/* $Id: eval.c,v 1.4 2000/01/30 00:27:01 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 3.3 * * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * eval.c was written by * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de). * * My original implementation of evaluators was simplistic and didn't * compute surface normal vectors properly. Bernd and Volker applied * used more sophisticated methods to get better results. * * Thanks guys! */ #ifdef PC_HEADER #include "all.h" #else #include "glheader.h" #include "context.h" #include "eval.h" #include "macros.h" #include "mem.h" #include "mmath.h" #include "types.h" #include "vbcull.h" #include "vbfill.h" #include "vbxform.h" #endif static GLfloat inv_tab[MAX_EVAL_ORDER]; /* * Do one-time initialization for evaluators. */ void gl_init_eval( void ) { static int init_flag = 0; GLuint i; /* Compute a table of nCr (combination) values used by the * Bernstein polynomial generator. */ /* KW: precompute 1/x for useful x. */ if (init_flag==0) { for (i = 1 ; i < MAX_EVAL_ORDER ; i++) inv_tab[i] = 1.0 / i; } init_flag = 1; } /* * Horner scheme for Bezier curves * * Bezier curves can be computed via a Horner scheme. * Horner is numerically less stable than the de Casteljau * algorithm, but it is faster. For curves of degree n * the complexity of Horner is O(n) and de Casteljau is O(n^2). * Since stability is not important for displaying curve * points I decided to use the Horner scheme. * * A cubic Bezier curve with control points b0, b1, b2, b3 can be * written as * * (([3] [3] ) [3] ) [3] * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3 * * [n] * where s=1-t and the binomial coefficients [i]. These can * be computed iteratively using the identity: * * [n] [n ] [n] * [i] = (n-i+1)/i * [i-1] and [0] = 1 */ static void horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t, GLuint dim, GLuint order) { GLfloat s, powert; GLuint i, k, bincoeff; if(order >= 2) { bincoeff = order-1; s = 1.0-t; for(k=0; k constant curve */ { for(k=0; k uorder) { if(uorder >= 2) { GLfloat s, poweru; GLuint j, k, bincoeff; /* Compute the control polygon for the surface-curve in u-direction */ for(j=0; j cn defines a curve in v */ horner_bezier_curve(cn, out, v, dim, vorder); } else /* vorder <= uorder */ { if(vorder > 1) { GLuint i; /* Compute the control polygon for the surface-curve in u-direction */ for(i=0; i cn defines a curve in u */ horner_bezier_curve(cn, out, u, dim, uorder); } } /* * The direct de Casteljau algorithm is used when a point on the * surface and the tangent directions spanning the tangent plane * should be computed (this is needed to compute normals to the * surface). In this case the de Casteljau algorithm approach is * nicer because a point and the partial derivatives can be computed * at the same time. To get the correct tangent length du and dv * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1. * Since only the directions are needed, this scaling step is omitted. * * De Casteljau needs additional storage for uorder*vorder * values in the control net cn. */ static void de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, GLfloat u, GLfloat v, GLuint dim, GLuint uorder, GLuint vorder) { GLfloat *dcn = cn + uorder*vorder*dim; GLfloat us = 1.0-u, vs = 1.0-v; GLuint h, i, j, k; GLuint minorder = uorder < vorder ? uorder : vorder; GLuint uinc = vorder*dim; GLuint dcuinc = vorder; /* Each component is evaluated separately to save buffer space */ /* This does not drasticaly decrease the performance of the */ /* algorithm. If additional storage for (uorder-1)*(vorder-1) */ /* points would be available, the components could be accessed */ /* in the innermost loop which could lead to less cache misses. */ #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)] #define DCN(I, J) dcn[(I)*dcuinc+(J)] if(minorder < 3) { if(uorder==vorder) { for(k=0; k vorder ? uorder : vorder)*size; if(hsize>dsize) buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat)); else buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat)); /* compute the increment value for the u-loop */ uinc = ustride - vorder*vstride; if (buffer) for (i=0, p=buffer; i vorder ? uorder : vorder)*size; if(hsize>dsize) buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat)); else buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat)); /* compute the increment value for the u-loop */ uinc = ustride - vorder*vstride; if (buffer) for (i=0, p=buffer; iEvalMap.Map1Vertex3; break; case GL_MAP1_VERTEX_4: map1 = &ctx->EvalMap.Map1Vertex4; break; case GL_MAP1_INDEX: map1 = &ctx->EvalMap.Map1Index; break; case GL_MAP1_COLOR_4: map1 = &ctx->EvalMap.Map1Color4; break; case GL_MAP1_NORMAL: map1 = &ctx->EvalMap.Map1Normal; break; case GL_MAP1_TEXTURE_COORD_1: map1 = &ctx->EvalMap.Map1Texture1; break; case GL_MAP1_TEXTURE_COORD_2: map1 = &ctx->EvalMap.Map1Texture2; break; case GL_MAP1_TEXTURE_COORD_3: map1 = &ctx->EvalMap.Map1Texture3; break; case GL_MAP1_TEXTURE_COORD_4: map1 = &ctx->EvalMap.Map1Texture4; break; case GL_MAP2_VERTEX_3: map2 = &ctx->EvalMap.Map2Vertex3; break; case GL_MAP2_VERTEX_4: map2 = &ctx->EvalMap.Map2Vertex4; break; case GL_MAP2_INDEX: map2 = &ctx->EvalMap.Map2Index; break; case GL_MAP2_COLOR_4: map2 = &ctx->EvalMap.Map2Color4; break; case GL_MAP2_NORMAL: map2 = &ctx->EvalMap.Map2Normal; break; case GL_MAP2_TEXTURE_COORD_1: map2 = &ctx->EvalMap.Map2Texture1; break; case GL_MAP2_TEXTURE_COORD_2: map2 = &ctx->EvalMap.Map2Texture2; break; case GL_MAP2_TEXTURE_COORD_3: map2 = &ctx->EvalMap.Map2Texture3; break; case GL_MAP2_TEXTURE_COORD_4: map2 = &ctx->EvalMap.Map2Texture4; break; default: gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" ); return; } if (map1) { if (data==map1->Points) { /* The control points in the display list are currently */ /* being used so we can mark them as discard-able. */ map1->Retain = GL_FALSE; } else { /* The control points in the display list are not currently */ /* being used. */ FREE( data ); } } if (map2) { if (data==map2->Points) { /* The control points in the display list are currently */ /* being used so we can mark them as discard-able. */ map2->Retain = GL_FALSE; } else { /* The control points in the display list are not currently */ /* being used. */ FREE( data ); } } } #endif /**********************************************************************/ /*** API entry points ***/ /**********************************************************************/ /* * This does the work of glMap1[fd]. */ static void map1(GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder, const GLvoid *points, GLenum type ) { GET_CURRENT_CONTEXT(ctx); GLint k; GLfloat *pnts; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap1"); assert(type == GL_FLOAT || type == GL_DOUBLE); if (u1 == u2) { gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" ); return; } if (uorder < 1 || uorder > MAX_EVAL_ORDER) { gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" ); return; } if (!points) { gl_error( ctx, GL_INVALID_VALUE, "glMap1(points)" ); return; } k = _mesa_evaluator_components( target ); if (k == 0) { gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" ); } if (ustride < k) { gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" ); return; } /* make copy of the control points */ if (type == GL_FLOAT) pnts = gl_copy_map_points1f(target, ustride, uorder, (GLfloat*) points); else pnts = gl_copy_map_points1d(target, ustride, uorder, (GLdouble*) points); switch (target) { case GL_MAP1_VERTEX_3: ctx->EvalMap.Map1Vertex3.Order = uorder; ctx->EvalMap.Map1Vertex3.u1 = u1; ctx->EvalMap.Map1Vertex3.u2 = u2; ctx->EvalMap.Map1Vertex3.du = 1.0 / (u2 - u1); if (ctx->EvalMap.Map1Vertex3.Points) FREE( ctx->EvalMap.Map1Vertex3.Points ); ctx->EvalMap.Map1Vertex3.Points = pnts; break; case GL_MAP1_VERTEX_4: ctx->EvalMap.Map1Vertex4.Order = uorder; ctx->EvalMap.Map1Vertex4.u1 = u1; ctx->EvalMap.Map1Vertex4.u2 = u2; ctx->EvalMap.Map1Vertex4.du = 1.0 / (u2 - u1); if (ctx->EvalMap.Map1Vertex4.Points) FREE( ctx->EvalMap.Map1Vertex4.Points ); ctx->EvalMap.Map1Vertex4.Points = pnts; break; case GL_MAP1_INDEX: ctx->EvalMap.Map1Index.Order = uorder; ctx->EvalMap.Map1Index.u1 = u1; ctx->EvalMap.Map1Index.u2 = u2; ctx->EvalMap.Map1Index.du = 1.0 / (u2 - u1); if (ctx->EvalMap.Map1Index.Points) FREE( ctx->EvalMap.Map1Index.Points ); ctx->EvalMap.Map1Index.Points = pnts; break; case GL_MAP1_COLOR_4: ctx->EvalMap.Map1Color4.Order = uorder; ctx->EvalMap.Map1Color4.u1 = u1; ctx->EvalMap.Map1Color4.u2 = u2; ctx->EvalMap.Map1Color4.du = 1.0 / (u2 - u1); if (ctx->EvalMap.Map1Color4.Points) FREE( ctx->EvalMap.Map1Color4.Points ); ctx->EvalMap.Map1Color4.Points = pnts; break; case GL_MAP1_NORMAL: ctx->EvalMap.Map1Normal.Order = uorder; ctx->EvalMap.Map1Normal.u1 = u1; ctx->EvalMap.Map1Normal.u2 = u2; ctx->EvalMap.Map1Normal.du = 1.0 / (u2 - u1); if (ctx->EvalMap.Map1Normal.Points) FREE( ctx->EvalMap.Map1Normal.Points ); ctx->EvalMap.Map1Normal.Points = pnts; break; case GL_MAP1_TEXTURE_COORD_1: ctx->EvalMap.Map1Texture1.Order = uorder; ctx->EvalMap.Map1Texture1.u1 = u1; ctx->EvalMap.Map1Texture1.u2 = u2; ctx->EvalMap.Map1Texture1.du = 1.0 / (u2 - u1); if (ctx->EvalMap.Map1Texture1.Points) FREE( ctx->EvalMap.Map1Texture1.Points ); ctx->EvalMap.Map1Texture1.Points = pnts; break; case GL_MAP1_TEXTURE_COORD_2: ctx->EvalMap.Map1Texture2.Order = uorder; ctx->EvalMap.Map1Texture2.u1 = u1; ctx->EvalMap.Map1Texture2.u2 = u2; ctx->EvalMap.Map1Texture2.du = 1.0 / (u2 - u1); if (ctx->EvalMap.Map1Texture2.Points) FREE( ctx->EvalMap.Map1Texture2.Points ); ctx->EvalMap.Map1Texture2.Points = pnts; break; case GL_MAP1_TEXTURE_COORD_3: ctx->EvalMap.Map1Texture3.Order = uorder; ctx->EvalMap.Map1Texture3.u1 = u1; ctx->EvalMap.Map1Texture3.u2 = u2; ctx->EvalMap.Map1Texture3.du = 1.0 / (u2 - u1); if (ctx->EvalMap.Map1Texture3.Points) FREE( ctx->EvalMap.Map1Texture3.Points ); ctx->EvalMap.Map1Texture3.Points = pnts; break; case GL_MAP1_TEXTURE_COORD_4: ctx->EvalMap.Map1Texture4.Order = uorder; ctx->EvalMap.Map1Texture4.u1 = u1; ctx->EvalMap.Map1Texture4.u2 = u2; ctx->EvalMap.Map1Texture4.du = 1.0 / (u2 - u1); if (ctx->EvalMap.Map1Texture4.Points) FREE( ctx->EvalMap.Map1Texture4.Points ); ctx->EvalMap.Map1Texture4.Points = pnts; break; default: gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" ); } } void _mesa_Map1f( GLenum target, GLfloat u1, GLfloat u2, GLint stride, GLint order, const GLfloat *points ) { map1(target, u1, u2, stride, order, points, GL_FLOAT); } void _mesa_Map1d( GLenum target, GLdouble u1, GLdouble u2, GLint stride, GLint order, const GLdouble *points ) { map1(target, u1, u2, stride, order, points, GL_DOUBLE); } static void map2( GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder, GLfloat v1, GLfloat v2, GLint vstride, GLint vorder, const GLvoid *points, GLenum type ) { GET_CURRENT_CONTEXT(ctx); GLint k; GLfloat *pnts; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap2"); if (u1==u2) { gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" ); return; } if (v1==v2) { gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" ); return; } if (uorder<1 || uorder>MAX_EVAL_ORDER) { gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" ); return; } if (vorder<1 || vorder>MAX_EVAL_ORDER) { gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" ); return; } k = _mesa_evaluator_components( target ); if (k==0) { gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" ); } if (ustride < k) { gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" ); return; } if (vstride < k) { gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" ); return; } /* make copy of the control points */ if (type == GL_FLOAT) pnts = gl_copy_map_points2f(target, ustride, uorder, vstride, vorder, (GLfloat*) points); else pnts = gl_copy_map_points2d(target, ustride, uorder, vstride, vorder, (GLdouble*) points); switch (target) { case GL_MAP2_VERTEX_3: ctx->EvalMap.Map2Vertex3.Uorder = uorder; ctx->EvalMap.Map2Vertex3.u1 = u1; ctx->EvalMap.Map2Vertex3.u2 = u2; ctx->EvalMap.Map2Vertex3.du = 1.0 / (u2 - u1); ctx->EvalMap.Map2Vertex3.Vorder = vorder; ctx->EvalMap.Map2Vertex3.v1 = v1; ctx->EvalMap.Map2Vertex3.v2 = v2; ctx->EvalMap.Map2Vertex3.dv = 1.0 / (v2 - v1); if (ctx->EvalMap.Map2Vertex3.Points) FREE( ctx->EvalMap.Map2Vertex3.Points ); ctx->EvalMap.Map2Vertex3.Points = pnts; break; case GL_MAP2_VERTEX_4: ctx->EvalMap.Map2Vertex4.Uorder = uorder; ctx->EvalMap.Map2Vertex4.u1 = u1; ctx->EvalMap.Map2Vertex4.u2 = u2; ctx->EvalMap.Map2Vertex4.du = 1.0 / (u2 - u1); ctx->EvalMap.Map2Vertex4.Vorder = vorder; ctx->EvalMap.Map2Vertex4.v1 = v1; ctx->EvalMap.Map2Vertex4.v2 = v2; ctx->EvalMap.Map2Vertex4.dv = 1.0 / (v2 - v1); if (ctx->EvalMap.Map2Vertex4.Points) FREE( ctx->EvalMap.Map2Vertex4.Points ); ctx->EvalMap.Map2Vertex4.Points = pnts; break; case GL_MAP2_INDEX: ctx->EvalMap.Map2Index.Uorder = uorder; ctx->EvalMap.Map2Index.u1 = u1; ctx->EvalMap.Map2Index.u2 = u2; ctx->EvalMap.Map2Index.du = 1.0 / (u2 - u1); ctx->EvalMap.Map2Index.Vorder = vorder; ctx->EvalMap.Map2Index.v1 = v1; ctx->EvalMap.Map2Index.v2 = v2; ctx->EvalMap.Map2Index.dv = 1.0 / (v2 - v1); if (ctx->EvalMap.Map2Index.Points) FREE( ctx->EvalMap.Map2Index.Points ); ctx->EvalMap.Map2Index.Points = pnts; break; case GL_MAP2_COLOR_4: ctx->EvalMap.Map2Color4.Uorder = uorder; ctx->EvalMap.Map2Color4.u1 = u1; ctx->EvalMap.Map2Color4.u2 = u2; ctx->EvalMap.Map2Color4.du = 1.0 / (u2 - u1); ctx->EvalMap.Map2Color4.Vorder = vorder; ctx->EvalMap.Map2Color4.v1 = v1; ctx->EvalMap.Map2Color4.v2 = v2; ctx->EvalMap.Map2Color4.dv = 1.0 / (v2 - v1); if (ctx->EvalMap.Map2Color4.Points) FREE( ctx->EvalMap.Map2Color4.Points ); ctx->EvalMap.Map2Color4.Points = pnts; break; case GL_MAP2_NORMAL: ctx->EvalMap.Map2Normal.Uorder = uorder; ctx->EvalMap.Map2Normal.u1 = u1; ctx->EvalMap.Map2Normal.u2 = u2; ctx->EvalMap.Map2Normal.du = 1.0 / (u2 - u1); ctx->EvalMap.Map2Normal.Vorder = vorder; ctx->EvalMap.Map2Normal.v1 = v1; ctx->EvalMap.Map2Normal.v2 = v2; ctx->EvalMap.Map2Normal.dv = 1.0 / (v2 - v1); if (ctx->EvalMap.Map2Normal.Points) FREE( ctx->EvalMap.Map2Normal.Points ); ctx->EvalMap.Map2Normal.Points = pnts; break; case GL_MAP2_TEXTURE_COORD_1: ctx->EvalMap.Map2Texture1.Uorder = uorder; ctx->EvalMap.Map2Texture1.u1 = u1; ctx->EvalMap.Map2Texture1.u2 = u2; ctx->EvalMap.Map2Texture1.du = 1.0 / (u2 - u1); ctx->EvalMap.Map2Texture1.Vorder = vorder; ctx->EvalMap.Map2Texture1.v1 = v1; ctx->EvalMap.Map2Texture1.v2 = v2; ctx->EvalMap.Map2Texture1.dv = 1.0 / (v2 - v1); if (ctx->EvalMap.Map2Texture1.Points) FREE( ctx->EvalMap.Map2Texture1.Points ); ctx->EvalMap.Map2Texture1.Points = pnts; break; case GL_MAP2_TEXTURE_COORD_2: ctx->EvalMap.Map2Texture2.Uorder = uorder; ctx->EvalMap.Map2Texture2.u1 = u1; ctx->EvalMap.Map2Texture2.u2 = u2; ctx->EvalMap.Map2Texture2.du = 1.0 / (u2 - u1); ctx->EvalMap.Map2Texture2.Vorder = vorder; ctx->EvalMap.Map2Texture2.v1 = v1; ctx->EvalMap.Map2Texture2.v2 = v2; ctx->EvalMap.Map2Texture2.dv = 1.0 / (v2 - v1); if (ctx->EvalMap.Map2Texture2.Points) FREE( ctx->EvalMap.Map2Texture2.Points ); ctx->EvalMap.Map2Texture2.Points = pnts; break; case GL_MAP2_TEXTURE_COORD_3: ctx->EvalMap.Map2Texture3.Uorder = uorder; ctx->EvalMap.Map2Texture3.u1 = u1; ctx->EvalMap.Map2Texture3.u2 = u2; ctx->EvalMap.Map2Texture3.du = 1.0 / (u2 - u1); ctx->EvalMap.Map2Texture3.Vorder = vorder; ctx->EvalMap.Map2Texture3.v1 = v1; ctx->EvalMap.Map2Texture3.v2 = v2; ctx->EvalMap.Map2Texture3.dv = 1.0 / (v2 - v1); if (ctx->EvalMap.Map2Texture3.Points) FREE( ctx->EvalMap.Map2Texture3.Points ); ctx->EvalMap.Map2Texture3.Points = pnts; break; case GL_MAP2_TEXTURE_COORD_4: ctx->EvalMap.Map2Texture4.Uorder = uorder; ctx->EvalMap.Map2Texture4.u1 = u1; ctx->EvalMap.Map2Texture4.u2 = u2; ctx->EvalMap.Map2Texture4.du = 1.0 / (u2 - u1); ctx->EvalMap.Map2Texture4.Vorder = vorder; ctx->EvalMap.Map2Texture4.v1 = v1; ctx->EvalMap.Map2Texture4.v2 = v2; ctx->EvalMap.Map2Texture4.dv = 1.0 / (v2 - v1); if (ctx->EvalMap.Map2Texture4.Points) FREE( ctx->EvalMap.Map2Texture4.Points ); ctx->EvalMap.Map2Texture4.Points = pnts; break; default: gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" ); } } void _mesa_Map2f( GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder, GLfloat v1, GLfloat v2, GLint vstride, GLint vorder, const GLfloat *points) { map2(target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, points, GL_FLOAT); } void _mesa_Map2d( GLenum target, GLdouble u1, GLdouble u2, GLint ustride, GLint uorder, GLdouble v1, GLdouble v2, GLint vstride, GLint vorder, const GLdouble *points ) { map2(target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, points, GL_DOUBLE); } void _mesa_GetMapdv( GLenum target, GLenum query, GLdouble *v ) { GET_CURRENT_CONTEXT(ctx); GLint i, n; GLfloat *data; switch (query) { case GL_COEFF: switch (target) { case GL_MAP1_COLOR_4: data = ctx->EvalMap.Map1Color4.Points; n = ctx->EvalMap.Map1Color4.Order * 4; break; case GL_MAP1_INDEX: data = ctx->EvalMap.Map1Index.Points; n = ctx->EvalMap.Map1Index.Order; break; case GL_MAP1_NORMAL: data = ctx->EvalMap.Map1Normal.Points; n = ctx->EvalMap.Map1Normal.Order * 3; break; case GL_MAP1_TEXTURE_COORD_1: data = ctx->EvalMap.Map1Texture1.Points; n = ctx->EvalMap.Map1Texture1.Order * 1; break; case GL_MAP1_TEXTURE_COORD_2: data = ctx->EvalMap.Map1Texture2.Points; n = ctx->EvalMap.Map1Texture2.Order * 2; break; case GL_MAP1_TEXTURE_COORD_3: data = ctx->EvalMap.Map1Texture3.Points; n = ctx->EvalMap.Map1Texture3.Order * 3; break; case GL_MAP1_TEXTURE_COORD_4: data = ctx->EvalMap.Map1Texture4.Points; n = ctx->EvalMap.Map1Texture4.Order * 4; break; case GL_MAP1_VERTEX_3: data = ctx->EvalMap.Map1Vertex3.Points; n = ctx->EvalMap.Map1Vertex3.Order * 3; break; case GL_MAP1_VERTEX_4: data = ctx->EvalMap.Map1Vertex4.Points; n = ctx->EvalMap.Map1Vertex4.Order * 4; break; case GL_MAP2_COLOR_4: data = ctx->EvalMap.Map2Color4.Points; n = ctx->EvalMap.Map2Color4.Uorder * ctx->EvalMap.Map2Color4.Vorder * 4; break; case GL_MAP2_INDEX: data = ctx->EvalMap.Map2Index.Points; n = ctx->EvalMap.Map2Index.Uorder * ctx->EvalMap.Map2Index.Vorder; break; case GL_MAP2_NORMAL: data = ctx->EvalMap.Map2Normal.Points; n = ctx->EvalMap.Map2Normal.Uorder * ctx->EvalMap.Map2Normal.Vorder * 3; break; case GL_MAP2_TEXTURE_COORD_1: data = ctx->EvalMap.Map2Texture1.Points; n = ctx->EvalMap.Map2Texture1.Uorder * ctx->EvalMap.Map2Texture1.Vorder * 1; break; case GL_MAP2_TEXTURE_COORD_2: data = ctx->EvalMap.Map2Texture2.Points; n = ctx->EvalMap.Map2Texture2.Uorder * ctx->EvalMap.Map2Texture2.Vorder * 2; break; case GL_MAP2_TEXTURE_COORD_3: data = ctx->EvalMap.Map2Texture3.Points; n = ctx->EvalMap.Map2Texture3.Uorder * ctx->EvalMap.Map2Texture3.Vorder * 3; break; case GL_MAP2_TEXTURE_COORD_4: data = ctx->EvalMap.Map2Texture4.Points; n = ctx->EvalMap.Map2Texture4.Uorder * ctx->EvalMap.Map2Texture4.Vorder * 4; break; case GL_MAP2_VERTEX_3: data = ctx->EvalMap.Map2Vertex3.Points; n = ctx->EvalMap.Map2Vertex3.Uorder * ctx->EvalMap.Map2Vertex3.Vorder * 3; break; case GL_MAP2_VERTEX_4: data = ctx->EvalMap.Map2Vertex4.Points; n = ctx->EvalMap.Map2Vertex4.Uorder * ctx->EvalMap.Map2Vertex4.Vorder * 4; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" ); return; } if (data) { for (i=0;iEvalMap.Map1Color4.Order; break; case GL_MAP1_INDEX: *v = ctx->EvalMap.Map1Index.Order; break; case GL_MAP1_NORMAL: *v = ctx->EvalMap.Map1Normal.Order; break; case GL_MAP1_TEXTURE_COORD_1: *v = ctx->EvalMap.Map1Texture1.Order; break; case GL_MAP1_TEXTURE_COORD_2: *v = ctx->EvalMap.Map1Texture2.Order; break; case GL_MAP1_TEXTURE_COORD_3: *v = ctx->EvalMap.Map1Texture3.Order; break; case GL_MAP1_TEXTURE_COORD_4: *v = ctx->EvalMap.Map1Texture4.Order; break; case GL_MAP1_VERTEX_3: *v = ctx->EvalMap.Map1Vertex3.Order; break; case GL_MAP1_VERTEX_4: *v = ctx->EvalMap.Map1Vertex4.Order; break; case GL_MAP2_COLOR_4: v[0] = ctx->EvalMap.Map2Color4.Uorder; v[1] = ctx->EvalMap.Map2Color4.Vorder; break; case GL_MAP2_INDEX: v[0] = ctx->EvalMap.Map2Index.Uorder; v[1] = ctx->EvalMap.Map2Index.Vorder; break; case GL_MAP2_NORMAL: v[0] = ctx->EvalMap.Map2Normal.Uorder; v[1] = ctx->EvalMap.Map2Normal.Vorder; break; case GL_MAP2_TEXTURE_COORD_1: v[0] = ctx->EvalMap.Map2Texture1.Uorder; v[1] = ctx->EvalMap.Map2Texture1.Vorder; break; case GL_MAP2_TEXTURE_COORD_2: v[0] = ctx->EvalMap.Map2Texture2.Uorder; v[1] = ctx->EvalMap.Map2Texture2.Vorder; break; case GL_MAP2_TEXTURE_COORD_3: v[0] = ctx->EvalMap.Map2Texture3.Uorder; v[1] = ctx->EvalMap.Map2Texture3.Vorder; break; case GL_MAP2_TEXTURE_COORD_4: v[0] = ctx->EvalMap.Map2Texture4.Uorder; v[1] = ctx->EvalMap.Map2Texture4.Vorder; break; case GL_MAP2_VERTEX_3: v[0] = ctx->EvalMap.Map2Vertex3.Uorder; v[1] = ctx->EvalMap.Map2Vertex3.Vorder; break; case GL_MAP2_VERTEX_4: v[0] = ctx->EvalMap.Map2Vertex4.Uorder; v[1] = ctx->EvalMap.Map2Vertex4.Vorder; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" ); return; } break; case GL_DOMAIN: switch (target) { case GL_MAP1_COLOR_4: v[0] = ctx->EvalMap.Map1Color4.u1; v[1] = ctx->EvalMap.Map1Color4.u2; break; case GL_MAP1_INDEX: v[0] = ctx->EvalMap.Map1Index.u1; v[1] = ctx->EvalMap.Map1Index.u2; break; case GL_MAP1_NORMAL: v[0] = ctx->EvalMap.Map1Normal.u1; v[1] = ctx->EvalMap.Map1Normal.u2; break; case GL_MAP1_TEXTURE_COORD_1: v[0] = ctx->EvalMap.Map1Texture1.u1; v[1] = ctx->EvalMap.Map1Texture1.u2; break; case GL_MAP1_TEXTURE_COORD_2: v[0] = ctx->EvalMap.Map1Texture2.u1; v[1] = ctx->EvalMap.Map1Texture2.u2; break; case GL_MAP1_TEXTURE_COORD_3: v[0] = ctx->EvalMap.Map1Texture3.u1; v[1] = ctx->EvalMap.Map1Texture3.u2; break; case GL_MAP1_TEXTURE_COORD_4: v[0] = ctx->EvalMap.Map1Texture4.u1; v[1] = ctx->EvalMap.Map1Texture4.u2; break; case GL_MAP1_VERTEX_3: v[0] = ctx->EvalMap.Map1Vertex3.u1; v[1] = ctx->EvalMap.Map1Vertex3.u2; break; case GL_MAP1_VERTEX_4: v[0] = ctx->EvalMap.Map1Vertex4.u1; v[1] = ctx->EvalMap.Map1Vertex4.u2; break; case GL_MAP2_COLOR_4: v[0] = ctx->EvalMap.Map2Color4.u1; v[1] = ctx->EvalMap.Map2Color4.u2; v[2] = ctx->EvalMap.Map2Color4.v1; v[3] = ctx->EvalMap.Map2Color4.v2; break; case GL_MAP2_INDEX: v[0] = ctx->EvalMap.Map2Index.u1; v[1] = ctx->EvalMap.Map2Index.u2; v[2] = ctx->EvalMap.Map2Index.v1; v[3] = ctx->EvalMap.Map2Index.v2; break; case GL_MAP2_NORMAL: v[0] = ctx->EvalMap.Map2Normal.u1; v[1] = ctx->EvalMap.Map2Normal.u2; v[2] = ctx->EvalMap.Map2Normal.v1; v[3] = ctx->EvalMap.Map2Normal.v2; break; case GL_MAP2_TEXTURE_COORD_1: v[0] = ctx->EvalMap.Map2Texture1.u1; v[1] = ctx->EvalMap.Map2Texture1.u2; v[2] = ctx->EvalMap.Map2Texture1.v1; v[3] = ctx->EvalMap.Map2Texture1.v2; break; case GL_MAP2_TEXTURE_COORD_2: v[0] = ctx->EvalMap.Map2Texture2.u1; v[1] = ctx->EvalMap.Map2Texture2.u2; v[2] = ctx->EvalMap.Map2Texture2.v1; v[3] = ctx->EvalMap.Map2Texture2.v2; break; case GL_MAP2_TEXTURE_COORD_3: v[0] = ctx->EvalMap.Map2Texture3.u1; v[1] = ctx->EvalMap.Map2Texture3.u2; v[2] = ctx->EvalMap.Map2Texture3.v1; v[3] = ctx->EvalMap.Map2Texture3.v2; break; case GL_MAP2_TEXTURE_COORD_4: v[0] = ctx->EvalMap.Map2Texture4.u1; v[1] = ctx->EvalMap.Map2Texture4.u2; v[2] = ctx->EvalMap.Map2Texture4.v1; v[3] = ctx->EvalMap.Map2Texture4.v2; break; case GL_MAP2_VERTEX_3: v[0] = ctx->EvalMap.Map2Vertex3.u1; v[1] = ctx->EvalMap.Map2Vertex3.u2; v[2] = ctx->EvalMap.Map2Vertex3.v1; v[3] = ctx->EvalMap.Map2Vertex3.v2; break; case GL_MAP2_VERTEX_4: v[0] = ctx->EvalMap.Map2Vertex4.u1; v[1] = ctx->EvalMap.Map2Vertex4.u2; v[2] = ctx->EvalMap.Map2Vertex4.v1; v[3] = ctx->EvalMap.Map2Vertex4.v2; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" ); } break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" ); } } void _mesa_GetMapfv( GLenum target, GLenum query, GLfloat *v ) { GET_CURRENT_CONTEXT(ctx); GLint i, n; GLfloat *data; switch (query) { case GL_COEFF: switch (target) { case GL_MAP1_COLOR_4: data = ctx->EvalMap.Map1Color4.Points; n = ctx->EvalMap.Map1Color4.Order * 4; break; case GL_MAP1_INDEX: data = ctx->EvalMap.Map1Index.Points; n = ctx->EvalMap.Map1Index.Order; break; case GL_MAP1_NORMAL: data = ctx->EvalMap.Map1Normal.Points; n = ctx->EvalMap.Map1Normal.Order * 3; break; case GL_MAP1_TEXTURE_COORD_1: data = ctx->EvalMap.Map1Texture1.Points; n = ctx->EvalMap.Map1Texture1.Order * 1; break; case GL_MAP1_TEXTURE_COORD_2: data = ctx->EvalMap.Map1Texture2.Points; n = ctx->EvalMap.Map1Texture2.Order * 2; break; case GL_MAP1_TEXTURE_COORD_3: data = ctx->EvalMap.Map1Texture3.Points; n = ctx->EvalMap.Map1Texture3.Order * 3; break; case GL_MAP1_TEXTURE_COORD_4: data = ctx->EvalMap.Map1Texture4.Points; n = ctx->EvalMap.Map1Texture4.Order * 4; break; case GL_MAP1_VERTEX_3: data = ctx->EvalMap.Map1Vertex3.Points; n = ctx->EvalMap.Map1Vertex3.Order * 3; break; case GL_MAP1_VERTEX_4: data = ctx->EvalMap.Map1Vertex4.Points; n = ctx->EvalMap.Map1Vertex4.Order * 4; break; case GL_MAP2_COLOR_4: data = ctx->EvalMap.Map2Color4.Points; n = ctx->EvalMap.Map2Color4.Uorder * ctx->EvalMap.Map2Color4.Vorder * 4; break; case GL_MAP2_INDEX: data = ctx->EvalMap.Map2Index.Points; n = ctx->EvalMap.Map2Index.Uorder * ctx->EvalMap.Map2Index.Vorder; break; case GL_MAP2_NORMAL: data = ctx->EvalMap.Map2Normal.Points; n = ctx->EvalMap.Map2Normal.Uorder * ctx->EvalMap.Map2Normal.Vorder * 3; break; case GL_MAP2_TEXTURE_COORD_1: data = ctx->EvalMap.Map2Texture1.Points; n = ctx->EvalMap.Map2Texture1.Uorder * ctx->EvalMap.Map2Texture1.Vorder * 1; break; case GL_MAP2_TEXTURE_COORD_2: data = ctx->EvalMap.Map2Texture2.Points; n = ctx->EvalMap.Map2Texture2.Uorder * ctx->EvalMap.Map2Texture2.Vorder * 2; break; case GL_MAP2_TEXTURE_COORD_3: data = ctx->EvalMap.Map2Texture3.Points; n = ctx->EvalMap.Map2Texture3.Uorder * ctx->EvalMap.Map2Texture3.Vorder * 3; break; case GL_MAP2_TEXTURE_COORD_4: data = ctx->EvalMap.Map2Texture4.Points; n = ctx->EvalMap.Map2Texture4.Uorder * ctx->EvalMap.Map2Texture4.Vorder * 4; break; case GL_MAP2_VERTEX_3: data = ctx->EvalMap.Map2Vertex3.Points; n = ctx->EvalMap.Map2Vertex3.Uorder * ctx->EvalMap.Map2Vertex3.Vorder * 3; break; case GL_MAP2_VERTEX_4: data = ctx->EvalMap.Map2Vertex4.Points; n = ctx->EvalMap.Map2Vertex4.Uorder * ctx->EvalMap.Map2Vertex4.Vorder * 4; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" ); return; } if (data) { for (i=0;iEvalMap.Map1Color4.Order; break; case GL_MAP1_INDEX: *v = ctx->EvalMap.Map1Index.Order; break; case GL_MAP1_NORMAL: *v = ctx->EvalMap.Map1Normal.Order; break; case GL_MAP1_TEXTURE_COORD_1: *v = ctx->EvalMap.Map1Texture1.Order; break; case GL_MAP1_TEXTURE_COORD_2: *v = ctx->EvalMap.Map1Texture2.Order; break; case GL_MAP1_TEXTURE_COORD_3: *v = ctx->EvalMap.Map1Texture3.Order; break; case GL_MAP1_TEXTURE_COORD_4: *v = ctx->EvalMap.Map1Texture4.Order; break; case GL_MAP1_VERTEX_3: *v = ctx->EvalMap.Map1Vertex3.Order; break; case GL_MAP1_VERTEX_4: *v = ctx->EvalMap.Map1Vertex4.Order; break; case GL_MAP2_COLOR_4: v[0] = ctx->EvalMap.Map2Color4.Uorder; v[1] = ctx->EvalMap.Map2Color4.Vorder; break; case GL_MAP2_INDEX: v[0] = ctx->EvalMap.Map2Index.Uorder; v[1] = ctx->EvalMap.Map2Index.Vorder; break; case GL_MAP2_NORMAL: v[0] = ctx->EvalMap.Map2Normal.Uorder; v[1] = ctx->EvalMap.Map2Normal.Vorder; break; case GL_MAP2_TEXTURE_COORD_1: v[0] = ctx->EvalMap.Map2Texture1.Uorder; v[1] = ctx->EvalMap.Map2Texture1.Vorder; break; case GL_MAP2_TEXTURE_COORD_2: v[0] = ctx->EvalMap.Map2Texture2.Uorder; v[1] = ctx->EvalMap.Map2Texture2.Vorder; break; case GL_MAP2_TEXTURE_COORD_3: v[0] = ctx->EvalMap.Map2Texture3.Uorder; v[1] = ctx->EvalMap.Map2Texture3.Vorder; break; case GL_MAP2_TEXTURE_COORD_4: v[0] = ctx->EvalMap.Map2Texture4.Uorder; v[1] = ctx->EvalMap.Map2Texture4.Vorder; break; case GL_MAP2_VERTEX_3: v[0] = ctx->EvalMap.Map2Vertex3.Uorder; v[1] = ctx->EvalMap.Map2Vertex3.Vorder; break; case GL_MAP2_VERTEX_4: v[0] = ctx->EvalMap.Map2Vertex4.Uorder; v[1] = ctx->EvalMap.Map2Vertex4.Vorder; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" ); return; } break; case GL_DOMAIN: switch (target) { case GL_MAP1_COLOR_4: v[0] = ctx->EvalMap.Map1Color4.u1; v[1] = ctx->EvalMap.Map1Color4.u2; break; case GL_MAP1_INDEX: v[0] = ctx->EvalMap.Map1Index.u1; v[1] = ctx->EvalMap.Map1Index.u2; break; case GL_MAP1_NORMAL: v[0] = ctx->EvalMap.Map1Normal.u1; v[1] = ctx->EvalMap.Map1Normal.u2; break; case GL_MAP1_TEXTURE_COORD_1: v[0] = ctx->EvalMap.Map1Texture1.u1; v[1] = ctx->EvalMap.Map1Texture1.u2; break; case GL_MAP1_TEXTURE_COORD_2: v[0] = ctx->EvalMap.Map1Texture2.u1; v[1] = ctx->EvalMap.Map1Texture2.u2; break; case GL_MAP1_TEXTURE_COORD_3: v[0] = ctx->EvalMap.Map1Texture3.u1; v[1] = ctx->EvalMap.Map1Texture3.u2; break; case GL_MAP1_TEXTURE_COORD_4: v[0] = ctx->EvalMap.Map1Texture4.u1; v[1] = ctx->EvalMap.Map1Texture4.u2; break; case GL_MAP1_VERTEX_3: v[0] = ctx->EvalMap.Map1Vertex3.u1; v[1] = ctx->EvalMap.Map1Vertex3.u2; break; case GL_MAP1_VERTEX_4: v[0] = ctx->EvalMap.Map1Vertex4.u1; v[1] = ctx->EvalMap.Map1Vertex4.u2; break; case GL_MAP2_COLOR_4: v[0] = ctx->EvalMap.Map2Color4.u1; v[1] = ctx->EvalMap.Map2Color4.u2; v[2] = ctx->EvalMap.Map2Color4.v1; v[3] = ctx->EvalMap.Map2Color4.v2; break; case GL_MAP2_INDEX: v[0] = ctx->EvalMap.Map2Index.u1; v[1] = ctx->EvalMap.Map2Index.u2; v[2] = ctx->EvalMap.Map2Index.v1; v[3] = ctx->EvalMap.Map2Index.v2; break; case GL_MAP2_NORMAL: v[0] = ctx->EvalMap.Map2Normal.u1; v[1] = ctx->EvalMap.Map2Normal.u2; v[2] = ctx->EvalMap.Map2Normal.v1; v[3] = ctx->EvalMap.Map2Normal.v2; break; case GL_MAP2_TEXTURE_COORD_1: v[0] = ctx->EvalMap.Map2Texture1.u1; v[1] = ctx->EvalMap.Map2Texture1.u2; v[2] = ctx->EvalMap.Map2Texture1.v1; v[3] = ctx->EvalMap.Map2Texture1.v2; break; case GL_MAP2_TEXTURE_COORD_2: v[0] = ctx->EvalMap.Map2Texture2.u1; v[1] = ctx->EvalMap.Map2Texture2.u2; v[2] = ctx->EvalMap.Map2Texture2.v1; v[3] = ctx->EvalMap.Map2Texture2.v2; break; case GL_MAP2_TEXTURE_COORD_3: v[0] = ctx->EvalMap.Map2Texture3.u1; v[1] = ctx->EvalMap.Map2Texture3.u2; v[2] = ctx->EvalMap.Map2Texture3.v1; v[3] = ctx->EvalMap.Map2Texture3.v2; break; case GL_MAP2_TEXTURE_COORD_4: v[0] = ctx->EvalMap.Map2Texture4.u1; v[1] = ctx->EvalMap.Map2Texture4.u2; v[2] = ctx->EvalMap.Map2Texture4.v1; v[3] = ctx->EvalMap.Map2Texture4.v2; break; case GL_MAP2_VERTEX_3: v[0] = ctx->EvalMap.Map2Vertex3.u1; v[1] = ctx->EvalMap.Map2Vertex3.u2; v[2] = ctx->EvalMap.Map2Vertex3.v1; v[3] = ctx->EvalMap.Map2Vertex3.v2; break; case GL_MAP2_VERTEX_4: v[0] = ctx->EvalMap.Map2Vertex4.u1; v[1] = ctx->EvalMap.Map2Vertex4.u2; v[2] = ctx->EvalMap.Map2Vertex4.v1; v[3] = ctx->EvalMap.Map2Vertex4.v2; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" ); } break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" ); } } void _mesa_GetMapiv( GLenum target, GLenum query, GLint *v ) { GET_CURRENT_CONTEXT(ctx); GLuint i, n; GLfloat *data; switch (query) { case GL_COEFF: switch (target) { case GL_MAP1_COLOR_4: data = ctx->EvalMap.Map1Color4.Points; n = ctx->EvalMap.Map1Color4.Order * 4; break; case GL_MAP1_INDEX: data = ctx->EvalMap.Map1Index.Points; n = ctx->EvalMap.Map1Index.Order; break; case GL_MAP1_NORMAL: data = ctx->EvalMap.Map1Normal.Points; n = ctx->EvalMap.Map1Normal.Order * 3; break; case GL_MAP1_TEXTURE_COORD_1: data = ctx->EvalMap.Map1Texture1.Points; n = ctx->EvalMap.Map1Texture1.Order * 1; break; case GL_MAP1_TEXTURE_COORD_2: data = ctx->EvalMap.Map1Texture2.Points; n = ctx->EvalMap.Map1Texture2.Order * 2; break; case GL_MAP1_TEXTURE_COORD_3: data = ctx->EvalMap.Map1Texture3.Points; n = ctx->EvalMap.Map1Texture3.Order * 3; break; case GL_MAP1_TEXTURE_COORD_4: data = ctx->EvalMap.Map1Texture4.Points; n = ctx->EvalMap.Map1Texture4.Order * 4; break; case GL_MAP1_VERTEX_3: data = ctx->EvalMap.Map1Vertex3.Points; n = ctx->EvalMap.Map1Vertex3.Order * 3; break; case GL_MAP1_VERTEX_4: data = ctx->EvalMap.Map1Vertex4.Points; n = ctx->EvalMap.Map1Vertex4.Order * 4; break; case GL_MAP2_COLOR_4: data = ctx->EvalMap.Map2Color4.Points; n = ctx->EvalMap.Map2Color4.Uorder * ctx->EvalMap.Map2Color4.Vorder * 4; break; case GL_MAP2_INDEX: data = ctx->EvalMap.Map2Index.Points; n = ctx->EvalMap.Map2Index.Uorder * ctx->EvalMap.Map2Index.Vorder; break; case GL_MAP2_NORMAL: data = ctx->EvalMap.Map2Normal.Points; n = ctx->EvalMap.Map2Normal.Uorder * ctx->EvalMap.Map2Normal.Vorder * 3; break; case GL_MAP2_TEXTURE_COORD_1: data = ctx->EvalMap.Map2Texture1.Points; n = ctx->EvalMap.Map2Texture1.Uorder * ctx->EvalMap.Map2Texture1.Vorder * 1; break; case GL_MAP2_TEXTURE_COORD_2: data = ctx->EvalMap.Map2Texture2.Points; n = ctx->EvalMap.Map2Texture2.Uorder * ctx->EvalMap.Map2Texture2.Vorder * 2; break; case GL_MAP2_TEXTURE_COORD_3: data = ctx->EvalMap.Map2Texture3.Points; n = ctx->EvalMap.Map2Texture3.Uorder * ctx->EvalMap.Map2Texture3.Vorder * 3; break; case GL_MAP2_TEXTURE_COORD_4: data = ctx->EvalMap.Map2Texture4.Points; n = ctx->EvalMap.Map2Texture4.Uorder * ctx->EvalMap.Map2Texture4.Vorder * 4; break; case GL_MAP2_VERTEX_3: data = ctx->EvalMap.Map2Vertex3.Points; n = ctx->EvalMap.Map2Vertex3.Uorder * ctx->EvalMap.Map2Vertex3.Vorder * 3; break; case GL_MAP2_VERTEX_4: data = ctx->EvalMap.Map2Vertex4.Points; n = ctx->EvalMap.Map2Vertex4.Uorder * ctx->EvalMap.Map2Vertex4.Vorder * 4; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" ); return; } if (data) { for (i=0;iEvalMap.Map1Color4.Order; break; case GL_MAP1_INDEX: *v = ctx->EvalMap.Map1Index.Order; break; case GL_MAP1_NORMAL: *v = ctx->EvalMap.Map1Normal.Order; break; case GL_MAP1_TEXTURE_COORD_1: *v = ctx->EvalMap.Map1Texture1.Order; break; case GL_MAP1_TEXTURE_COORD_2: *v = ctx->EvalMap.Map1Texture2.Order; break; case GL_MAP1_TEXTURE_COORD_3: *v = ctx->EvalMap.Map1Texture3.Order; break; case GL_MAP1_TEXTURE_COORD_4: *v = ctx->EvalMap.Map1Texture4.Order; break; case GL_MAP1_VERTEX_3: *v = ctx->EvalMap.Map1Vertex3.Order; break; case GL_MAP1_VERTEX_4: *v = ctx->EvalMap.Map1Vertex4.Order; break; case GL_MAP2_COLOR_4: v[0] = ctx->EvalMap.Map2Color4.Uorder; v[1] = ctx->EvalMap.Map2Color4.Vorder; break; case GL_MAP2_INDEX: v[0] = ctx->EvalMap.Map2Index.Uorder; v[1] = ctx->EvalMap.Map2Index.Vorder; break; case GL_MAP2_NORMAL: v[0] = ctx->EvalMap.Map2Normal.Uorder; v[1] = ctx->EvalMap.Map2Normal.Vorder; break; case GL_MAP2_TEXTURE_COORD_1: v[0] = ctx->EvalMap.Map2Texture1.Uorder; v[1] = ctx->EvalMap.Map2Texture1.Vorder; break; case GL_MAP2_TEXTURE_COORD_2: v[0] = ctx->EvalMap.Map2Texture2.Uorder; v[1] = ctx->EvalMap.Map2Texture2.Vorder; break; case GL_MAP2_TEXTURE_COORD_3: v[0] = ctx->EvalMap.Map2Texture3.Uorder; v[1] = ctx->EvalMap.Map2Texture3.Vorder; break; case GL_MAP2_TEXTURE_COORD_4: v[0] = ctx->EvalMap.Map2Texture4.Uorder; v[1] = ctx->EvalMap.Map2Texture4.Vorder; break; case GL_MAP2_VERTEX_3: v[0] = ctx->EvalMap.Map2Vertex3.Uorder; v[1] = ctx->EvalMap.Map2Vertex3.Vorder; break; case GL_MAP2_VERTEX_4: v[0] = ctx->EvalMap.Map2Vertex4.Uorder; v[1] = ctx->EvalMap.Map2Vertex4.Vorder; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" ); return; } break; case GL_DOMAIN: switch (target) { case GL_MAP1_COLOR_4: v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1); v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2); break; case GL_MAP1_INDEX: v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1); v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2); break; case GL_MAP1_NORMAL: v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1); v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2); break; case GL_MAP1_TEXTURE_COORD_1: v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1); v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2); break; case GL_MAP1_TEXTURE_COORD_2: v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1); v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2); break; case GL_MAP1_TEXTURE_COORD_3: v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1); v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2); break; case GL_MAP1_TEXTURE_COORD_4: v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1); v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2); break; case GL_MAP1_VERTEX_3: v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1); v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2); break; case GL_MAP1_VERTEX_4: v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1); v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2); break; case GL_MAP2_COLOR_4: v[0] = ROUNDF(ctx->EvalMap.Map2Color4.u1); v[1] = ROUNDF(ctx->EvalMap.Map2Color4.u2); v[2] = ROUNDF(ctx->EvalMap.Map2Color4.v1); v[3] = ROUNDF(ctx->EvalMap.Map2Color4.v2); break; case GL_MAP2_INDEX: v[0] = ROUNDF(ctx->EvalMap.Map2Index.u1); v[1] = ROUNDF(ctx->EvalMap.Map2Index.u2); v[2] = ROUNDF(ctx->EvalMap.Map2Index.v1); v[3] = ROUNDF(ctx->EvalMap.Map2Index.v2); break; case GL_MAP2_NORMAL: v[0] = ROUNDF(ctx->EvalMap.Map2Normal.u1); v[1] = ROUNDF(ctx->EvalMap.Map2Normal.u2); v[2] = ROUNDF(ctx->EvalMap.Map2Normal.v1); v[3] = ROUNDF(ctx->EvalMap.Map2Normal.v2); break; case GL_MAP2_TEXTURE_COORD_1: v[0] = ROUNDF(ctx->EvalMap.Map2Texture1.u1); v[1] = ROUNDF(ctx->EvalMap.Map2Texture1.u2); v[2] = ROUNDF(ctx->EvalMap.Map2Texture1.v1); v[3] = ROUNDF(ctx->EvalMap.Map2Texture1.v2); break; case GL_MAP2_TEXTURE_COORD_2: v[0] = ROUNDF(ctx->EvalMap.Map2Texture2.u1); v[1] = ROUNDF(ctx->EvalMap.Map2Texture2.u2); v[2] = ROUNDF(ctx->EvalMap.Map2Texture2.v1); v[3] = ROUNDF(ctx->EvalMap.Map2Texture2.v2); break; case GL_MAP2_TEXTURE_COORD_3: v[0] = ROUNDF(ctx->EvalMap.Map2Texture3.u1); v[1] = ROUNDF(ctx->EvalMap.Map2Texture3.u2); v[2] = ROUNDF(ctx->EvalMap.Map2Texture3.v1); v[3] = ROUNDF(ctx->EvalMap.Map2Texture3.v2); break; case GL_MAP2_TEXTURE_COORD_4: v[0] = ROUNDF(ctx->EvalMap.Map2Texture4.u1); v[1] = ROUNDF(ctx->EvalMap.Map2Texture4.u2); v[2] = ROUNDF(ctx->EvalMap.Map2Texture4.v1); v[3] = ROUNDF(ctx->EvalMap.Map2Texture4.v2); break; case GL_MAP2_VERTEX_3: v[0] = ROUNDF(ctx->EvalMap.Map2Vertex3.u1); v[1] = ROUNDF(ctx->EvalMap.Map2Vertex3.u2); v[2] = ROUNDF(ctx->EvalMap.Map2Vertex3.v1); v[3] = ROUNDF(ctx->EvalMap.Map2Vertex3.v2); break; case GL_MAP2_VERTEX_4: v[0] = ROUNDF(ctx->EvalMap.Map2Vertex4.u1); v[1] = ROUNDF(ctx->EvalMap.Map2Vertex4.u2); v[2] = ROUNDF(ctx->EvalMap.Map2Vertex4.v1); v[3] = ROUNDF(ctx->EvalMap.Map2Vertex4.v2); break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" ); } break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" ); } } static void eval_points1( GLfloat outcoord[][4], GLfloat coord[][4], const GLuint *flags, GLuint start, GLfloat du, GLfloat u1 ) { GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & VERT_EVAL_P1) outcoord[i][0] = coord[i][0] * du + u1; else if (flags[i] & VERT_EVAL_ANY) { outcoord[i][0] = coord[i][0]; outcoord[i][1] = coord[i][1]; } } static void eval_points2( GLfloat outcoord[][4], GLfloat coord[][4], const GLuint *flags, GLuint start, GLfloat du, GLfloat u1, GLfloat dv, GLfloat v1 ) { GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & VERT_EVAL_P2) { outcoord[i][0] = coord[i][0] * du + u1; outcoord[i][1] = coord[i][1] * dv + v1; } else if (flags[i] & VERT_EVAL_ANY) { outcoord[i][0] = coord[i][0]; outcoord[i][1] = coord[i][1]; } } static const GLubyte dirty_flags[5] = { 0, /* not possible */ VEC_DIRTY_0, VEC_DIRTY_1, VEC_DIRTY_2, VEC_DIRTY_3 }; static GLvector4f *eval1_4f( GLvector4f *dest, GLfloat coord[][4], const GLuint *flags, GLuint start, GLuint dimension, struct gl_1d_map *map ) { const GLfloat u1 = map->u1; const GLfloat du = map->du; GLfloat (*to)[4] = dest->data; GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) { GLfloat u = (coord[i][0] - u1) * du; ASSIGN_4V(to[i], 0,0,0,1); horner_bezier_curve(map->Points, to[i], u, dimension, map->Order); } dest->count = i; dest->start = VEC_ELT(dest, GLfloat, start); dest->size = MAX2(dest->size, dimension); dest->flags |= dirty_flags[dimension]; return dest; } static GLvector1ui *eval1_1ui( GLvector1ui *dest, GLfloat coord[][4], const GLuint *flags, GLuint start, struct gl_1d_map *map ) { const GLfloat u1 = map->u1; const GLfloat du = map->du; GLuint *to = dest->data; GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) { GLfloat u = (coord[i][0] - u1) * du; GLfloat tmp; horner_bezier_curve(map->Points, &tmp, u, 1, map->Order); to[i] = (GLuint) (GLint) tmp; } dest->start = VEC_ELT(dest, GLuint, start); dest->count = i; return dest; } static GLvector3f *eval1_norm( GLvector3f *dest, GLfloat coord[][4], GLuint *flags, /* not const */ GLuint start, struct gl_1d_map *map ) { const GLfloat u1 = map->u1; const GLfloat du = map->du; GLfloat (*to)[3] = dest->data; GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) { GLfloat u = (coord[i][0] - u1) * du; horner_bezier_curve(map->Points, to[i], u, 3, map->Order); flags[i+1] |= VERT_NORM; /* reset */ } dest->start = VEC_ELT(dest, GLfloat, start); dest->count = i; return dest; } static GLvector4ub *eval1_color( GLvector4ub *dest, GLfloat coord[][4], GLuint *flags, /* not const */ GLuint start, struct gl_1d_map *map ) { const GLfloat u1 = map->u1; const GLfloat du = map->du; GLubyte (*to)[4] = dest->data; GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) { GLfloat u = (coord[i][0] - u1) * du; GLfloat fcolor[4]; horner_bezier_curve(map->Points, fcolor, u, 4, map->Order); FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor); flags[i+1] |= VERT_RGBA; /* reset */ } dest->start = VEC_ELT(dest, GLubyte, start); dest->count = i; return dest; } static GLvector4f *eval2_obj_norm( GLvector4f *obj_ptr, GLvector3f *norm_ptr, GLfloat coord[][4], GLuint *flags, GLuint start, GLuint dimension, struct gl_2d_map *map ) { const GLfloat u1 = map->u1; const GLfloat du = map->du; const GLfloat v1 = map->v1; const GLfloat dv = map->dv; GLfloat (*obj)[4] = obj_ptr->data; GLfloat (*normal)[3] = norm_ptr->data; GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) { GLfloat u = (coord[i][0] - u1) * du; GLfloat v = (coord[i][1] - v1) * dv; GLfloat du[4], dv[4]; ASSIGN_4V(obj[i], 0,0,0,1); de_casteljau_surf(map->Points, obj[i], du, dv, u, v, dimension, map->Uorder, map->Vorder); CROSS3(normal[i], du, dv); NORMALIZE_3FV(normal[i]); flags[i+1] |= VERT_NORM; } obj_ptr->start = VEC_ELT(obj_ptr, GLfloat, start); obj_ptr->count = i; obj_ptr->size = MAX2(obj_ptr->size, dimension); obj_ptr->flags |= dirty_flags[dimension]; return obj_ptr; } static GLvector4f *eval2_4f( GLvector4f *dest, GLfloat coord[][4], const GLuint *flags, GLuint start, GLuint dimension, struct gl_2d_map *map ) { const GLfloat u1 = map->u1; const GLfloat du = map->du; const GLfloat v1 = map->v1; const GLfloat dv = map->dv; GLfloat (*to)[4] = dest->data; GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) { GLfloat u = (coord[i][0] - u1) * du; GLfloat v = (coord[i][1] - v1) * dv; horner_bezier_surf(map->Points, to[i], u, v, dimension, map->Uorder, map->Vorder); } dest->start = VEC_ELT(dest, GLfloat, start); dest->count = i; dest->size = MAX2(dest->size, dimension); dest->flags |= dirty_flags[dimension]; return dest; } static GLvector3f *eval2_norm( GLvector3f *dest, GLfloat coord[][4], GLuint *flags, GLuint start, struct gl_2d_map *map ) { const GLfloat u1 = map->u1; const GLfloat du = map->du; const GLfloat v1 = map->v1; const GLfloat dv = map->dv; GLfloat (*to)[3] = dest->data; GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) { GLfloat u = (coord[i][0] - u1) * du; GLfloat v = (coord[i][1] - v1) * dv; horner_bezier_surf(map->Points, to[i], u, v, 3, map->Uorder, map->Vorder); flags[i+1] |= VERT_NORM; /* reset */ } dest->start = VEC_ELT(dest, GLfloat, start); dest->count = i; return dest; } static GLvector1ui *eval2_1ui( GLvector1ui *dest, GLfloat coord[][4], const GLuint *flags, GLuint start, struct gl_2d_map *map ) { const GLfloat u1 = map->u1; const GLfloat du = map->du; const GLfloat v1 = map->v1; const GLfloat dv = map->dv; GLuint *to = dest->data; GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) { GLfloat u = (coord[i][0] - u1) * du; GLfloat v = (coord[i][1] - v1) * dv; GLfloat tmp; horner_bezier_surf(map->Points, &tmp, u, v, 1, map->Uorder, map->Vorder); to[i] = (GLuint) (GLint) tmp; } dest->start = VEC_ELT(dest, GLuint, start); dest->count = i; return dest; } static GLvector4ub *eval2_color( GLvector4ub *dest, GLfloat coord[][4], GLuint *flags, GLuint start, struct gl_2d_map *map ) { const GLfloat u1 = map->u1; const GLfloat du = map->du; const GLfloat v1 = map->v1; const GLfloat dv = map->dv; GLubyte (*to)[4] = dest->data; GLuint i; for (i = start ; !(flags[i] & VERT_END_VB) ; i++) if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) { GLfloat u = (coord[i][0] - u1) * du; GLfloat v = (coord[i][1] - v1) * dv; GLfloat fcolor[4]; horner_bezier_surf(map->Points, fcolor, u, v, 4, map->Uorder, map->Vorder); FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor); flags[i+1] |= VERT_RGBA; /* reset */ } dest->start = VEC_ELT(dest, GLubyte, start); dest->count = i; return dest; } static GLvector4f *copy_4f( GLvector4f *out, CONST GLvector4f *in, const GLuint *flags, GLuint start ) { GLfloat (*to)[4] = out->data; GLfloat (*from)[4] = in->data; GLuint i; for ( i = start ; !(flags[i] & VERT_END_VB) ; i++) if (!(flags[i] & VERT_EVAL_ANY)) COPY_4FV( to[i], from[i] ); out->start = VEC_ELT(out, GLfloat, start); return out; } static GLvector3f *copy_3f( GLvector3f *out, CONST GLvector3f *in, const GLuint *flags, GLuint start ) { GLfloat (*to)[3] = out->data; GLfloat (*from)[3] = in->data; GLuint i; for ( i = start ; !(flags[i] & VERT_END_VB) ; i++) if (!(flags[i] & VERT_EVAL_ANY)) COPY_3V( to[i], from[i] ); out->start = VEC_ELT(out, GLfloat, start); return out; } static GLvector4ub *copy_4ub( GLvector4ub *out, CONST GLvector4ub *in, const GLuint *flags, GLuint start ) { GLubyte (*to)[4] = out->data; GLubyte (*from)[4] = in->data; GLuint i; for ( i = start ; !(flags[i] & VERT_END_VB) ; i++) if (!(flags[i] & VERT_EVAL_ANY)) COPY_4UBV( to[i], from[i] ); out->start = VEC_ELT(out, GLubyte, start); return out; } static GLvector1ui *copy_1ui( GLvector1ui *out, CONST GLvector1ui *in, const GLuint *flags, GLuint start ) { GLuint *to = out->data; CONST GLuint *from = in->data; GLuint i; for ( i = start ; !(flags[i] & VERT_END_VB) ; i++) if (!(flags[i] & VERT_EVAL_ANY)) to[i] = from[i]; out->start = VEC_ELT(out, GLuint, start); return out; } /* KW: Rewrote this to perform eval on a whole buffer at once. * Only evaluates active data items, and avoids scribbling * the source buffer if we are running from a display list. * * If the user (in this case looser) sends eval coordinates * or runs a display list containing eval coords with no * vertex maps enabled, we have to either copy all non-eval * data to a new buffer, or find a way of working around * the eval data. I choose the second option. * * KW: This code not reached by cva - use IM to access storage. */ void gl_eval_vb( struct vertex_buffer *VB ) { struct immediate *IM = VB->IM; GLcontext *ctx = VB->ctx; GLuint req = ctx->CVA.elt.inputs; GLfloat (*coord)[4] = VB->ObjPtr->data; GLuint *flags = VB->Flag; GLuint new_flags = 0; GLuint any_eval1 = VB->OrFlag & (VERT_EVAL_C1|VERT_EVAL_P1); GLuint any_eval2 = VB->OrFlag & (VERT_EVAL_C2|VERT_EVAL_P2); GLuint all_eval = IM->AndFlag & VERT_EVAL_ANY; /* Handle the degenerate cases. */ if (any_eval1 && !ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) { VB->PurgeFlags |= (VERT_EVAL_C1|VERT_EVAL_P1); VB->EarlyCull = 0; any_eval1 = GL_FALSE; } if (any_eval2 && !ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) { VB->PurgeFlags |= (VERT_EVAL_C2|VERT_EVAL_P2); VB->EarlyCull = 0; any_eval2 = GL_FALSE; } /* KW: This really is a degenerate case - doing this disables * culling, and causes dummy values for the missing vertices to be * transformed and clip tested. It also forces the individual * cliptesting of each primitive in vb_render. I wish there was a * nice alternative, but I can't say I want to put effort into * optimizing such a bad usage of the library - I'd much rather * work on useful changes. */ if (VB->PurgeFlags) { if (!any_eval1 && !any_eval2 && all_eval) VB->Count = VB->Start; gl_purge_vertices( VB ); if (!any_eval1 && !any_eval2) return; } else VB->IndirectCount = VB->Count; /* Translate points into coords. */ if (any_eval1 && (VB->OrFlag & VERT_EVAL_P1)) { eval_points1( IM->Obj, coord, flags, IM->Start, ctx->Eval.MapGrid1du, ctx->Eval.MapGrid1u1); coord = IM->Obj; } if (any_eval2 && (VB->OrFlag & VERT_EVAL_P2)) { eval_points2( IM->Obj, coord, flags, IM->Start, ctx->Eval.MapGrid2du, ctx->Eval.MapGrid2u1, ctx->Eval.MapGrid2dv, ctx->Eval.MapGrid2v1 ); coord = IM->Obj; } /* Perform the evaluations on active data elements. */ if (req & VERT_INDEX) { GLvector1ui *in_index = VB->IndexPtr; GLvector1ui *out_index = &IM->v.Index; if (ctx->Eval.Map1Index && any_eval1) VB->IndexPtr = eval1_1ui( out_index, coord, flags, IM->Start, &ctx->EvalMap.Map1Index ); if (ctx->Eval.Map2Index && any_eval2) VB->IndexPtr = eval2_1ui( out_index, coord, flags, IM->Start, &ctx->EvalMap.Map2Index ); if (VB->IndexPtr != in_index) { new_flags |= VERT_INDEX; if (!all_eval) VB->IndexPtr = copy_1ui( out_index, in_index, flags, IM->Start ); } } if (req & VERT_RGBA) { GLvector4ub *in_color = VB->ColorPtr; GLvector4ub *out_color = &IM->v.Color; if (ctx->Eval.Map1Color4 && any_eval1) VB->ColorPtr = eval1_color( out_color, coord, flags, IM->Start, &ctx->EvalMap.Map1Color4 ); if (ctx->Eval.Map2Color4 && any_eval2) VB->ColorPtr = eval2_color( out_color, coord, flags, IM->Start, &ctx->EvalMap.Map2Color4 ); if (VB->ColorPtr != in_color) { new_flags |= VERT_RGBA; if (!all_eval) VB->ColorPtr = copy_4ub( out_color, in_color, flags, IM->Start ); } VB->Color[0] = VB->Color[1] = VB->ColorPtr; } if (req & VERT_NORM) { GLvector3f *in_normal = VB->NormalPtr; GLvector3f *out_normal = &IM->v.Normal; if (ctx->Eval.Map1Normal && any_eval1) VB->NormalPtr = eval1_norm( out_normal, coord, flags, IM->Start, &ctx->EvalMap.Map1Normal ); if (ctx->Eval.Map2Normal && any_eval2) VB->NormalPtr = eval2_norm( out_normal, coord, flags, IM->Start, &ctx->EvalMap.Map2Normal ); if (VB->NormalPtr != in_normal) { new_flags |= VERT_NORM; if (!all_eval) VB->NormalPtr = copy_3f( out_normal, in_normal, flags, IM->Start ); } } if (req & VERT_TEX_ANY(0)) { GLvector4f *tc = VB->TexCoordPtr[0]; GLvector4f *in = tc; GLvector4f *out = &IM->v.TexCoord[0]; if (any_eval1) { if (ctx->Eval.Map1TextureCoord4) tc = eval1_4f( out, coord, flags, IM->Start, 4, &ctx->EvalMap.Map1Texture4); else if (ctx->Eval.Map1TextureCoord3) tc = eval1_4f( out, coord, flags, IM->Start, 3, &ctx->EvalMap.Map1Texture3); else if (ctx->Eval.Map1TextureCoord2) tc = eval1_4f( out, coord, flags, IM->Start, 2, &ctx->EvalMap.Map1Texture2); else if (ctx->Eval.Map1TextureCoord1) tc = eval1_4f( out, coord, flags, IM->Start, 1, &ctx->EvalMap.Map1Texture1); } if (any_eval2) { if (ctx->Eval.Map2TextureCoord4) tc = eval2_4f( out, coord, flags, IM->Start, 4, &ctx->EvalMap.Map2Texture4); else if (ctx->Eval.Map2TextureCoord3) tc = eval2_4f( out, coord, flags, IM->Start, 3, &ctx->EvalMap.Map2Texture3); else if (ctx->Eval.Map2TextureCoord2) tc = eval2_4f( out, coord, flags, IM->Start, 2, &ctx->EvalMap.Map2Texture2); else if (ctx->Eval.Map2TextureCoord1) tc = eval2_4f( out, coord, flags, IM->Start, 1, &ctx->EvalMap.Map2Texture1); } if (tc != in) { new_flags |= VERT_TEX_ANY(0); /* fix for sizes.. */ if (!all_eval) tc = copy_4f( out, in, flags, IM->Start ); } VB->TexCoordPtr[0] = tc; } { GLvector4f *in = VB->ObjPtr; GLvector4f *out = &IM->v.Obj; GLvector4f *obj = in; if (any_eval1) { if (ctx->Eval.Map1Vertex4) obj = eval1_4f( out, coord, flags, IM->Start, 4, &ctx->EvalMap.Map1Vertex4); else obj = eval1_4f( out, coord, flags, IM->Start, 3, &ctx->EvalMap.Map1Vertex3); } if (any_eval2) { if (ctx->Eval.Map2Vertex4) { if (ctx->Eval.AutoNormal && (req & VERT_NORM)) obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, IM->Start, 4, &ctx->EvalMap.Map2Vertex4 ); else obj = eval2_4f( out, coord, flags, IM->Start, 4, &ctx->EvalMap.Map2Vertex4); } else if (ctx->Eval.Map2Vertex3) { if (ctx->Eval.AutoNormal && (req & VERT_NORM)) obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, IM->Start, 3, &ctx->EvalMap.Map2Vertex3 ); else obj = eval2_4f( out, coord, flags, IM->Start, 3, &ctx->EvalMap.Map2Vertex3 ); } } if (obj != in && !all_eval) obj = copy_4f( out, in, flags, IM->Start ); VB->ObjPtr = obj; } if (new_flags) { GLuint *oldflags = VB->Flag; GLuint *flags = VB->Flag = VB->EvaluatedFlags; GLuint i; GLuint count = VB->Count; if (!flags) { VB->EvaluatedFlags = (GLuint *) MALLOC(VB->Size * sizeof(GLuint)); flags = VB->Flag = VB->EvaluatedFlags; } if (all_eval) { for (i = 0 ; i < count ; i++) flags[i] = oldflags[i] | new_flags; } else { GLuint andflag = ~0; for (i = 0 ; i < count ; i++) { if (oldflags[i] & VERT_EVAL_ANY) flags[i] = oldflags[i] | new_flags; andflag &= flags[i]; } } } } void _mesa_MapGrid1f( GLint un, GLfloat u1, GLfloat u2 ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid1f"); if (un<1) { gl_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" ); return; } ctx->Eval.MapGrid1un = un; ctx->Eval.MapGrid1u1 = u1; ctx->Eval.MapGrid1u2 = u2; ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un; } void _mesa_MapGrid1d( GLint un, GLdouble u1, GLdouble u2 ) { _mesa_MapGrid1f( un, u1, u2 ); } void _mesa_MapGrid2f( GLint un, GLfloat u1, GLfloat u2, GLint vn, GLfloat v1, GLfloat v2 ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid2f"); if (un<1) { gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" ); return; } if (vn<1) { gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" ); return; } ctx->Eval.MapGrid2un = un; ctx->Eval.MapGrid2u1 = u1; ctx->Eval.MapGrid2u2 = u2; ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un; ctx->Eval.MapGrid2vn = vn; ctx->Eval.MapGrid2v1 = v1; ctx->Eval.MapGrid2v2 = v2; ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn; } void _mesa_MapGrid2d( GLint un, GLdouble u1, GLdouble u2, GLint vn, GLdouble v1, GLdouble v2 ) { _mesa_MapGrid2f( un, u1, u2, vn, v1, v2 ); } /* KW: If are compiling, we don't know whether eval will produce a * vertex when it is run in the future. If this is pure immediate * mode, eval is a noop if neither vertex map is enabled. * * Thus we need to have a check in the display list code or * elsewhere for eval(1,2) vertices in the case where * map(1,2)_vertex is disabled, and to purge those vertices from * the vb. This is currently done * via modifications to the cull_vb and render_vb operations, and * by using the existing cullmask mechanism for all other operations. */ /* KW: Because the eval values don't become 'current', fixup will flow * through these vertices, and then evaluation will write on top * of the fixup results. * * This is a little inefficient, but at least it is correct. This * could be short-circuited in the case where all vertices are * eval-vertices, or more generally by a cullmask in fixup. * * Note: using Obj to hold eval coord data. This data is actually * transformed if eval is disabled. But disabling eval & sending * eval coords is stupid, right? */ #define EVALCOORD1(IM, x) \ { \ GLuint count = IM->Count++; \ IM->Flag[count] |= VERT_EVAL_C1; \ ASSIGN_4V(IM->Obj[count], x, 0, 0, 1); \ if (count == VB_MAX-1) \ IM->maybe_transform_vb( IM ); \ } #define EVALCOORD2(IM, x, y) \ { \ GLuint count = IM->Count++; \ IM->Flag[count] |= VERT_EVAL_C2; \ ASSIGN_4V(IM->Obj[count], x, y, 0, 1); \ if (count == VB_MAX-1) \ IM->maybe_transform_vb( IM ); \ } #define EVALPOINT1(IM, x) \ { \ GLuint count = IM->Count++; \ IM->Flag[count] |= VERT_EVAL_P1; \ ASSIGN_4V(IM->Obj[count], x, 0, 0, 1); \ if (count == VB_MAX-1) \ IM->maybe_transform_vb( IM ); \ } #define EVALPOINT2(IM, x, y) \ { \ GLuint count = IM->Count++; \ IM->Flag[count] |= VERT_EVAL_P2; \ ASSIGN_4V(IM->Obj[count], x, y, 0, 1); \ if (count == VB_MAX-1) \ IM->maybe_transform_vb( IM ); \ } /* Lame internal function: */ static void eval_coord1f( GLcontext *CC, GLfloat u ) { struct immediate *i = CC->input; EVALCOORD1( i, u ); } void _mesa_EvalCoord1d( GLdouble u ) { GET_IMMEDIATE; EVALCOORD1( IM, (GLfloat) u ); } void _mesa_EvalCoord1f( GLfloat u ) { GET_IMMEDIATE; EVALCOORD1( IM, u ); } void _mesa_EvalCoord1dv( const GLdouble *u ) { GET_IMMEDIATE; EVALCOORD1( IM, (GLfloat) *u ); } void _mesa_EvalCoord1fv( const GLfloat *u ) { GET_IMMEDIATE; EVALCOORD1( IM, (GLfloat) *u ); } void _mesa_EvalCoord2d( GLdouble u, GLdouble v ) { GET_IMMEDIATE; EVALCOORD2( IM, (GLfloat) u, (GLfloat) v ); } void _mesa_EvalCoord2f( GLfloat u, GLfloat v ) { GET_IMMEDIATE; EVALCOORD2( IM, u, v ); } /* Lame internal function: */ static void eval_coord2f( GLcontext *CC, GLfloat u, GLfloat v ) { struct immediate *i = CC->input; EVALCOORD2( i, u, v ); } void _mesa_EvalCoord2dv( const GLdouble *u ) { GET_IMMEDIATE; EVALCOORD2( IM, (GLfloat) u[0], (GLfloat) u[1] ); } void _mesa_EvalCoord2fv( const GLfloat *u ) { GET_IMMEDIATE; EVALCOORD2( IM, u[0], u[1] ); } void _mesa_EvalPoint1( GLint i ) { GET_IMMEDIATE; EVALPOINT1( IM, i ); } void _mesa_EvalPoint2( GLint i, GLint j ) { GET_IMMEDIATE; EVALPOINT2( IM, i, j ); } void _mesa_EvalMesh1( GLenum mode, GLint i1, GLint i2 ) { GET_CURRENT_CONTEXT(ctx); GLint i; GLfloat u, du; GLenum prim; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh1"); switch (mode) { case GL_POINT: prim = GL_POINTS; break; case GL_LINE: prim = GL_LINE_STRIP; break; default: gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh1(mode)" ); return; } /* No effect if vertex maps disabled. */ if (!ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) return; du = ctx->Eval.MapGrid1du; u = ctx->Eval.MapGrid1u1 + i1 * du; /* KW: Could short-circuit this to avoid the immediate mechanism. */ RESET_IMMEDIATE(ctx); gl_Begin( ctx, prim ); for (i=i1;i<=i2;i++,u+=du) { eval_coord1f( ctx, u ); } gl_End(ctx); } void _mesa_EvalMesh2( GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2 ) { GET_CURRENT_CONTEXT(ctx); GLint i, j; GLfloat u, du, v, dv, v1, u1; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh2"); /* No effect if vertex maps disabled. */ if (!ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) return; du = ctx->Eval.MapGrid2du; dv = ctx->Eval.MapGrid2dv; v1 = ctx->Eval.MapGrid2v1 + j1 * dv; u1 = ctx->Eval.MapGrid2u1 + i1 * du; RESET_IMMEDIATE(ctx); switch (mode) { case GL_POINT: gl_Begin( ctx, GL_POINTS ); for (v=v1,j=j1;j<=j2;j++,v+=dv) { for (u=u1,i=i1;i<=i2;i++,u+=du) { eval_coord2f( ctx, u, v ); } } gl_End(ctx); break; case GL_LINE: for (v=v1,j=j1;j<=j2;j++,v+=dv) { gl_Begin( ctx, GL_LINE_STRIP ); for (u=u1,i=i1;i<=i2;i++,u+=du) { eval_coord2f( ctx, u, v ); } gl_End(ctx); } for (u=u1,i=i1;i<=i2;i++,u+=du) { gl_Begin( ctx, GL_LINE_STRIP ); for (v=v1,j=j1;j<=j2;j++,v+=dv) { eval_coord2f( ctx, u, v ); } gl_End(ctx); } break; case GL_FILL: for (v=v1,j=j1;j