summaryrefslogtreecommitdiff
path: root/fs/ubifs/find.c
blob: 5deaae7fceadba871a21283eaba68a06eb2c75f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
/*
 * This file is part of UBIFS.
 *
 * Copyright (C) 2006-2008 Nokia Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 *          Adrian Hunter
 */

/*
 * This file contains functions for finding LEBs for various purposes e.g.
 * garbage collection. In general, lprops category heaps and lists are used
 * for fast access, falling back on scanning the LPT as a last resort.
 */

#include <linux/sort.h>
#include "ubifs.h"

/**
 * struct scan_data - data provided to scan callback functions
 * @min_space: minimum number of bytes for which to scan
 * @pick_free: whether it is OK to scan for empty LEBs
 * @lnum: LEB number found is returned here
 * @exclude_index: whether to exclude index LEBs
 */
struct scan_data {
	int min_space;
	int pick_free;
	int lnum;
	int exclude_index;
};

/**
 * valuable - determine whether LEB properties are valuable.
 * @c: the UBIFS file-system description object
 * @lprops: LEB properties
 *
 * This function return %1 if the LEB properties should be added to the LEB
 * properties tree in memory. Otherwise %0 is returned.
 */
static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops)
{
	int n, cat = lprops->flags & LPROPS_CAT_MASK;
	struct ubifs_lpt_heap *heap;

	switch (cat) {
	case LPROPS_DIRTY:
	case LPROPS_DIRTY_IDX:
	case LPROPS_FREE:
		heap = &c->lpt_heap[cat - 1];
		if (heap->cnt < heap->max_cnt)
			return 1;
		if (lprops->free + lprops->dirty >= c->dark_wm)
			return 1;
		return 0;
	case LPROPS_EMPTY:
		n = c->lst.empty_lebs + c->freeable_cnt -
		    c->lst.taken_empty_lebs;
		if (n < c->lsave_cnt)
			return 1;
		return 0;
	case LPROPS_FREEABLE:
		return 1;
	case LPROPS_FRDI_IDX:
		return 1;
	}
	return 0;
}

/**
 * scan_for_dirty_cb - dirty space scan callback.
 * @c: the UBIFS file-system description object
 * @lprops: LEB properties to scan
 * @in_tree: whether the LEB properties are in main memory
 * @data: information passed to and from the caller of the scan
 *
 * This function returns a code that indicates whether the scan should continue
 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 * (%LPT_SCAN_STOP).
 */
static int scan_for_dirty_cb(struct ubifs_info *c,
			     const struct ubifs_lprops *lprops, int in_tree,
			     struct scan_data *data)
{
	int ret = LPT_SCAN_CONTINUE;

	/* Exclude LEBs that are currently in use */
	if (lprops->flags & LPROPS_TAKEN)
		return LPT_SCAN_CONTINUE;
	/* Determine whether to add these LEB properties to the tree */
	if (!in_tree && valuable(c, lprops))
		ret |= LPT_SCAN_ADD;
	/* Exclude LEBs with too little space */
	if (lprops->free + lprops->dirty < data->min_space)
		return ret;
	/* If specified, exclude index LEBs */
	if (data->exclude_index && lprops->flags & LPROPS_INDEX)
		return ret;
	/* If specified, exclude empty or freeable LEBs */
	if (lprops->free + lprops->dirty == c->leb_size) {
		if (!data->pick_free)
			return ret;
	/* Exclude LEBs with too little dirty space (unless it is empty) */
	} else if (lprops->dirty < c->dead_wm)
		return ret;
	/* Finally we found space */
	data->lnum = lprops->lnum;
	return LPT_SCAN_ADD | LPT_SCAN_STOP;
}

/**
 * scan_for_dirty - find a data LEB with free space.
 * @c: the UBIFS file-system description object
 * @min_space: minimum amount free plus dirty space the returned LEB has to
 *             have
 * @pick_free: if it is OK to return a free or freeable LEB
 * @exclude_index: whether to exclude index LEBs
 *
 * This function returns a pointer to the LEB properties found or a negative
 * error code.
 */
static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c,
						 int min_space, int pick_free,
						 int exclude_index)
{
	const struct ubifs_lprops *lprops;
	struct ubifs_lpt_heap *heap;
	struct scan_data data;
	int err, i;

	/* There may be an LEB with enough dirty space on the free heap */
	heap = &c->lpt_heap[LPROPS_FREE - 1];
	for (i = 0; i < heap->cnt; i++) {
		lprops = heap->arr[i];
		if (lprops->free + lprops->dirty < min_space)
			continue;
		if (lprops->dirty < c->dead_wm)
			continue;
		return lprops;
	}
	/*
	 * A LEB may have fallen off of the bottom of the dirty heap, and ended
	 * up as uncategorized even though it has enough dirty space for us now,
	 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
	 * can end up as uncategorized because they are kept on lists not
	 * finite-sized heaps.
	 */
	list_for_each_entry(lprops, &c->uncat_list, list) {
		if (lprops->flags & LPROPS_TAKEN)
			continue;
		if (lprops->free + lprops->dirty < min_space)
			continue;
		if (exclude_index && (lprops->flags & LPROPS_INDEX))
			continue;
		if (lprops->dirty < c->dead_wm)
			continue;
		return lprops;
	}
	/* We have looked everywhere in main memory, now scan the flash */
	if (c->pnodes_have >= c->pnode_cnt)
		/* All pnodes are in memory, so skip scan */
		return ERR_PTR(-ENOSPC);
	data.min_space = min_space;
	data.pick_free = pick_free;
	data.lnum = -1;
	data.exclude_index = exclude_index;
	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
				    (ubifs_lpt_scan_callback)scan_for_dirty_cb,
				    &data);
	if (err)
		return ERR_PTR(err);
	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
	c->lscan_lnum = data.lnum;
	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
	if (IS_ERR(lprops))
		return lprops;
	ubifs_assert(c, lprops->lnum == data.lnum);
	ubifs_assert(c, lprops->free + lprops->dirty >= min_space);
	ubifs_assert(c, lprops->dirty >= c->dead_wm ||
		     (pick_free &&
		      lprops->free + lprops->dirty == c->leb_size));
	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
	ubifs_assert(c, !exclude_index || !(lprops->flags & LPROPS_INDEX));
	return lprops;
}

/**
 * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector.
 * @c: the UBIFS file-system description object
 * @ret_lp: LEB properties are returned here on exit
 * @min_space: minimum amount free plus dirty space the returned LEB has to
 *             have
 * @pick_free: controls whether it is OK to pick empty or index LEBs
 *
 * This function tries to find a dirty logical eraseblock which has at least
 * @min_space free and dirty space. It prefers to take an LEB from the dirty or
 * dirty index heap, and it falls-back to LPT scanning if the heaps are empty
 * or do not have an LEB which satisfies the @min_space criteria.
 *
 * Note, LEBs which have less than dead watermark of free + dirty space are
 * never picked by this function.
 *
 * The additional @pick_free argument controls if this function has to return a
 * free or freeable LEB if one is present. For example, GC must to set it to %1,
 * when called from the journal space reservation function, because the
 * appearance of free space may coincide with the loss of enough dirty space
 * for GC to succeed anyway.
 *
 * In contrast, if the Garbage Collector is called from budgeting, it should
 * just make free space, not return LEBs which are already free or freeable.
 *
 * In addition @pick_free is set to %2 by the recovery process in order to
 * recover gc_lnum in which case an index LEB must not be returned.
 *
 * This function returns zero and the LEB properties of found dirty LEB in case
 * of success, %-ENOSPC if no dirty LEB was found and a negative error code in
 * case of other failures. The returned LEB is marked as "taken".
 */
int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
			 int min_space, int pick_free)
{
	int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0;
	const struct ubifs_lprops *lp = NULL, *idx_lp = NULL;
	struct ubifs_lpt_heap *heap, *idx_heap;

	ubifs_get_lprops(c);

	if (pick_free) {
		int lebs, rsvd_idx_lebs = 0;

		spin_lock(&c->space_lock);
		lebs = c->lst.empty_lebs + c->idx_gc_cnt;
		lebs += c->freeable_cnt - c->lst.taken_empty_lebs;

		/*
		 * Note, the index may consume more LEBs than have been reserved
		 * for it. It is OK because it might be consolidated by GC.
		 * But if the index takes fewer LEBs than it is reserved for it,
		 * this function must avoid picking those reserved LEBs.
		 */
		if (c->bi.min_idx_lebs >= c->lst.idx_lebs) {
			rsvd_idx_lebs = c->bi.min_idx_lebs -  c->lst.idx_lebs;
			exclude_index = 1;
		}
		spin_unlock(&c->space_lock);

		/* Check if there are enough free LEBs for the index */
		if (rsvd_idx_lebs < lebs) {
			/* OK, try to find an empty LEB */
			lp = ubifs_fast_find_empty(c);
			if (lp)
				goto found;

			/* Or a freeable LEB */
			lp = ubifs_fast_find_freeable(c);
			if (lp)
				goto found;
		} else
			/*
			 * We cannot pick free/freeable LEBs in the below code.
			 */
			pick_free = 0;
	} else {
		spin_lock(&c->space_lock);
		exclude_index = (c->bi.min_idx_lebs >= c->lst.idx_lebs);
		spin_unlock(&c->space_lock);
	}

	/* Look on the dirty and dirty index heaps */
	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
	idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];

	if (idx_heap->cnt && !exclude_index) {
		idx_lp = idx_heap->arr[0];
		sum = idx_lp->free + idx_lp->dirty;
		/*
		 * Since we reserve thrice as much space for the index than it
		 * actually takes, it does not make sense to pick indexing LEBs
		 * with less than, say, half LEB of dirty space. May be half is
		 * not the optimal boundary - this should be tested and
		 * checked. This boundary should determine how much we use
		 * in-the-gaps to consolidate the index comparing to how much
		 * we use garbage collector to consolidate it. The "half"
		 * criteria just feels to be fine.
		 */
		if (sum < min_space || sum < c->half_leb_size)
			idx_lp = NULL;
	}

	if (heap->cnt) {
		lp = heap->arr[0];
		if (lp->dirty + lp->free < min_space)
			lp = NULL;
	}

	/* Pick the LEB with most space */
	if (idx_lp && lp) {
		if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty)
			lp = idx_lp;
	} else if (idx_lp && !lp)
		lp = idx_lp;

	if (lp) {
		ubifs_assert(c, lp->free + lp->dirty >= c->dead_wm);
		goto found;
	}

	/* Did not find a dirty LEB on the dirty heaps, have to scan */
	dbg_find("scanning LPT for a dirty LEB");
	lp = scan_for_dirty(c, min_space, pick_free, exclude_index);
	if (IS_ERR(lp)) {
		err = PTR_ERR(lp);
		goto out;
	}
	ubifs_assert(c, lp->dirty >= c->dead_wm ||
		     (pick_free && lp->free + lp->dirty == c->leb_size));

found:
	dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
		 lp->lnum, lp->free, lp->dirty, lp->flags);

	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
			     lp->flags | LPROPS_TAKEN, 0);
	if (IS_ERR(lp)) {
		err = PTR_ERR(lp);
		goto out;
	}

	memcpy(ret_lp, lp, sizeof(struct ubifs_lprops));

out:
	ubifs_release_lprops(c);
	return err;
}

/**
 * scan_for_free_cb - free space scan callback.
 * @c: the UBIFS file-system description object
 * @lprops: LEB properties to scan
 * @in_tree: whether the LEB properties are in main memory
 * @data: information passed to and from the caller of the scan
 *
 * This function returns a code that indicates whether the scan should continue
 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 * (%LPT_SCAN_STOP).
 */
static int scan_for_free_cb(struct ubifs_info *c,
			    const struct ubifs_lprops *lprops, int in_tree,
			    struct scan_data *data)
{
	int ret = LPT_SCAN_CONTINUE;

	/* Exclude LEBs that are currently in use */
	if (lprops->flags & LPROPS_TAKEN)
		return LPT_SCAN_CONTINUE;
	/* Determine whether to add these LEB properties to the tree */
	if (!in_tree && valuable(c, lprops))
		ret |= LPT_SCAN_ADD;
	/* Exclude index LEBs */
	if (lprops->flags & LPROPS_INDEX)
		return ret;
	/* Exclude LEBs with too little space */
	if (lprops->free < data->min_space)
		return ret;
	/* If specified, exclude empty LEBs */
	if (!data->pick_free && lprops->free == c->leb_size)
		return ret;
	/*
	 * LEBs that have only free and dirty space must not be allocated
	 * because they may have been unmapped already or they may have data
	 * that is obsolete only because of nodes that are still sitting in a
	 * wbuf.
	 */
	if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0)
		return ret;
	/* Finally we found space */
	data->lnum = lprops->lnum;
	return LPT_SCAN_ADD | LPT_SCAN_STOP;
}

/**
 * do_find_free_space - find a data LEB with free space.
 * @c: the UBIFS file-system description object
 * @min_space: minimum amount of free space required
 * @pick_free: whether it is OK to scan for empty LEBs
 * @squeeze: whether to try to find space in a non-empty LEB first
 *
 * This function returns a pointer to the LEB properties found or a negative
 * error code.
 */
static
const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c,
					      int min_space, int pick_free,
					      int squeeze)
{
	const struct ubifs_lprops *lprops;
	struct ubifs_lpt_heap *heap;
	struct scan_data data;
	int err, i;

	if (squeeze) {
		lprops = ubifs_fast_find_free(c);
		if (lprops && lprops->free >= min_space)
			return lprops;
	}
	if (pick_free) {
		lprops = ubifs_fast_find_empty(c);
		if (lprops)
			return lprops;
	}
	if (!squeeze) {
		lprops = ubifs_fast_find_free(c);
		if (lprops && lprops->free >= min_space)
			return lprops;
	}
	/* There may be an LEB with enough free space on the dirty heap */
	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
	for (i = 0; i < heap->cnt; i++) {
		lprops = heap->arr[i];
		if (lprops->free >= min_space)
			return lprops;
	}
	/*
	 * A LEB may have fallen off of the bottom of the free heap, and ended
	 * up as uncategorized even though it has enough free space for us now,
	 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
	 * can end up as uncategorized because they are kept on lists not
	 * finite-sized heaps.
	 */
	list_for_each_entry(lprops, &c->uncat_list, list) {
		if (lprops->flags & LPROPS_TAKEN)
			continue;
		if (lprops->flags & LPROPS_INDEX)
			continue;
		if (lprops->free >= min_space)
			return lprops;
	}
	/* We have looked everywhere in main memory, now scan the flash */
	if (c->pnodes_have >= c->pnode_cnt)
		/* All pnodes are in memory, so skip scan */
		return ERR_PTR(-ENOSPC);
	data.min_space = min_space;
	data.pick_free = pick_free;
	data.lnum = -1;
	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
				    (ubifs_lpt_scan_callback)scan_for_free_cb,
				    &data);
	if (err)
		return ERR_PTR(err);
	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
	c->lscan_lnum = data.lnum;
	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
	if (IS_ERR(lprops))
		return lprops;
	ubifs_assert(c, lprops->lnum == data.lnum);
	ubifs_assert(c, lprops->free >= min_space);
	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
	ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
	return lprops;
}

/**
 * ubifs_find_free_space - find a data LEB with free space.
 * @c: the UBIFS file-system description object
 * @min_space: minimum amount of required free space
 * @offs: contains offset of where free space starts on exit
 * @squeeze: whether to try to find space in a non-empty LEB first
 *
 * This function looks for an LEB with at least @min_space bytes of free space.
 * It tries to find an empty LEB if possible. If no empty LEBs are available,
 * this function searches for a non-empty data LEB. The returned LEB is marked
 * as "taken".
 *
 * This function returns found LEB number in case of success, %-ENOSPC if it
 * failed to find a LEB with @min_space bytes of free space and other a negative
 * error codes in case of failure.
 */
int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs,
			  int squeeze)
{
	const struct ubifs_lprops *lprops;
	int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags;

	dbg_find("min_space %d", min_space);
	ubifs_get_lprops(c);

	/* Check if there are enough empty LEBs for commit */
	spin_lock(&c->space_lock);
	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
		rsvd_idx_lebs = c->bi.min_idx_lebs -  c->lst.idx_lebs;
	else
		rsvd_idx_lebs = 0;
	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
	       c->lst.taken_empty_lebs;
	if (rsvd_idx_lebs < lebs)
		/*
		 * OK to allocate an empty LEB, but we still don't want to go
		 * looking for one if there aren't any.
		 */
		if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
			pick_free = 1;
			/*
			 * Because we release the space lock, we must account
			 * for this allocation here. After the LEB properties
			 * flags have been updated, we subtract one. Note, the
			 * result of this is that lprops also decreases
			 * @taken_empty_lebs in 'ubifs_change_lp()', so it is
			 * off by one for a short period of time which may
			 * introduce a small disturbance to budgeting
			 * calculations, but this is harmless because at the
			 * worst case this would make the budgeting subsystem
			 * be more pessimistic than needed.
			 *
			 * Fundamentally, this is about serialization of the
			 * budgeting and lprops subsystems. We could make the
			 * @space_lock a mutex and avoid dropping it before
			 * calling 'ubifs_change_lp()', but mutex is more
			 * heavy-weight, and we want budgeting to be as fast as
			 * possible.
			 */
			c->lst.taken_empty_lebs += 1;
		}
	spin_unlock(&c->space_lock);

	lprops = do_find_free_space(c, min_space, pick_free, squeeze);
	if (IS_ERR(lprops)) {
		err = PTR_ERR(lprops);
		goto out;
	}

	lnum = lprops->lnum;
	flags = lprops->flags | LPROPS_TAKEN;

	lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0);
	if (IS_ERR(lprops)) {
		err = PTR_ERR(lprops);
		goto out;
	}

	if (pick_free) {
		spin_lock(&c->space_lock);
		c->lst.taken_empty_lebs -= 1;
		spin_unlock(&c->space_lock);
	}

	*offs = c->leb_size - lprops->free;
	ubifs_release_lprops(c);

	if (*offs == 0) {
		/*
		 * Ensure that empty LEBs have been unmapped. They may not have
		 * been, for example, because of an unclean unmount.  Also
		 * LEBs that were freeable LEBs (free + dirty == leb_size) will
		 * not have been unmapped.
		 */
		err = ubifs_leb_unmap(c, lnum);
		if (err)
			return err;
	}

	dbg_find("found LEB %d, free %d", lnum, c->leb_size - *offs);
	ubifs_assert(c, *offs <= c->leb_size - min_space);
	return lnum;

out:
	if (pick_free) {
		spin_lock(&c->space_lock);
		c->lst.taken_empty_lebs -= 1;
		spin_unlock(&c->space_lock);
	}
	ubifs_release_lprops(c);
	return err;
}

/**
 * scan_for_idx_cb - callback used by the scan for a free LEB for the index.
 * @c: the UBIFS file-system description object
 * @lprops: LEB properties to scan
 * @in_tree: whether the LEB properties are in main memory
 * @data: information passed to and from the caller of the scan
 *
 * This function returns a code that indicates whether the scan should continue
 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 * (%LPT_SCAN_STOP).
 */
static int scan_for_idx_cb(struct ubifs_info *c,
			   const struct ubifs_lprops *lprops, int in_tree,
			   struct scan_data *data)
{
	int ret = LPT_SCAN_CONTINUE;

	/* Exclude LEBs that are currently in use */
	if (lprops->flags & LPROPS_TAKEN)
		return LPT_SCAN_CONTINUE;
	/* Determine whether to add these LEB properties to the tree */
	if (!in_tree && valuable(c, lprops))
		ret |= LPT_SCAN_ADD;
	/* Exclude index LEBS */
	if (lprops->flags & LPROPS_INDEX)
		return ret;
	/* Exclude LEBs that cannot be made empty */
	if (lprops->free + lprops->dirty != c->leb_size)
		return ret;
	/*
	 * We are allocating for the index so it is safe to allocate LEBs with
	 * only free and dirty space, because write buffers are sync'd at commit
	 * start.
	 */
	data->lnum = lprops->lnum;
	return LPT_SCAN_ADD | LPT_SCAN_STOP;
}

/**
 * scan_for_leb_for_idx - scan for a free LEB for the index.
 * @c: the UBIFS file-system description object
 */
static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c)
{
	const struct ubifs_lprops *lprops;
	struct scan_data data;
	int err;

	data.lnum = -1;
	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
				    (ubifs_lpt_scan_callback)scan_for_idx_cb,
				    &data);
	if (err)
		return ERR_PTR(err);
	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
	c->lscan_lnum = data.lnum;
	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
	if (IS_ERR(lprops))
		return lprops;
	ubifs_assert(c, lprops->lnum == data.lnum);
	ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
	ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
	return lprops;
}

/**
 * ubifs_find_free_leb_for_idx - find a free LEB for the index.
 * @c: the UBIFS file-system description object
 *
 * This function looks for a free LEB and returns that LEB number. The returned
 * LEB is marked as "taken", "index".
 *
 * Only empty LEBs are allocated. This is for two reasons. First, the commit
 * calculates the number of LEBs to allocate based on the assumption that they
 * will be empty. Secondly, free space at the end of an index LEB is not
 * guaranteed to be empty because it may have been used by the in-the-gaps
 * method prior to an unclean unmount.
 *
 * If no LEB is found %-ENOSPC is returned. For other failures another negative
 * error code is returned.
 */
int ubifs_find_free_leb_for_idx(struct ubifs_info *c)
{
	const struct ubifs_lprops *lprops;
	int lnum = -1, err, flags;

	ubifs_get_lprops(c);

	lprops = ubifs_fast_find_empty(c);
	if (!lprops) {
		lprops = ubifs_fast_find_freeable(c);
		if (!lprops) {
			/*
			 * The first condition means the following: go scan the
			 * LPT if there are uncategorized lprops, which means
			 * there may be freeable LEBs there (UBIFS does not
			 * store the information about freeable LEBs in the
			 * master node).
			 */
			if (c->in_a_category_cnt != c->main_lebs ||
			    c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
				ubifs_assert(c, c->freeable_cnt == 0);
				lprops = scan_for_leb_for_idx(c);
				if (IS_ERR(lprops)) {
					err = PTR_ERR(lprops);
					goto out;
				}
			}
		}
	}

	if (!lprops) {
		err = -ENOSPC;
		goto out;
	}

	lnum = lprops->lnum;

	dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
		 lnum, lprops->free, lprops->dirty, lprops->flags);

	flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX;
	lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0);
	if (IS_ERR(lprops)) {
		err = PTR_ERR(lprops);
		goto out;
	}

	ubifs_release_lprops(c);

	/*
	 * Ensure that empty LEBs have been unmapped. They may not have been,
	 * for example, because of an unclean unmount. Also LEBs that were
	 * freeable LEBs (free + dirty == leb_size) will not have been unmapped.
	 */
	err = ubifs_leb_unmap(c, lnum);
	if (err) {
		ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
				    LPROPS_TAKEN | LPROPS_INDEX, 0);
		return err;
	}

	return lnum;

out:
	ubifs_release_lprops(c);
	return err;
}

static int cmp_dirty_idx(const struct ubifs_lprops **a,
			 const struct ubifs_lprops **b)
{
	const struct ubifs_lprops *lpa = *a;
	const struct ubifs_lprops *lpb = *b;

	return lpa->dirty + lpa->free - lpb->dirty - lpb->free;
}

/**
 * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos.
 * @c: the UBIFS file-system description object
 *
 * This function is called each commit to create an array of LEB numbers of
 * dirty index LEBs sorted in order of dirty and free space.  This is used by
 * the in-the-gaps method of TNC commit.
 */
int ubifs_save_dirty_idx_lnums(struct ubifs_info *c)
{
	int i;

	ubifs_get_lprops(c);
	/* Copy the LPROPS_DIRTY_IDX heap */
	c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt;
	memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr,
	       sizeof(void *) * c->dirty_idx.cnt);
	/* Sort it so that the dirtiest is now at the end */
	sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *),
	     (int (*)(const void *, const void *))cmp_dirty_idx, NULL);
	dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt);
	if (c->dirty_idx.cnt)
		dbg_find("dirtiest index LEB is %d with dirty %d and free %d",
			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum,
			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty,
			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free);
	/* Replace the lprops pointers with LEB numbers */
	for (i = 0; i < c->dirty_idx.cnt; i++)
		c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum;
	ubifs_release_lprops(c);
	return 0;
}

/**
 * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB.
 * @c: the UBIFS file-system description object
 * @lprops: LEB properties to scan
 * @in_tree: whether the LEB properties are in main memory
 * @data: information passed to and from the caller of the scan
 *
 * This function returns a code that indicates whether the scan should continue
 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 * (%LPT_SCAN_STOP).
 */
static int scan_dirty_idx_cb(struct ubifs_info *c,
			   const struct ubifs_lprops *lprops, int in_tree,
			   struct scan_data *data)
{
	int ret = LPT_SCAN_CONTINUE;

	/* Exclude LEBs that are currently in use */
	if (lprops->flags & LPROPS_TAKEN)
		return LPT_SCAN_CONTINUE;
	/* Determine whether to add these LEB properties to the tree */
	if (!in_tree && valuable(c, lprops))
		ret |= LPT_SCAN_ADD;
	/* Exclude non-index LEBs */
	if (!(lprops->flags & LPROPS_INDEX))
		return ret;
	/* Exclude LEBs with too little space */
	if (lprops->free + lprops->dirty < c->min_idx_node_sz)
		return ret;
	/* Finally we found space */
	data->lnum = lprops->lnum;
	return LPT_SCAN_ADD | LPT_SCAN_STOP;
}

/**
 * find_dirty_idx_leb - find a dirty index LEB.
 * @c: the UBIFS file-system description object
 *
 * This function returns LEB number upon success and a negative error code upon
 * failure.  In particular, -ENOSPC is returned if a dirty index LEB is not
 * found.
 *
 * Note that this function scans the entire LPT but it is called very rarely.
 */
static int find_dirty_idx_leb(struct ubifs_info *c)
{
	const struct ubifs_lprops *lprops;
	struct ubifs_lpt_heap *heap;
	struct scan_data data;
	int err, i, ret;

	/* Check all structures in memory first */
	data.lnum = -1;
	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
	for (i = 0; i < heap->cnt; i++) {
		lprops = heap->arr[i];
		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
		if (ret & LPT_SCAN_STOP)
			goto found;
	}
	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
		if (ret & LPT_SCAN_STOP)
			goto found;
	}
	list_for_each_entry(lprops, &c->uncat_list, list) {
		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
		if (ret & LPT_SCAN_STOP)
			goto found;
	}
	if (c->pnodes_have >= c->pnode_cnt)
		/* All pnodes are in memory, so skip scan */
		return -ENOSPC;
	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
				    (ubifs_lpt_scan_callback)scan_dirty_idx_cb,
				    &data);
	if (err)
		return err;
found:
	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
	c->lscan_lnum = data.lnum;
	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
	if (IS_ERR(lprops))
		return PTR_ERR(lprops);
	ubifs_assert(c, lprops->lnum == data.lnum);
	ubifs_assert(c, lprops->free + lprops->dirty >= c->min_idx_node_sz);
	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
	ubifs_assert(c, (lprops->flags & LPROPS_INDEX));

	dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x",
		 lprops->lnum, lprops->free, lprops->dirty, lprops->flags);

	lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC,
				 lprops->flags | LPROPS_TAKEN, 0);
	if (IS_ERR(lprops))
		return PTR_ERR(lprops);

	return lprops->lnum;
}

/**
 * get_idx_gc_leb - try to get a LEB number from trivial GC.
 * @c: the UBIFS file-system description object
 */
static int get_idx_gc_leb(struct ubifs_info *c)
{
	const struct ubifs_lprops *lp;
	int err, lnum;

	err = ubifs_get_idx_gc_leb(c);
	if (err < 0)
		return err;
	lnum = err;
	/*
	 * The LEB was due to be unmapped after the commit but
	 * it is needed now for this commit.
	 */
	lp = ubifs_lpt_lookup_dirty(c, lnum);
	if (IS_ERR(lp))
		return PTR_ERR(lp);
	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
			     lp->flags | LPROPS_INDEX, -1);
	if (IS_ERR(lp))
		return PTR_ERR(lp);
	dbg_find("LEB %d, dirty %d and free %d flags %#x",
		 lp->lnum, lp->dirty, lp->free, lp->flags);
	return lnum;
}

/**
 * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array.
 * @c: the UBIFS file-system description object
 */
static int find_dirtiest_idx_leb(struct ubifs_info *c)
{
	const struct ubifs_lprops *lp;
	int lnum;

	while (1) {
		if (!c->dirty_idx.cnt)
			return -ENOSPC;
		/* The lprops pointers were replaced by LEB numbers */
		lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt];
		lp = ubifs_lpt_lookup(c, lnum);
		if (IS_ERR(lp))
			return PTR_ERR(lp);
		if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX))
			continue;
		lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
				     lp->flags | LPROPS_TAKEN, 0);
		if (IS_ERR(lp))
			return PTR_ERR(lp);
		break;
	}
	dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty,
		 lp->free, lp->flags);
	ubifs_assert(c, lp->flags & LPROPS_TAKEN);
	ubifs_assert(c, lp->flags & LPROPS_INDEX);
	return lnum;
}

/**
 * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit.
 * @c: the UBIFS file-system description object
 *
 * This function attempts to find an untaken index LEB with the most free and
 * dirty space that can be used without overwriting index nodes that were in the
 * last index committed.
 */
int ubifs_find_dirty_idx_leb(struct ubifs_info *c)
{
	int err;

	ubifs_get_lprops(c);

	/*
	 * We made an array of the dirtiest index LEB numbers as at the start of
	 * last commit.  Try that array first.
	 */
	err = find_dirtiest_idx_leb(c);

	/* Next try scanning the entire LPT */
	if (err == -ENOSPC)
		err = find_dirty_idx_leb(c);

	/* Finally take any index LEBs awaiting trivial GC */
	if (err == -ENOSPC)
		err = get_idx_gc_leb(c);

	ubifs_release_lprops(c);
	return err;
}