Age | Commit message (Collapse) | Author | Files | Lines |
|
not initialised
Current ARM local timer code registers CPUFREQ notifiers even in case
the twd_timer_setup() isn't called. That seems to be wrong and
would eventually lead to kernel crash on the CPU frequency transitions
on the SOCs where the local timer doesn't exist or broken because of
hardware BUG. Fix it by testing twd_evt and *__this_cpu_ptr(twd_evt).
The issue was observed with v3.3-rc3 and building an OMAP2+ kernel
on OMAP3 SOC which doesn't have TWD.
Below is the dump for reference :
Unable to handle kernel paging request at virtual address 007e900
pgd = cdc20000
[007e9000] *pgd=00000000
Internal error: Oops: 5 [#1] SMP
Modules linked in:
CPU: 0 Not tainted (3.3.0-rc3-pm+debug+initramfs #9)
PC is at twd_update_frequency+0x34/0x48
LR is at twd_update_frequency+0x10/0x48
pc : [<c001382c>] lr : [<c0013808>] psr: 60000093
sp : ce311dd8 ip : 00000000 fp : 00000000
r10: 00000000 r9 : 00000001 r8 : ce310000
r7 : c0440458 r6 : c00137f8 r5 : 00000000 r4 : c0947a74
r3 : 00000000 r2 : 007e9000 r1 : 00000000 r0 : 00000000
Flags: nZCv IRQs off FIQs on Mode SVC_32 ISA ARM Segment usr
Control: 10c5387d Table: 8dc20019 DAC: 00000015
Process sh (pid: 599, stack limit = 0xce3102f8)
Stack: (0xce311dd8 to 0xce312000)
1dc0: 6000c
1de0: 00000001 00000002 00000000 00000000 00000000 00000000 00000
1e00: ffffffff c093d8f0 00000000 ce311ebc 00000001 00000001 ce310
1e20: c001386c c0437c4c c0e95b60 c0e95ba8 00000001 c0e95bf8 ffff4
1e40: 00000000 00000000 c005ef74 ce310000 c0435cf0 ce311ebc 00000
1e60: ce352b40 0007a120 c08d5108 c08ba040 c08ba040 c005f030 00000
1e80: c08bc554 c032fe2c 0007a120 c08d4b64 ce352b40 c08d8618 ffff8
1ea0: c08ba040 c033364c ce311ecc c0433b50 00000002 ffffffea c0330
1ec0: 0007a120 0007a120 22222201 00000000 22222222 00000000 ce357
1ee0: ce3d6000 cdc2aed8 ce352ba0 c0470164 00000002 c032f47c 00034
1f00: c0331cac ce352b40 00000007 c032f6d0 ce352bbc 0003d090 c0930
1f20: c093d8bc c03306a4 00000007 ce311f80 00000007 cdc2aec0 ce358
1f40: ce8d20c0 00000007 b6fe5000 ce311f80 00000007 ce310000 0000c
1f60: c000de74 ce987400 ce8d20c0 b6fe5000 00000000 00000000 0000c
1f80: 00000000 00000000 001fbac8 00000000 00000007 001fbac8 00004
1fa0: c000df04 c000dd60 00000007 001fbac8 00000001 b6fe5000 00000
1fc0: 00000007 001fbac8 00000007 00000004 b6fe5000 00000000 00202
1fe0: 00000000 beb565f8 00101ffc 00008e8c 60000010 00000001 00000
[<c001382c>] (twd_update_frequency+0x34/0x48) from [<c008ac4c>] )
[<c008ac4c>] (smp_call_function_single+0x17c/0x1c8) from [<c0013)
[<c0013890>] (twd_cpufreq_transition+0x24/0x30) from [<c0437c4c>)
[<c0437c4c>] (notifier_call_chain+0x44/0x84) from [<c005efe4>] ()
[<c005efe4>] (__srcu_notifier_call_chain+0x70/0xa4) from [<c005f)
[<c005f030>] (srcu_notifier_call_chain+0x18/0x20) from [<c032fe2)
[<c032fe2c>] (cpufreq_notify_transition+0xc8/0x1b0) from [<c0333)
[<c033364c>] (omap_target+0x1b4/0x28c) from [<c032f47c>] (__cpuf)
[<c032f47c>] (__cpufreq_driver_target+0x50/0x64) from [<c0331d24)
[<c0331d24>] (cpufreq_set+0x78/0x98) from [<c032f6d0>] (store_sc)
[<c032f6d0>] (store_scaling_setspeed+0x5c/0x74) from [<c03306a4>)
[<c03306a4>] (store+0x58/0x74) from [<c014d868>] (sysfs_write_fi)
[<c014d868>] (sysfs_write_file+0x80/0xb4) from [<c00f2c2c>] (vfs)
[<c00f2c2c>] (vfs_write+0xa8/0x138) from [<c00f2e9c>] (sys_write)
[<c00f2e9c>] (sys_write+0x40/0x6c) from [<c000dd60>] (ret_fast_s)
Code: e594300c e792210c e1a01000 e5840004 (e7930002)
---[ end trace 5da3b5167c1ecdda ]---
Reported-by: Kevin Hilman <khilman@ti.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
On secondary CPUs, the Timer Control Register is not reset
to a sane value before the timer is registered, and the TRM
doesn't seem to indicate any reset value either. In some cases,
the kernel will take an interrupt too early, depending on what
junk was present in the registers at reset time.
The fix is to set the Timer Control Register to 0 before
registering the clock_event_device and enabling the interrupt.
Problem seen on VE (Cortex A5) and Tegra.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
This break-out from Colin Cross' cpufreq-aware TWD patch
will handle the case when our localtimer's clock changes with
the cpu clock. A cpufreq transtion notifier will be registered
only if the platform has supplied a specified clock to the TWD.
After a cpufreq transition, update the clockevent's frequency
by fetching the new clock rate from the clock framework and
reprogram the next clock event.
The necessary changes in the clockevents framework was done by
Thomas Gleixner in kernel v3.0.
ChangeLog v1->v2:
- Replace IS_ERR_OR_NULL() with IS_ERR() in twd_clk check.
- Update code to use the already existing per-cpu array of TWD
clockevents instead of adding cruft.
[Broke out, ifdef:ed CPUfreq stuff for non-cpufreq configs]
[Rebased to newer TWD base with per-CPU clock array]
Signed-off-by: Colin Cross <ccross@android.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rob Herring <rob.herring@calxeda.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
This break-out from Colin Cross' cpufreq-aware TWD patch will
optionally retrieve the clock rate of the TWD from an external
clock. A variant of this patch has been proposed by Rob Herring
as well.
The basic idea is to avoid recalibrating the rate of the clock
at boot if the platform already know what rate the clock to the
TWD block has.
ChangeLog v1->v2: added clk_[prepare|unprepare] calls.
[Broke out of larger SMP TWD patch]
Signed-off-by: Colin Cross <ccross@android.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rob Herring <rob.herring@calxeda.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
This break-out from Colin Cross' cpufreq-aware TWD patch will
just modernize the clock event registration code to use
clockevents_config_and_register().
[Broke out of larger SMP TWD patch]
Signed-off-by: Colin Cross <ccross@android.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rob Herring <rob.herring@calxeda.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
This patch remove the hardcoded link between local timers and PPIs,
and convert the PPI users (TWD, MCT and MSM timers) to the new
*_percpu_irq interface. Also some collateral cleanup
(local_timer_ack() is gone, and the interrupt handler is strictly
private to each driver).
PPIs are now useable for more than just the local timers.
Additional testing by David Brown (msm8250 and msm8660) and
Shawn Guo (imx6q).
Cc: David Brown <davidb@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Brown <davidb@codeaurora.org>
Tested-by: David Brown <davidb@codeaurora.org>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The smp_twd clockevents driver currently enables the local timer PPI
before the clockevents device is registered. This can lead to a kernel
panic if a spurious timer interrupt is generated before registration
has completed since the kernel will treat it as an IPI timer.
This patch moves the clockevents device registration before the IRQ
unmasking so that we can always handle timer interrupts once they can
occur.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
To get hundredths of MHz the rate needs to be divided by 10'000.
Here is an example:
twd_timer_rate = 123456789
Before the patch:
twd_timer_rate / 1000000 = 123
(twd_timer_rate / 1000000) % 100 = 23
Result: 123.23MHz.
After being fixed:
twd_timer_rate / 1000000 = 123
(twd_timer_rate / 10000) % 100 = 45
Result: 123.45MHz.
Signed-off-by: Vitaly Kuzmichev <vkuzmichev@mvista.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Ensure that the twd timer reload value is reprogrammed each time we
enter periodic mode. This ensures that the reload value is always
reset correctly.
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Colin Cross <ccross@android.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
The fraction of MHz was not being displayed correctly as the calculation
was a factor of 10 out. Fix this.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Conflicts:
arch/arm/Kconfig
arch/arm/common/Makefile
arch/arm/kernel/Makefile
arch/arm/kernel/smp.c
|
|
When a CPU is hot unplugged, the generic tick code cleans up the
clock event device, but fails to call down to the device's set_mode
function to actually shut the device down.
To work around this, we've historically had a local_timer_stop()
callback out of the hotplug code. However, this adds needless
complexity when we have the clock event device itself available.
Explicitly call the clock event device's set_mode function with
CLOCK_EVT_MODE_UNUSED, so that the hardware can be cleanly shutdown
without any special external callbacks. When/if the generic code
is fixed, percpu_timer_stop() can be killed off.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Avoid adding nasty genirq-specific code to local timers to enable PPI
interrupts. Instead, provide a gic function to do this.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
The TWD local timers are unable to wake up the CPU when it is placed
into a low power mode, eg. C3. Therefore, we need to adapt things
such that the TWD code can cope with this.
We do this by always providing a broadcast tick function, and marking
the fact that the TWD local timer will stop in low power modes. This
means that when the CPU is placed into a low power mode, the core
timer code marks this fact, and allows an IPI to be given to the core.
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
|
|
This moves the TWD register set of MPcore to a common
existing file so that watchdog driver can access it
Signed-off-by: srinidhi kasagar <srinidhi.kasagar@stericsson.com>
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Since this IRQ descriptor doesn't have an action registered, it is
allowed for probing via probe_irq_on/off() and it will be disabled by
the latter function. This patch sets the IRQ_NOPROBE status bit for the
local timer descriptor.
Signed-off-by: Varun Swara <Varun.Swara@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Fix:
WARNING: vmlinux.o(.text+0x247c): Section mismatch in reference from the function cpu_idle() to the function .cpuexit.text:cpu_die()
The function cpu_idle() references a function in an exit section.
Often the function cpu_die() has valid usage outside the exit section
and the fix is to remove the __cpuexit annotation of cpu_die.
WARNING: vmlinux.o(.cpuexit.text+0x3c): Section mismatch in reference from the function cpu_die() to the function .cpuinit.text:secondary_start_kernel()
The function __cpuexit cpu_die() references
a function __cpuinit secondary_start_kernel().
This is often seen when error handling in the exit function
uses functionality in the init path.
The fix is often to remove the __cpuinit annotation of
secondary_start_kernel() so it may be used outside an init section.
Sam says:
> The annotation of cpu_die() is wrong.
> To be annotated __cpuexit the function shall:
> - be used in exit context and only in exit context with HOTPLUG_CPU=n
> - be used outside exit context with HOTPLUG_CPU=y
So, this also means __cpu_disable(), __cpu_die() and twd_timer_stop() are
also wrong. However, removing __cpuexit from cpu_die() creates:
WARNING: vmlinux.o(.text+0x6834): Section mismatch in reference from the function cpu_die() to the function .cpuinit.text:secondary_start_kernel()
The function cpu_die() references
the function __cpuinit secondary_start_kernel().
This is often because cpu_die lacks a __cpuinit
annotation or the annotation of secondary_start_kernel is wrong.
so fix this using __ref.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
|
|
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|