summaryrefslogtreecommitdiff
path: root/arch/x86/vdso/vdso2c.c
AgeCommit message (Collapse)AuthorFilesLines
2014-06-12x86/vdso: Add PUT_LE to store little-endian valuesAndy Lutomirski1-3/+16
Add PUT_LE() by analogy with GET_LE() to write littleendian values in addition to reading them. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/3d9b27e92745b27b6fda1b9a98f70dc9c1246c7a.1402620737.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2014-06-06x86, vdso: Use <tools/le_byteshift.h> for littleendian accessH. Peter Anvin1-4/+6
There are no standard functions for littleendian data (unlike bigendian data.) Thus, use <tools/le_byteshift.h> to access littleendian data members. Those are fairly inefficient, but it doesn't matter for this purpose (and can be optimized later.) This avoids portability problems. Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/20140606140017.afb7f91142f66cb3dd13c186@linux-foundation.org
2014-05-31x86/vdso, build: Make LE access macros clearer, host-safeH. Peter Anvin1-8/+8
Make it a little clearer what the littleendian access macros in vdso2c.[ch] actually do. This way they can probably also be moved to a central location (e.g. tools/include) for the benefit of other host tools. We should avoid implementation namespace symbols when writing code that is compiling for the compiler host, so avoid names starting with double underscore or underscore-capital. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/2cf258df123cb24bad63c274c8563c050547d99d.1401464755.git.luto@amacapital.net
2014-05-30x86/vdso, build: Fix cross-compilation from big-endian architecturesAndy Lutomirski1-0/+15
This adds a macro GET(x) to convert x from big-endian to little-endian. Hopefully I put it everywhere it needs to go and got all the cases needed for everyone's linux/elf.h. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/2cf258df123cb24bad63c274c8563c050547d99d.1401464755.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-30x86/vdso, build: When vdso2c fails, unlink the outputAndy Lutomirski1-9/+11
This avoids bizarre failures if make is run again. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/1764385fe9931e8940b9d001132515448ea89523.1401464755.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-05x86, vdso: Move the 32-bit vdso special pages after the textAndy Lutomirski1-0/+14
This unifies the vdso mapping code and teaches it how to map special pages at addresses corresponding to symbols in the vdso image. The new code is used for all vdso variants, but so far only the 32-bit variants use the new vvar page position. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/b6d7858ad7b5ac3fd3c29cab6d6d769bc45d195e.1399317206.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-05x86, vdso: Reimplement vdso.so preparation in build-time CAndy Lutomirski1-0/+142
Currently, vdso.so files are prepared and analyzed by a combination of objcopy, nm, some linker script tricks, and some simple ELF parsers in the kernel. Replace all of that with plain C code that runs at build time. All five vdso images now generate .c files that are compiled and linked in to the kernel image. This should cause only one userspace-visible change: the loaded vDSO images are stripped more heavily than they used to be. Everything outside the loadable segment is dropped. In particular, this causes the section table and section name strings to be missing. This should be fine: real dynamic loaders don't load or inspect these tables anyway. The result is roughly equivalent to eu-strip's --strip-sections option. The purpose of this change is to enable the vvar and hpet mappings to be moved to the page following the vDSO load segment. Currently, it is possible for the section table to extend into the page after the load segment, so, if we map it, it risks overlapping the vvar or hpet page. This happens whenever the load segment is just under a multiple of PAGE_SIZE. The only real subtlety here is that the old code had a C file with inline assembler that did 'call VDSO32_vsyscall' and a linker script that defined 'VDSO32_vsyscall = __kernel_vsyscall'. This most likely worked by accident: the linker script entry defines a symbol associated with an address as opposed to an alias for the real dynamic symbol __kernel_vsyscall. That caused ld to relocate the reference at link time instead of leaving an interposable dynamic relocation. Since the VDSO32_vsyscall hack is no longer needed, I now use 'call __kernel_vsyscall', and I added -Bsymbolic to make it work. vdso2c will generate an error and abort the build if the resulting image contains any dynamic relocations, so we won't silently generate bad vdso images. (Dynamic relocations are a problem because nothing will even attempt to relocate the vdso.) Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/2c4fcf45524162a34d87fdda1eb046b2a5cecee7.1399317206.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>