i] - offset; } static void _cairo_stroker_dash_step (cairo_stroker_dash_t *dash, double step) { dash->dash_remain -= step; if (dash->dash_remain <= 0.) { if (++dash->dash_index == dash->num_dashes) dash->dash_index = 0; dash->dash_on = ! dash->dash_on; dash->dash_remain = dash->dashes[dash->dash_index]; } } static void _cairo_stroker_dash_init (cairo_stroker_dash_t *dash, const cairo_stroke_style_t *style) { dash->dashed = style->dash != NULL; if (! dash->dashed) return; dash->dashes = style->dash; dash->num_dashes = style->num_dashes; dash->dash_offset = style->dash_offset; _cairo_stroker_dash_start (dash); } static cairo_status_t _cairo_stroker_init (cairo_stroker_t *stroker, cairo_stroke_style_t *stroke_style, const cairo_matrix_t *ctm, const cairo_matrix_t *ctm_inverse, double tolerance, cairo_traps_t *traps) { cairo_status_t status; stroker->style = stroke_style; stroker->ctm = ctm; stroker->ctm_inverse = ctm_inverse; stroker->tolerance = tolerance; stroker->traps = traps; stroker->ctm_determinant = _cairo_matrix_compute_determinant (stroker->ctm); stroker->ctm_det_positive = stroker->ctm_determinant >= 0.0; status = _cairo_pen_init (&stroker->pen, stroke_style->line_width / 2.0, tolerance, ctm); if (unlikely (status)) return status; stroker->has_current_face = FALSE; stroker->has_first_face = FALSE; stroker->has_initial_sub_path = FALSE; _cairo_stroker_dash_init (&stroker->dash, stroke_style); stroker->has_bounds = _cairo_traps_get_limit (traps, &stroker->bounds); if (stroker->has_bounds) { /* Extend the bounds in each direction to account for the maximum area * we might generate trapezoids, to capture line segments that are outside * of the bounds but which might generate rendering that's within bounds. */ double dx, dy; cairo_fixed_t fdx, fdy; _cairo_stroke_style_max_distance_from_path (stroker->style, stroker->ctm, &dx, &dy); fdx = _cairo_fixed_from_double (dx); stroker->bounds.p1.x -= fdx; stroker->bounds.p2.x += fdx; fdy = _cairo_fixed_from_double (dy); stroker->bounds.p1.y -= fdy; stroker->bounds.p2.y += fdy; } return CAIRO_STATUS_SUCCESS; } static void _cairo_stroker_fini (cairo_stroker_t *stroker) { _cairo_pen_fini (&stroker->pen); } static void _translate_point (cairo_point_t *point, cairo_point_t *offset) { point->x += offset->x; point->y += offset->y; } static int _cairo_stroker_face_clockwise (cairo_stroke_face_t *in, cairo_stroke_face_t *out) { cairo_slope_t in_slope, out_slope; _cairo_slope_init (&in_slope, &in->point, &in->cw); _cairo_slope_init (&out_slope, &out->point, &out->cw); return _cairo_slope_compare (&in_slope, &out_slope) < 0; } /** * _cairo_slope_compare_sgn * * Return -1, 0 or 1 depending on the relative slopes of * two lines. */ static int _cairo_slope_compare_sgn (double dx1, double dy1, double dx2, double dy2) { double c = (dx1 * dy2 - dx2 * dy1); if (c > 0) return 1; if (c < 0) return -1; return 0; } static cairo_status_t _cairo_stroker_join (cairo_stroker_t *stroker, cairo_stroke_face_t *in, cairo_stroke_face_t *out) { int clockwise = _cairo_stroker_face_clockwise (out, in); cairo_point_t *inpt, *outpt; cairo_status_t status; if (in->cw.x == out->cw.x && in->cw.y == out->cw.y && in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y) { return CAIRO_STATUS_SUCCESS; } if (clockwise) { inpt = &in->ccw; outpt = &out->ccw; } else { inpt = &in->cw; outpt = &out->cw; } switch (stroker->style->line_join) { case CAIRO_LINE_JOIN_ROUND: { int i; int start, step, stop; cairo_point_t tri[3]; cairo_pen_t *pen = &stroker->pen; tri[0] = in->point; if (clockwise) { start = _cairo_pen_find_active_ccw_vertex_index (pen, &in->dev_vector); stop = _cairo_pen_find_active_ccw_vertex_index (pen, &out->dev_vector); step = -1; } else { start = _cairo_pen_find_active_cw_vertex_index (pen, &in->dev_vector); stop = _cairo_pen_find_active_cw_vertex_index (pen, &out->dev_vector); step = +1; } i = start; tri[1] = *inpt; while (i != stop) { tri[2] = in->point; _translate_point (&tri[2], &pen->vertices[i].point); status = _cairo_traps_tessellate_triangle (stroker->traps, tri); if (unlikely (status)) return status; tri[1] = tri[2]; i += step; if (i < 0) i = pen->num_vertices - 1; if (i >= pen->num_vertices) i = 0; } tri[2] = *outpt; return _cairo_traps_tessellate_triangle (stroker->traps, tri); } case CAIRO_LINE_JOIN_MITER: default: { /* dot product of incoming slope vector with outgoing slope vector */ double in_dot_out = ((-in->usr_vector.x * out->usr_vector.x)+ (-in->usr_vector.y * out->usr_vector.y)); double ml = stroker->style->miter_limit; /* Check the miter limit -- lines meeting at an acute angle * can generate long miters, the limit converts them to bevel * * Consider the miter join formed when two line segments * meet at an angle psi: * * /.\ * /. .\ * /./ \.\ * /./psi\.\ * * We can zoom in on the right half of that to see: * * |\ * | \ psi/2 * | \ * | \ * | \ * | \ * miter \ * length \ * | \ * | .\ * | . \ * |. line \ * \ width \ * \ \ * * * The right triangle in that figure, (the line-width side is * shown faintly with three '.' characters), gives us the * following expression relating miter length, angle and line * width: * * 1 /sin (psi/2) = miter_length / line_width * * The right-hand side of this relationship is the same ratio * in which the miter limit (ml) is expressed. We want to know * when the miter length is within the miter limit. That is * when the following condition holds: * * 1/sin(psi/2) <= ml * 1 <= ml sin(psi/2) * 1 <= ml² sin²(psi/2) * 2 <= ml² 2 sin²(psi/2) * 2·sin²(psi/2) = 1-cos(psi) * 2 <= ml² (1-cos(psi)) * * in · out = |in| |out| cos (psi) * * in and out are both unit vectors, so: * * in · out = cos (psi) * * 2 <= ml² (1 - in · out) * */ if (2 <= ml * ml * (1 - in_dot_out)) { double x1, y1, x2, y2; double mx, my; double dx1, dx2, dy1, dy2; cairo_point_t outer; cairo_point_t quad[4]; double ix, iy; double fdx1, fdy1, fdx2, fdy2; double mdx, mdy; /* * we've got the points already transformed to device * space, but need to do some computation with them and * also need to transform the slope from user space to * device space */ /* outer point of incoming line face */ x1 = _cairo_fixed_to_double (inpt->x); y1 = _cairo_fixed_to_double (inpt->y); dx1 = in->usr_vector.x; dy1 = in->usr_vector.y; cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1); /* outer point of outgoing line face */ x2 = _cairo_fixed_to_double (outpt->x); y2 = _cairo_fixed_to_double (outpt->y); dx2 = out->usr_vector.x; dy2 = out->usr_vector.y; cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2); /* * Compute the location of the outer corner of the miter. * That's pretty easy -- just the intersection of the two * outer edges. We've got slopes and points on each * of those edges. Compute my directly, then compute * mx by using the edge with the larger dy; that avoids * dividing by values close to zero. */ my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) / (dx1 * dy2 - dx2 * dy1)); if (fabs (dy1) >= fabs (dy2)) mx = (my - y1) * dx1 / dy1 + x1; else mx = (my - y2) * dx2 / dy2 + x2; /* * When the two outer edges are nearly parallel, slight * perturbations in the position of the outer points of the lines * caused by representing them in fixed point form can cause the * intersection point of the miter to move a large amount. If * that moves the miter intersection from between the two faces, * then draw a bevel instead. */ ix = _cairo_fixed_to_double (in->point.x); iy = _cairo_fixed_to_double (in->point.y); /* slope of one face */ fdx1 = x1 - ix; fdy1 = y1 - iy; /* slope of the other face */ fdx2 = x2 - ix; fdy2 = y2 - iy; /* slope from the intersection to the miter point */ mdx = mx - ix; mdy = my - iy; /* * Make sure the miter point line lies between the two * faces by comparing the slopes */ if (_cairo_slope_compare_sgn (fdx1, fdy1, mdx, mdy) != _cairo_slope_compare_sgn (fdx2, fdy2, mdx, mdy)) { /* * Draw the quadrilateral */ outer.x = _cairo_fixed_from_double (mx); outer.y = _cairo_fixed_from_double (my); quad[0] = in->point; quad[1] = *inpt; quad[2] = outer; quad[3] = *outpt; return _cairo_traps_tessellate_convex_quad (stroker->traps, quad); } } /* fall through ... */ } case CAIRO_LINE_JOIN_BEVEL: { cairo_point_t tri[3]; tri[0] = in->point; tri[1] = *inpt; tri[2] = *outpt; return _cairo_traps_tessellate_triangle (stroker->traps, tri); } } } static cairo_status_t _cairo_stroker_add_cap (cairo_stroker_t *stroker, cairo_stroke_face_t *f) { cairo_status_t status; if (stroker->style->line_cap == CAIRO_LINE_CAP_BUTT) return CAIRO_STATUS_SUCCESS; switch (stroker->style->line_cap) { case CAIRO_LINE_CAP_ROUND: { int i; int start, stop; cairo_slope_t slope; cairo_point_t tri[3]; cairo_pen_t *pen = &stroker->pen; slope = f->dev_vector; start = _cairo_pen_find_active_cw_vertex_index (pen, &slope); slope.dx = -slope.dx; slope.dy = -slope.dy; stop = _cairo_pen_find_active_cw_vertex_index (pen, &slope); tri[0] = f->point; tri[1] = f->cw; for (i=start; i != stop; i = (i+1) % pen->num_vertices) { tri[2] = f->point; _translate_point (&tri[2], &pen->vertices[i].point); status = _cairo_traps_tessellate_triangle (stroker->traps, tri); if (unlikely (status)) return status; tri[1] = tri[2]; } tri[2] = f->ccw; return _cairo_traps_tessellate_triangle (stroker->traps, tri); } case CAIRO_LINE_CAP_SQUARE: { double dx, dy; cairo_slope_t fvector; cairo_point_t occw, ocw; cairo_polygon_t polygon; dx = f->usr_vector.x; dy = f->usr_vector.y; dx *= stroker->style->line_width / 2.0; dy *= stroker->style->line_width / 2.0; cairo_matrix_transform_distance (stroker->ctm, &dx, &dy); fvector.dx = _cairo_fixed_from_double (dx); fvector.dy = _cairo_fixed_from_double (dy); occw.x = f->ccw.x + fvector.dx; occw.y = f->ccw.y + fvector.dy; ocw.x = f->cw.x + fvector.dx; ocw.y = f->cw.y + fvector.dy; _cairo_polygon_init (&polygon); _cairo_polygon_move_to (&polygon, &f->cw); _cairo_polygon_line_to (&polygon, &ocw); _cairo_polygon_line_to (&polygon, &occw); _cairo_polygon_line_to (&polygon, &f->ccw); _cairo_polygon_close (&polygon); status = _cairo_polygon_status (&polygon); if (status == CAIRO_STATUS_SUCCESS) { status = _cairo_bentley_ottmann_tessellate_polygon (stroker->traps, &polygon, CAIRO_FILL_RULE_WINDING); } _cairo_polygon_fini (&polygon); return status; } case CAIRO_LINE_CAP_BUTT: default: return CAIRO_STATUS_SUCCESS; } } static cairo_status_t _cairo_stroker_add_leading_cap (cairo_stroker_t *stroker, cairo_stroke_face_t *face) { cairo_stroke_face_t reversed; cairo_point_t t; reversed = *face; /* The initial cap needs an outward facing vector. Reverse everything */ reversed.usr_vector.x = -reversed.usr_vector.x; reversed.usr_vector.y = -reversed.usr_vector.y; reversed.dev_vector.dx = -reversed.dev_vector.dx; reversed.dev_vector.dy = -reversed.dev_vector.dy; t = reversed.cw; reversed.cw = reversed.ccw; reversed.ccw = t; return _cairo_stroker_add_cap (stroker, &reversed); } static cairo_status_t _cairo_stroker_add_trailing_cap (cairo_stroker_t *stroker, cairo_stroke_face_t *face) { return _cairo_stroker_add_cap (stroker, face); } static inline cairo_bool_t _compute_normalized_device_slope (double *dx, double *dy, const cairo_matrix_t *ctm_inverse, double *mag_out) { double dx0 = *dx, dy0 = *dy; double mag; cairo_matrix_transform_distance (ctm_inverse, &dx0, &dy0); if (dx0 == 0.0 && dy0 == 0.0) { if (mag_out) *mag_out = 0.0; return FALSE; } if (dx0 == 0.0) { *dx = 0.0; if (dy0 > 0.0) { mag = dy0; *dy = 1.0; } else { mag = -dy0; *dy = -1.0; } } else if (dy0 == 0.0) { *dy = 0.0; if (dx0 > 0.0) { mag = dx0; *dx = 1.0; } else { mag = -dx0; *dx = -1.0; } } else { mag = hypot (dx0, dy0); *dx = dx0 / mag; *dy = dy0 / mag; } if (mag_out) *mag_out = mag; return TRUE; } static void _compute_face (const cairo_point_t *point, cairo_slope_t *dev_slope, double slope_dx, double slope_dy, cairo_stroker_t *stroker, cairo_stroke_face_t *face); static cairo_status_t _cairo_stroker_add_caps (cairo_stroker_t *stroker) { cairo_status_t status; /* check for a degenerative sub_path */ if (stroker->has_initial_sub_path && !stroker->has_first_face && !stroker->has_current_face && stroker->style->line_cap == CAIRO_LINE_JOIN_ROUND) { /* pick an arbitrary slope to use */ double dx = 1.0, dy = 0.0; cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 }; cairo_stroke_face_t face; _compute_normalized_device_slope (&dx, &dy, stroker->ctm_inverse, NULL); /* arbitrarily choose first_point * first_point and current_point should be the same */ _compute_face (&stroker->first_point, &slope, dx, dy, stroker, &face); status = _cairo_stroker_add_leading_cap (stroker, &face); if (unlikely (status)) return status; status = _cairo_stroker_add_trailing_cap (stroker, &face); if (unlikely (status)) return status; } if (stroker->has_first_face) { status = _cairo_stroker_add_leading_cap (stroker, &stroker->first_face); if (unlikely (status)) return status; } if (stroker->has_current_face) { status = _cairo_stroker_add_trailing_cap (stroker, &stroker->current_face); if (unlikely (status)) return status; } return CAIRO_STATUS_SUCCESS; } static void _compute_face (const cairo_point_t *point, cairo_slope_t *dev_slope, double slope_dx, double slope_dy, cairo_stroker_t *stroker, cairo_stroke_face_t *face) { double face_dx, face_dy; cairo_point_t offset_ccw, offset_cw; /* * rotate to get a line_width/2 vector along the face, note that * the vector must be rotated the right direction in device space, * but by 90° in user space. So, the rotation depends on * whether the ctm reflects or not, and that can be determined * by looking at the determinant of the matrix. */ if (stroker->ctm_det_positive) { face_dx = - slope_dy * (stroker->style->line_width / 2.0); face_dy = slope_dx * (stroker->style->line_width / 2.0); } else { face_dx = slope_dy * (stroker->style->line_width / 2.0); face_dy = - slope_dx * (stroker->style->line_width / 2.0); } /* back to device space */ cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy); offset_ccw.x = _cairo_fixed_from_double (face_dx); offset_ccw.y = _cairo_fixed_from_double (face_dy); offset_cw.x = -offset_ccw.x; offset_cw.y = -offset_ccw.y; face->ccw = *point; _translate_point (&face->ccw, &offset_ccw); face->point = *point; face->cw = *point; _translate_point (&face->cw, &offset_cw); face->usr_vector.x = slope_dx; face->usr_vector.y = slope_dy; face->dev_vector = *dev_slope; } static cairo_status_t _cairo_stroker_add_sub_edge (cairo_stroker_t *stroker, const cairo_point_t *p1, const cairo_point_t *p2, cairo_slope_t *dev_slope, double slope_dx, double slope_dy, cairo_stroke_face_t *start, cairo_stroke_face_t *end) { cairo_point_t rectangle[4]; _compute_face (p1, dev_slope, slope_dx, slope_dy, stroker, start); /* XXX: This could be optimized slightly by not calling _compute_face again but rather translating the relevant fields from start. */ _compute_face (p2, dev_slope, slope_dx, slope_dy, stroker, end); if (p1->x == p2->x && p1->y == p2->y) return CAIRO_STATUS_SUCCESS; rectangle[0] = start->cw; rectangle[1] = start->ccw; rectangle[2] = end->ccw; rectangle[3] = end->cw; return _cairo_traps_tessellate_convex_quad (stroker->traps, rectangle); } static cairo_status_t _cairo_stroker_move_to (void *closure, const cairo_point_t *point) { cairo_stroker_t *stroker = closure; cairo_status_t status; /* Cap the start and end of the previous sub path as needed */ status = _cairo_stroker_add_caps (stroker); if (unlikely (status)) return status; stroker->first_point = *point; stroker->current_point = *point; stroker->has_first_face = FALSE; stroker->has_current_face = FALSE; stroker->has_initial_sub_path = FALSE; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_stroker_move_to_dashed (void *closure, const cairo_point_t *point) { cairo_stroker_t *stroker = closure; /* reset the dash pattern for new sub paths */ _cairo_stroker_dash_start (&stroker->dash); return _cairo_stroker_move_to (closure, point); } static cairo_status_t _cairo_stroker_line_to (void *closure, const cairo_point_t *p2) { cairo_status_t status; cairo_stroker_t *stroker = closure; cairo_stroke_face_t start, end; cairo_point_t *p1 = &stroker->current_point; cairo_slope_t dev_slope; double slope_dx, slope_dy; stroker->has_initial_sub_path = TRUE; if (p1->x == p2->x && p1->y == p2->y) return CAIRO_STATUS_SUCCESS; _cairo_slope_init (&dev_slope, p1, p2); slope_dx = _cairo_fixed_to_double (p2->x - p1->x); slope_dy = _cairo_fixed_to_double (p2->y - p1->y); _compute_normalized_device_slope (&slope_dx, &slope_dy, stroker->ctm_inverse, NULL); status = _cairo_stroker_add_sub_edge (stroker, p1, p2, &dev_slope, slope_dx, slope_dy, &start, &end); if (unlikely (status)) return status; if (stroker->has_current_face) { /* Join with final face from previous segment */ status = _cairo_stroker_join (stroker, &stroker->current_face, &start); if (unlikely (status)) return status; } else if (!stroker->has_first_face) { /* Save sub path's first face in case needed for closing join */ stroker->first_face = start; stroker->has_first_face = TRUE; } stroker->current_face = end; stroker->has_current_face = TRUE; stroker->current_point = *p2; return CAIRO_STATUS_SUCCESS; } /* * Dashed lines. Cap each dash end, join around turns when on */ static cairo_status_t _cairo_stroker_line_to_dashed (void *closure, const cairo_point_t *p2) { cairo_stroker_t *stroker = closure; double mag, remain, step_length = 0; double slope_dx, slope_dy; double dx2, dy2; cairo_stroke_face_t sub_start, sub_end; cairo_point_t *p1 = &stroker->current_point; cairo_slope_t dev_slope; cairo_line_t segment; cairo_bool_t fully_in_bounds; cairo_status_t status; stroker->has_initial_sub_path = stroker->dash.dash_starts_on; if (p1->x == p2->x && p1->y == p2->y) return CAIRO_STATUS_SUCCESS; fully_in_bounds = TRUE; if (stroker->has_bounds && (! _cairo_box_contains_point (&stroker->bounds, p1) || ! _cairo_box_contains_point (&stroker->bounds, p2))) { fully_in_bounds = FALSE; } _cairo_slope_init (&dev_slope, p1, p2); slope_dx = _cairo_fixed_to_double (p2->x - p1->x); slope_dy = _cairo_fixed_to_double (p2->y - p1->y); if (! _compute_normalized_device_slope (&slope_dx, &slope_dy, stroker->ctm_inverse, &mag)) { return CAIRO_STATUS_SUCCESS; } remain = mag; segment.p1 = *p1; while (remain) { step_length = MIN (stroker->dash.dash_remain, remain); remain -= step_length; dx2 = slope_dx * (mag - remain); dy2 = slope_dy * (mag - remain); cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2); segment.p2.x = _cairo_fixed_from_double (dx2) + p1->x; segment.p2.y = _cairo_fixed_from_double (dy2) + p1->y; if (stroker->dash.dash_on && (fully_in_bounds || (! stroker->has_first_face && stroker->dash.dash_starts_on) || _cairo_box_intersects_line_segment (&stroker->bounds, &segment))) { status = _cairo_stroker_add_sub_edge (stroker, &segment.p1, &segment.p2, &dev_slope, slope_dx, slope_dy, &sub_start, &sub_end); if (unlikely (status)) return status; if (stroker->has_current_face) { /* Join with final face from previous segment */ status = _cairo_stroker_join (stroker, &stroker->current_face, &sub_start); if (unlikely (status)) return status; stroker->has_current_face = FALSE; } else if (! stroker->has_first_face && stroker->dash.dash_starts_on) { /* Save sub path's first face in case needed for closing join */ stroker->first_face = sub_start; stroker->has_first_face = TRUE; } else { /* Cap dash start if not connecting to a previous segment */ status = _cairo_stroker_add_leading_cap (stroker, &sub_start); if (unlikely (status)) return status; } if (remain) { /* Cap dash end if not at end of segment */ status = _cairo_stroker_add_trailing_cap (stroker, &sub_end); if (unlikely (status)) return status; } else { stroker->current_face = sub_end; stroker->has_current_face = TRUE; } } else { if (stroker->has_current_face) { /* Cap final face from previous segment */ status = _cairo_stroker_add_trailing_cap (stroker, &stroker->current_face); if (unlikely (status)) return status; stroker->has_current_face = FALSE; } } _cairo_stroker_dash_step (&stroker->dash, step_length); segment.p1 = segment.p2; } if (stroker->dash.dash_on && ! stroker->has_current_face) { /* This segment ends on a transition to dash_on, compute a new face * and add cap for the beginning of the next dash_on step. * * Note: this will create a degenerate cap if this is not the last line * in the path. Whether this behaviour is desirable or not is debatable. * On one side these degenerate caps can not be reproduced with regular * path stroking. * On the other hand, Acroread 7 also produces the degenerate caps. */ _compute_face (p2, &dev_slope, slope_dx, slope_dy, stroker, &stroker->current_face); status = _cairo_stroker_add_leading_cap (stroker, &stroker->current_face); if (unlikely (status)) return status; stroker->has_current_face = TRUE; } stroker->current_point = *p2; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_stroker_curve_to (void *closure, const cairo_point_t *b, const cairo_point_t *c, const cairo_point_t *d) { cairo_stroker_t *stroker = closure; cairo_pen_stroke_spline_t spline_pen; cairo_stroke_face_t start, end; cairo_point_t extra_points[4]; cairo_point_t *a = &stroker->current_point; double initial_slope_dx, initial_slope_dy; double final_slope_dx, final_slope_dy; cairo_status_t status; status = _cairo_pen_stroke_spline_init (&spline_pen, &stroker->pen, a, b, c, d); if (status == CAIRO_INT_STATUS_DEGENERATE) return _cairo_stroker_line_to (closure, d); else if (unlikely (status)) return status; initial_slope_dx = _cairo_fixed_to_double (spline_pen.spline.initial_slope.dx); initial_slope_dy = _cairo_fixed_to_double (spline_pen.spline.initial_slope.dy); final_slope_dx = _cairo_fixed_to_double (spline_pen.spline.final_slope.dx); final_slope_dy = _cairo_fixed_to_double (spline_pen.spline.final_slope.dy); if (_compute_normalized_device_slope (&initial_slope_dx, &initial_slope_dy, stroker->ctm_inverse, NULL)) { _compute_face (a, &spline_pen.spline.initial_slope, initial_slope_dx, initial_slope_dy, stroker, &start); } if (_compute_normalized_device_slope (&final_slope_dx, &final_slope_dy, stroker->ctm_inverse, NULL)) { _compute_face (d, &spline_pen.spline.final_slope, final_slope_dx, final_slope_dy, stroker, &end); } if (stroker->has_current_face) { status = _cairo_stroker_join (stroker, &stroker->current_face, &start); if (unlikely (status)) goto CLEANUP_PEN; } else if (! stroker->has_first_face) { stroker->first_face = start; stroker->has_first_face = TRUE; } stroker->current_face = end; stroker->has_current_face = TRUE; extra_points[0] = start.cw; extra_points[0].x -= start.point.x; extra_points[0].y -= start.point.y; extra_points[1] = start.ccw; extra_points[1].x -= start.point.x; extra_points[1].y -= start.point.y; extra_points[2] = end.cw; extra_points[2].x -= end.point.x; extra_points[2].y -= end.point.y; extra_points[3] = end.ccw; extra_points[3].x -= end.point.x; extra_points[3].y -= end.point.y; status = _cairo_pen_add_points (&spline_pen.pen, extra_points, 4); if (unlikely (status)) goto CLEANUP_PEN; status = _cairo_pen_stroke_spline (&spline_pen, stroker->tolerance, stroker->traps); CLEANUP_PEN: _cairo_pen_stroke_spline_fini (&spline_pen); stroker->current_point = *d; return status; } /* We're using two different algorithms here for dashed and un-dashed * splines. The dashed algorithm uses the existing line dashing * code. It's linear in path length, but gets subtly wrong results for * self-intersecting paths (an outstanding but for self-intersecting * non-curved paths as well). The non-dashed algorithm tessellates a * single polygon for the whole curve. It handles the * self-intersecting problem, but it's (unsurprisingly) not O(n) and * more significantly, it doesn't yet handle dashes. * * The only reason we're doing split algorithms here is to * minimize the impact of fixing the splines-aren't-dashed bug for * 1.0.2. Long-term the right answer is to rewrite the whole pile * of stroking code so that the entire result is computed as a * single polygon that is tessellated, (that is, stroking can be * built on top of filling). That will solve the self-intersecting * problem. It will also increase the importance of implementing * an efficient and more robust tessellator. */ static cairo_status_t _cairo_stroker_curve_to_dashed (void *closure, const cairo_point_t *b, const cairo_point_t *c, const cairo_point_t *d) { cairo_stroker_t *stroker = closure; cairo_spline_t spline; cairo_point_t *a = &stroker->current_point; cairo_line_join_t line_join_save; cairo_status_t status; if (! _cairo_spline_init (&spline, _cairo_stroker_line_to_dashed, stroker, a, b, c, d)) { return _cairo_stroker_line_to_dashed (closure, d); } /* If the line width is so small that the pen is reduced to a single point, then we have nothing to do. */ if (stroker->pen.num_vertices <= 1) return CAIRO_STATUS_SUCCESS; /* Temporarily modify the stroker to use round joins to guarantee * smooth stroked curves. */ line_join_save = stroker->style->line_join; stroker->style->line_join = CAIRO_LINE_JOIN_ROUND; status = _cairo_spline_decompose (&spline, stroker->tolerance); stroker->style->line_join = line_join_save; return status; } static cairo_status_t _cairo_stroker_close_path (void *closure) { cairo_status_t status; cairo_stroker_t *stroker = closure; if (stroker->dash.dashed) status = _cairo_stroker_line_to_dashed (stroker, &stroker->first_point); else status = _cairo_stroker_line_to (stroker, &stroker->first_point); if (unlikely (status)) return status; if (stroker->has_first_face && stroker->has_current_face) { /* Join first and final faces of sub path */ status = _cairo_stroker_join (stroker, &stroker->current_face, &stroker->first_face); if (unlikely (status)) return status; } else { /* Cap the start and end of the sub path as needed */ status = _cairo_stroker_add_caps (stroker); if (unlikely (status)) return status; } stroker->has_initial_sub_path = FALSE; stroker->has_first_face = FALSE; stroker->has_current_face = FALSE; return CAIRO_STATUS_SUCCESS; } static cairo_int_status_t _cairo_path_fixed_stroke_rectilinear (cairo_path_fixed_t *path, cairo_stroke_style_t *stroke_style, const cairo_matrix_t *ctm, cairo_traps_t *traps); cairo_status_t _cairo_path_fixed_stroke_to_traps (cairo_path_fixed_t *path, cairo_stroke_style_t *stroke_style, const cairo_matrix_t *ctm, const cairo_matrix_t *ctm_inverse, double tolerance, cairo_traps_t *traps) { cairo_status_t status; cairo_stroker_t stroker; /* Before we do anything else, we attempt the rectilinear * stroker. It's careful to generate trapezoids that align to * device-pixel boundaries when possible. Many backends can render * those much faster than non-aligned trapezoids, (by using clip * regions, etc.) */ status = _cairo_path_fixed_stroke_rectilinear (path, stroke_style, ctm, traps); if (status != CAIRO_INT_STATUS_UNSUPPORTED) return status; status = _cairo_stroker_init (&stroker, stroke_style, ctm, ctm_inverse, tolerance, traps); if (unlikely (status)) return status; if (stroker.style->dash) status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD, _cairo_stroker_move_to_dashed, _cairo_stroker_line_to_dashed, _cairo_stroker_curve_to_dashed, _cairo_stroker_close_path, &stroker); else status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD, _cairo_stroker_move_to, _cairo_stroker_line_to, _cairo_stroker_curve_to, _cairo_stroker_close_path, &stroker); if (unlikely (status)) goto BAIL; /* Cap the start and end of the final sub path as needed */ status = _cairo_stroker_add_caps (&stroker); BAIL: _cairo_stroker_fini (&stroker); return status; } typedef struct _segment_t { cairo_point_t p1, p2; cairo_bool_t is_horizontal; cairo_bool_t has_join; } segment_t; typedef struct _cairo_rectilinear_stroker { cairo_stroke_style_t *stroke_style; const cairo_matrix_t *ctm; cairo_fixed_t half_line_width; cairo_traps_t *traps; cairo_point_t current_point; cairo_point_t first_point; cairo_bool_t open_sub_path; cairo_stroker_dash_t dash; cairo_bool_t has_bounds; cairo_box_t bounds; int num_segments; int segments_size; segment_t *segments; segment_t segments_embedded[8]; /* common case is a single rectangle */ } cairo_rectilinear_stroker_t; static void _cairo_rectilinear_stroker_limit (cairo_rectilinear_stroker_t *stroker, const cairo_box_t *box) { stroker->has_bounds = TRUE; stroker->bounds = *box; stroker->bounds.p1.x -= stroker->half_line_width; stroker->bounds.p2.x += stroker->half_line_width; stroker->bounds.p1.y -= stroker->half_line_width; stroker->bounds.p2.y += stroker->half_line_width; } static void _cairo_rectilinear_stroker_init (cairo_rectilinear_stroker_t *stroker, cairo_stroke_style_t *stroke_style, const cairo_matrix_t *ctm, cairo_traps_t *traps) { stroker->stroke_style = stroke_style; stroker->ctm = ctm; stroker->half_line_width = _cairo_fixed_from_double (stroke_style->line_width / 2.0); stroker->traps = traps; stroker->open_sub_path = FALSE; stroker->segments = stroker->segments_embedded; stroker->segments_size = ARRAY_LENGTH (stroker->segments_embedded); stroker->num_segments = 0; _cairo_stroker_dash_init (&stroker->dash, stroke_style); stroker->has_bounds = FALSE; } static void _cairo_rectilinear_stroker_fini (cairo_rectilinear_stroker_t *stroker) { if (stroker->segments != stroker->segments_embedded) free (stroker->segments); } static cairo_status_t _cairo_rectilinear_stroker_add_segment (cairo_rectilinear_stroker_t *stroker, const cairo_point_t *p1, const cairo_point_t *p2, cairo_bool_t is_horizontal, cairo_bool_t has_join) { if (CAIRO_INJECT_FAULT ()) return _cairo_error (CAIRO_STATUS_NO_MEMORY); if (stroker->num_segments == stroker->segments_size) { int new_size = stroker->segments_size * 2; segment_t *new_segments; if (stroker->segments == stroker->segments_embedded) { new_segments = _cairo_malloc_ab (new_size, sizeof (segment_t)); if (unlikely (new_segments == NULL)) return _cairo_error (CAIRO_STATUS_NO_MEMORY); memcpy (new_segments, stroker->segments, stroker->num_segments * sizeof (segment_t)); } else { new_segments = _cairo_realloc_ab (stroker->segments, new_size, sizeof (segment_t)); if (unlikely (new_segments == NULL)) return _cairo_error (CAIRO_STATUS_NO_MEMORY); } stroker->segments_size = new_size; stroker->segments = new_segments; } stroker->segments[stroker->num_segments].p1 = *p1; stroker->segments[stroker->num_segments].p2 = *p2; stroker->segments[stroker->num_segments].has_join = has_join; stroker->segments[stroker->num_segments].is_horizontal = is_horizontal; stroker->num_segments++; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_rectilinear_stroker_emit_segments (cairo_rectilinear_stroker_t *stroker) { cairo_status_t status; cairo_line_cap_t line_cap = stroker->stroke_style->line_cap; cairo_fixed_t half_line_width = stroker->half_line_width; int i; for (i = 0; i < stroker->num_segments; i++) { cairo_point_t *a, *b; cairo_bool_t lengthen_initial, shorten_final, lengthen_final; a = &stroker->segments[i].p1; b = &stroker->segments[i].p2; /* For each segment we generate a single rectangular * trapezoid. This rectangle is based on a perpendicular * extension (by half the line width) of the segment endpoints * after some adjustments of the endpoints to account for caps * and joins. */ /* We adjust the initial point of the segment to extend the * rectangle to include the previous cap or join, (this * adjustment applies to all segments except for the first * segment of open, butt-capped paths). */ lengthen_initial = TRUE; if (i == 0 && stroker->open_sub_path && line_cap == CAIRO_LINE_CAP_BUTT) lengthen_initial = FALSE; /* The adjustment of the final point is trickier. For all but * the last segment we shorten the segment at the final * endpoint to not overlap with the subsequent join. For the * last segment we do the same shortening if the path is * closed. If the path is open and butt-capped we do no * adjustment, while if it's open and square-capped we do a * lengthening adjustment instead to include the cap. */ shorten_final = TRUE; lengthen_final = FALSE; if (i == stroker->num_segments - 1 && stroker->open_sub_path) { shorten_final = FALSE; if (line_cap == CAIRO_LINE_CAP_SQUARE) lengthen_final = TRUE; } /* Perform the adjustments of the endpoints. */ if (a->y == b->y) { if (a->x < b->x) { if (lengthen_initial) a->x -= half_line_width; if (shorten_final) b->x -= half_line_width; else if (lengthen_final) b->x += half_line_width; } else { if (lengthen_initial) a->x += half_line_width; if (shorten_final) b->x += half_line_width; else if (lengthen_final) b->x -= half_line_width; } if (a->x > b->x) { cairo_point_t *t; t = a; a = b; b = t; } } else { if (a->y < b->y) { if (lengthen_initial) a->y -= half_line_width; if (shorten_final) b->y -= half_line_width; else if (lengthen_final) b->y += half_line_width; } else { if (lengthen_initial) a->y += half_line_width; if (shorten_final) b->y += half_line_width; else if (lengthen_final) b->y -= half_line_width; } if (a->y > b->y) { cairo_point_t *t; t = a; a = b; b = t; } } /* Form the rectangle by expanding by half the line width in * either perpendicular direction. */ if (a->y == b->y) { a->y -= half_line_width; b->y += half_line_width; } else { a->x -= half_line_width; b->x += half_line_width; } status = _cairo_traps_tessellate_rectangle (stroker->traps, a, b); if (unlikely (status)) return status; } stroker->num_segments = 0; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_rectilinear_stroker_emit_segments_dashed (cairo_rectilinear_stroker_t *stroker) { cairo_status_t status; cairo_line_cap_t line_cap = stroker->stroke_style->line_cap; cairo_fixed_t half_line_width = stroker->half_line_width; int i; for (i = 0; i < stroker->num_segments; i++) { cairo_point_t *a, *b; cairo_bool_t is_horizontal; a = &stroker->segments[i].p1; b = &stroker->segments[i].p2; is_horizontal = stroker->segments[i].is_horizontal; /* Handle the joins for a potentially degenerate segment. */ if (line_cap == CAIRO_LINE_CAP_BUTT && stroker->segments[i].has_join && (i != stroker->num_segments - 1 || (! stroker->open_sub_path && stroker->dash.dash_starts_on))) { cairo_point_t p1 = stroker->segments[i].p1; cairo_point_t p2 = stroker->segments[i].p2; cairo_slope_t out_slope; int j = (i + 1) % stroker->num_segments; _cairo_slope_init (&out_slope, &stroker->segments[j].p1, &stroker->segments[j].p2); if (is_horizontal) { if (p1.x <= p2.x) { p1.x = p2.x; p2.x += half_line_width; } else { p1.x = p2.x - half_line_width; } if (out_slope.dy >= 0) p1.y -= half_line_width; if (out_slope.dy <= 0) p2.y += half_line_width; } else { if (p1.y <= p2.y) { p1.y = p2.y; p2.y += half_line_width; } else { p1.y = p2.y - half_line_width; } if (out_slope.dx >= 0) p1.x -= half_line_width; if (out_slope.dx <= 0) p2.x += half_line_width; } status = _cairo_traps_tessellate_rectangle (stroker->traps, &p1, &p2); if (unlikely (status)) return status; } /* Perform the adjustments of the endpoints. */ if (is_horizontal) { if (line_cap == CAIRO_LINE_CAP_SQUARE) { if (a->x <= b->x) { a->x -= half_line_width; b->x += half_line_width; } else { a->x += half_line_width; b->x -= half_line_width; } } if (a->x > b->x) { cairo_point_t *t; t = a; a = b; b = t; } a->y -= half_line_width; b->y += half_line_width; } else { if (line_cap == CAIRO_LINE_CAP_SQUARE) { if (a->y <= b->y) { a->y -= half_line_width; b->y += half_line_width; } else { a->y += half_line_width; b->y -= half_line_width; } } if (a->y > b->y) { cairo_point_t *t; t = a; a = b; b = t; } a->x -= half_line_width; b->x += half_line_width; } if (a->x == b->x && a->y == b->y) continue; status = _cairo_traps_tessellate_rectangle (stroker->traps, a, b); if (unlikely (status)) return status; } stroker->num_segments = 0; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_rectilinear_stroker_move_to (void *closure, const cairo_point_t *point) { cairo_rectilinear_stroker_t *stroker = closure; cairo_status_t status; if (stroker->dash.dashed) status = _cairo_rectilinear_stroker_emit_segments_dashed (stroker); else status = _cairo_rectilinear_stroker_emit_segments (stroker); if (unlikely (status)) return status; /* reset the dash pattern for new sub paths */ _cairo_stroker_dash_start (&stroker->dash); stroker->current_point = *point; stroker->first_point = *point; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_rectilinear_stroker_line_to (void *closure, const cairo_point_t *b) { cairo_rectilinear_stroker_t *stroker = closure; cairo_point_t *a = &stroker->current_point; cairo_status_t status; /* We only support horizontal or vertical elements. */ if (! (a->x == b->x || a->y == b->y)) return CAIRO_INT_STATUS_UNSUPPORTED; /* We don't draw anything for degenerate paths. */ if (a->x == b->x && a->y == b->y) return CAIRO_STATUS_SUCCESS; status = _cairo_rectilinear_stroker_add_segment (stroker, a, b, a->y == b->y, TRUE); stroker->current_point = *b; stroker->open_sub_path = TRUE; return status; } static cairo_status_t _cairo_rectilinear_stroker_line_to_dashed (void *closure, const cairo_point_t *point) { cairo_rectilinear_stroker_t *stroker = closure; const cairo_point_t *a = &stroker->current_point; const cairo_point_t *b = point; cairo_bool_t fully_in_bounds; double sign, remain; cairo_fixed_t mag; cairo_status_t status; cairo_line_t segment; cairo_bool_t dash_on = FALSE; cairo_bool_t is_horizontal; /* We don't draw anything for degenerate paths. */ if (a->x == b->x && a->y == b->y) return CAIRO_STATUS_SUCCESS; /* We only support horizontal or vertical elements. */ if (! (a->x == b->x || a->y == b->y)) return CAIRO_INT_STATUS_UNSUPPORTED; fully_in_bounds = TRUE; if (stroker->has_bounds && (! _cairo_box_contains_point (&stroker->bounds, a) || ! _cairo_box_contains_point (&stroker->bounds, b))) { fully_in_bounds = FALSE; } is_horizontal = a->y == b->y; if (is_horizontal) mag = b->x - a->x; else mag = b->y - a->y; if (mag < 0) { remain = _cairo_fixed_to_double (-mag); sign = 1.; } else { remain = _cairo_fixed_to_double (mag); sign = -1.; } segment.p2 = segment.p1 = *a; while (remain > 0.) { double step_length; step_length = MIN (stroker->dash.dash_remain, remain); remain -= step_length; mag = _cairo_fixed_from_double (sign*remain); if (is_horizontal) segment.p2.x = b->x + mag; else segment.p2.y = b->y + mag; if (stroker->dash.dash_on && (fully_in_bounds || _cairo_box_intersects_line_segment (&stroker->bounds, &segment))) { status = _cairo_rectilinear_stroker_add_segment (stroker, &segment.p1, &segment.p2, is_horizontal, remain <= 0.); if (unlikely (status)) return status; dash_on = TRUE; } else { dash_on = FALSE; } _cairo_stroker_dash_step (&stroker->dash, step_length); segment.p1 = segment.p2; } if (stroker->dash.dash_on && ! dash_on && (fully_in_bounds || _cairo_box_intersects_line_segment (&stroker->bounds, &segment))) { /* This segment ends on a transition to dash_on, compute a new face * and add cap for the beginning of the next dash_on step. */ status = _cairo_rectilinear_stroker_add_segment (stroker, &segment.p1, &segment.p1, is_horizontal, TRUE); if (unlikely (status)) return status; } stroker->current_point = *point; stroker->open_sub_path = TRUE; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_rectilinear_stroker_close_path (void *closure) { cairo_rectilinear_stroker_t *stroker = closure; cairo_status_t status; /* We don't draw anything for degenerate paths. */ if (! stroker->open_sub_path) return CAIRO_STATUS_SUCCESS; if (stroker->dash.dashed) { status = _cairo_rectilinear_stroker_line_to_dashed (stroker, &stroker->first_point); } else { status = _cairo_rectilinear_stroker_line_to (stroker, &stroker->first_point); } if (unlikely (status)) return status; stroker->open_sub_path = FALSE; if (stroker->dash.dashed) status = _cairo_rectilinear_stroker_emit_segments_dashed (stroker); else status = _cairo_rectilinear_stroker_emit_segments (stroker); if (unlikely (status)) return status; return CAIRO_STATUS_SUCCESS; } static cairo_int_status_t _cairo_path_fixed_stroke_rectilinear (cairo_path_fixed_t *path, cairo_stroke_style_t *stroke_style, const cairo_matrix_t *ctm, cairo_traps_t *traps) { cairo_rectilinear_stroker_t rectilinear_stroker; cairo_int_status_t status; /* This special-case rectilinear stroker only supports * miter-joined lines (not curves) and a translation-only matrix * (though it could probably be extended to support a matrix with * uniform, integer scaling). * * It also only supports horizontal and vertical line_to * elements. But we don't catch that here, but instead return * UNSUPPORTED from _cairo_rectilinear_stroker_line_to if any * non-rectilinear line_to is encountered. */ if (path->has_curve_to) return CAIRO_INT_STATUS_UNSUPPORTED; if (stroke_style->line_join != CAIRO_LINE_JOIN_MITER) return CAIRO_INT_STATUS_UNSUPPORTED; /* If the miter limit turns right angles into bevels, then we * can't use this optimization. Remember, the ratio is * 1/sin(ɸ/2). So the cutoff is 1/sin(π/4.0) or ⎷2, * which we round for safety. */ if (stroke_style->miter_limit < M_SQRT2) return CAIRO_INT_STATUS_UNSUPPORTED; if (! (stroke_style->line_cap == CAIRO_LINE_CAP_BUTT || stroke_style->line_cap == CAIRO_LINE_CAP_SQUARE)) { return CAIRO_INT_STATUS_UNSUPPORTED; } if (! (_cairo_matrix_is_identity (ctm) || _cairo_matrix_is_translation (ctm))) { return CAIRO_INT_STATUS_UNSUPPORTED; } _cairo_rectilinear_stroker_init (&rectilinear_stroker, stroke_style, ctm, traps); if (traps->has_limits) { _cairo_rectilinear_stroker_limit (&rectilinear_stroker, &traps->limits); } status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD, _cairo_rectilinear_stroker_move_to, rectilinear_stroker.dash.dashed ? _cairo_rectilinear_stroker_line_to_dashed : _cairo_rectilinear_stroker_line_to, NULL, _cairo_rectilinear_stroker_close_path, &rectilinear_stroker); if (unlikely (status)) goto BAIL; if (rectilinear_stroker.dash.dashed) status = _cairo_rectilinear_stroker_emit_segments_dashed (&rectilinear_stroker); else status = _cairo_rectilinear_stroker_emit_segments (&rectilinear_stroker); BAIL: _cairo_rectilinear_stroker_fini (&rectilinear_stroker); if (unlikely (status)) _cairo_traps_clear (traps); return status; }