summaryrefslogtreecommitdiff
path: root/xc/programs/Xserver/XIE/mixie/jpeg/jrevdct.c
blob: 067b4eff5e80a7f29813e9a3c71bc46997118619 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/* $Xorg: jrevdct.c,v 1.3 2000/08/17 19:47:49 cpqbld Exp $ */
/* Module jrevdct.c */

/****************************************************************************

Copyright 1993, 1994, 1998  The Open Group

All Rights Reserved.

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from The Open Group.


				NOTICE
                              
This software is being provided by AGE Logic, Inc. under the
following license.  By obtaining, using and/or copying this software,
you agree that you have read, understood, and will comply with these
terms and conditions:

     Permission to use, copy, modify, distribute and sell this
     software and its documentation for any purpose and without
     fee or royalty and to grant others any or all rights granted
     herein is hereby granted, provided that you agree to comply
     with the following copyright notice and statements, including
     the disclaimer, and that the same appears on all copies and
     derivative works of the software and documentation you make.
     
     "Copyright 1993, 1994 by AGE Logic, Inc."
     
     THIS SOFTWARE IS PROVIDED "AS IS".  AGE LOGIC MAKES NO
     REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.  By way of
     example, but not limitation, AGE LOGIC MAKE NO
     REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS
     FOR ANY PARTICULAR PURPOSE OR THAT THE SOFTWARE DOES NOT
     INFRINGE THIRD-PARTY PROPRIETARY RIGHTS.  AGE LOGIC 
     SHALL BEAR NO LIABILITY FOR ANY USE OF THIS SOFTWARE.  IN NO
     EVENT SHALL EITHER PARTY BE LIABLE FOR ANY INDIRECT,
     INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOSS
     OF PROFITS, REVENUE, DATA OR USE, INCURRED BY EITHER PARTY OR
     ANY THIRD PARTY, WHETHER IN AN ACTION IN CONTRACT OR TORT OR
     BASED ON A WARRANTY, EVEN IF AGE LOGIC LICENSEES
     HEREUNDER HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
     DAMAGES.
    
     The name of AGE Logic, Inc. may not be used in
     advertising or publicity pertaining to this software without
     specific, written prior permission from AGE Logic.

     Title to this software shall at all times remain with AGE
     Logic, Inc.
*****************************************************************************

	Gary Rogers, AGE Logic, Inc., October 1993
	Gary Rogers, AGE Logic, Inc., January 1994

****************************************************************************/

/*
 * jrevdct.c
 *
 * Copyright (C) 1991, 1992, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the basic inverse-DCT transformation subroutine.
 *
 * This implementation is based on an algorithm described in
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
 * The primary algorithm described there uses 11 multiplies and 29 adds.
 * We use their alternate method with 12 multiplies and 32 adds.
 * The advantage of this method is that no data path contains more than one
 * multiplication; this allows a very simple and accurate implementation in
 * scaled fixed-point arithmetic, with a minimal number of shifts.
 */

#include "jinclude.h"

/*
 * This routine is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/*
 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
 * on each column.  Direct algorithms are also available, but they are
 * much more complex and seem not to be any faster when reduced to code.
 *
 * The poop on this scaling stuff is as follows:
 *
 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
 * larger than the true IDCT outputs.  The final outputs are therefore
 * a factor of N larger than desired; since N=8 this can be cured by
 * a simple right shift at the end of the algorithm.  The advantage of
 * this arrangement is that we save two multiplications per 1-D IDCT,
 * because the y0 and y4 inputs need not be divided by sqrt(N).
 *
 * We have to do addition and subtraction of the integer inputs, which
 * is no problem, and multiplication by fractional constants, which is
 * a problem to do in integer arithmetic.  We multiply all the constants
 * by CONST_SCALE and convert them to integer constants (thus retaining
 * CONST_BITS bits of precision in the constants).  After doing a
 * multiplication we have to divide the product by CONST_SCALE, with proper
 * rounding, to produce the correct output.  This division can be done
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
 * as long as possible so that partial sums can be added together with
 * full fractional precision.
 *
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
 * they are represented to better-than-integral precision.  These outputs
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
 * with the recommended scaling.  (To scale up 12-bit sample data further, an
 * intermediate INT32 array would be needed.)
 *
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
 * shows that the values given below are the most effective.
 */

#ifdef EIGHT_BIT_SAMPLES
#define CONST_BITS  13
#define PASS1_BITS  2
#else
#define CONST_BITS  13
#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
#endif

#define ONE	((INT32) 1)

#define CONST_SCALE (ONE << CONST_BITS)

/* Convert a positive real constant to an integer scaled by CONST_SCALE. */

#define FIX(x)	((INT32) ((x) * CONST_SCALE + 0.5))

/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 * causing a lot of useless floating-point operations at run time.
 * To get around this we use the following pre-calculated constants.
 * If you change CONST_BITS you may want to add appropriate values.
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 */

#if CONST_BITS == 13
#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
#else
#define FIX_0_298631336  FIX(0.298631336)
#define FIX_0_390180644  FIX(0.390180644)
#define FIX_0_541196100  FIX(0.541196100)
#define FIX_0_765366865  FIX(0.765366865)
#define FIX_0_899976223  FIX(0.899976223)
#define FIX_1_175875602  FIX(1.175875602)
#define FIX_1_501321110  FIX(1.501321110)
#define FIX_1_847759065  FIX(1.847759065)
#define FIX_1_961570560  FIX(1.961570560)
#define FIX_2_053119869  FIX(2.053119869)
#define FIX_2_562915447  FIX(2.562915447)
#define FIX_3_072711026  FIX(3.072711026)
#endif


/* Descale and correctly round an INT32 value that's scaled by N bits.
 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
 * the fudge factor is correct for either sign of X.
 */

#define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)

/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 * For 8-bit samples with the recommended scaling, all the variable
 * and constant values involved are no more than 16 bits wide, so a
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
 * this provides a useful speedup on many machines.
 * There is no way to specify a 16x16->32 multiply in portable C, but
 * some C compilers will do the right thing if you provide the correct
 * combination of casts.
 * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
 */

#ifdef EIGHT_BIT_SAMPLES
#ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
#define MULTIPLY(var,const)  (((INT16) (var)) * ((INT16) (const)))
#endif
#ifdef SHORTxLCONST_32		/* known to work with Microsoft C 6.0 */
#define MULTIPLY(var,const)  (((INT16) (var)) * ((INT32) (const)))
#endif
#endif

#ifndef MULTIPLY				/* default definition */
#define MULTIPLY(var,const)  ((var) * (const))
#endif


/*
 * Perform the inverse DCT on one block of coefficients.
 */

GLOBAL void
#ifdef XIE_SUPPORTED
#if NeedFunctionPrototypes
j_rev_dct (DCTBLOCK data)
#else
j_rev_dct (data)
	DCTBLOCK data;
#endif	/* NeedFunctionPrototypes */
#else
j_rev_dct (DCTBLOCK data)
#endif	/* XIE_SUPPORTED */
{
  INT32 tmp0, tmp1, tmp2, tmp3;
  INT32 tmp10, tmp11, tmp12, tmp13;
  INT32 z1, z2, z3, z4, z5;
  register DCTELEM *dataptr;
  int rowctr;
  SHIFT_TEMPS

  /* Pass 1: process rows. */
  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  /* furthermore, we scale the results by 2**PASS1_BITS. */

  dataptr = data;
  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any row in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * row DCT calculations can be simplified this way.
     */

    if ((dataptr[1] | dataptr[2] | dataptr[3] | dataptr[4] |
	 dataptr[5] | dataptr[6] | dataptr[7]) == 0) {
      /* AC terms all zero */
      DCTELEM dcval = (DCTELEM) (dataptr[0] << PASS1_BITS);
      
      dataptr[0] = dcval;
      dataptr[1] = dcval;
      dataptr[2] = dcval;
      dataptr[3] = dcval;
      dataptr[4] = dcval;
      dataptr[5] = dcval;
      dataptr[6] = dcval;
      dataptr[7] = dcval;
      
      dataptr += DCTSIZE;	/* advance pointer to next row */
      continue;
    }

    /* Even part: reverse the even part of the forward DCT. */
    /* The rotator is sqrt(2)*c(-6). */

    z2 = (INT32) dataptr[2];
    z3 = (INT32) dataptr[6];

    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);

    tmp0 = ((INT32) dataptr[0] + (INT32) dataptr[4]) << CONST_BITS;
    tmp1 = ((INT32) dataptr[0] - (INT32) dataptr[4]) << CONST_BITS;

    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    /* Odd part per figure 8; the matrix is unitary and hence its
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
     */

    tmp0 = (INT32) dataptr[7];
    tmp1 = (INT32) dataptr[5];
    tmp2 = (INT32) dataptr[3];
    tmp3 = (INT32) dataptr[1];

    z1 = tmp0 + tmp3;
    z2 = tmp1 + tmp2;
    z3 = tmp0 + tmp2;
    z4 = tmp1 + tmp3;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    tmp0 += z1 + z3;
    tmp1 += z2 + z4;
    tmp2 += z2 + z3;
    tmp3 += z1 + z4;

    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */

    dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
    dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
    dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
    dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
    dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
    dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
    dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
    dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);

    dataptr += DCTSIZE;		/* advance pointer to next row */
  }

  /* Pass 2: process columns. */
  /* Note that we must descale the results by a factor of 8 == 2**3, */
  /* and also undo the PASS1_BITS scaling. */

  dataptr = data;
  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
    /* Columns of zeroes can be exploited in the same way as we did with rows.
     * However, the row calculation has created many nonzero AC terms, so the
     * simplification applies less often (typically 5% to 10% of the time).
     * On machines with very fast multiplication, it's possible that the
     * test takes more time than it's worth.  In that case this section
     * may be commented out.
     */

#ifndef NO_ZERO_COLUMN_TEST
    if ((dataptr[DCTSIZE*1] | dataptr[DCTSIZE*2] | dataptr[DCTSIZE*3] |
	 dataptr[DCTSIZE*4] | dataptr[DCTSIZE*5] | dataptr[DCTSIZE*6] |
	 dataptr[DCTSIZE*7]) == 0) {
      /* AC terms all zero */
      DCTELEM dcval = (DCTELEM) DESCALE((INT32) dataptr[0], PASS1_BITS+3);
      
      dataptr[DCTSIZE*0] = dcval;
      dataptr[DCTSIZE*1] = dcval;
      dataptr[DCTSIZE*2] = dcval;
      dataptr[DCTSIZE*3] = dcval;
      dataptr[DCTSIZE*4] = dcval;
      dataptr[DCTSIZE*5] = dcval;
      dataptr[DCTSIZE*6] = dcval;
      dataptr[DCTSIZE*7] = dcval;
      
      dataptr++;		/* advance pointer to next column */
      continue;
    }
#endif

    /* Even part: reverse the even part of the forward DCT. */
    /* The rotator is sqrt(2)*c(-6). */

    z2 = (INT32) dataptr[DCTSIZE*2];
    z3 = (INT32) dataptr[DCTSIZE*6];

    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);

    tmp0 = ((INT32) dataptr[DCTSIZE*0] + (INT32) dataptr[DCTSIZE*4]) << CONST_BITS;
    tmp1 = ((INT32) dataptr[DCTSIZE*0] - (INT32) dataptr[DCTSIZE*4]) << CONST_BITS;

    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    /* Odd part per figure 8; the matrix is unitary and hence its
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
     */

    tmp0 = (INT32) dataptr[DCTSIZE*7];
    tmp1 = (INT32) dataptr[DCTSIZE*5];
    tmp2 = (INT32) dataptr[DCTSIZE*3];
    tmp3 = (INT32) dataptr[DCTSIZE*1];

    z1 = tmp0 + tmp3;
    z2 = tmp1 + tmp2;
    z3 = tmp0 + tmp2;
    z4 = tmp1 + tmp3;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    tmp0 += z1 + z3;
    tmp1 += z2 + z4;
    tmp2 += z2 + z3;
    tmp3 += z1 + z4;

    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */

    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
					   CONST_BITS+PASS1_BITS+3);
    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
					   CONST_BITS+PASS1_BITS+3);
    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
					   CONST_BITS+PASS1_BITS+3);
    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
					   CONST_BITS+PASS1_BITS+3);
    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
					   CONST_BITS+PASS1_BITS+3);
    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
					   CONST_BITS+PASS1_BITS+3);
    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
					   CONST_BITS+PASS1_BITS+3);
    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
					   CONST_BITS+PASS1_BITS+3);
    
    dataptr++;			/* advance pointer to next column */
  }
}