diff options
Diffstat (limited to 'Documentation/process/2.Process.rst')
-rw-r--r-- | Documentation/process/2.Process.rst | 108 |
1 files changed, 55 insertions, 53 deletions
diff --git a/Documentation/process/2.Process.rst b/Documentation/process/2.Process.rst index ae020d84d7c4..b21b5b245d13 100644 --- a/Documentation/process/2.Process.rst +++ b/Documentation/process/2.Process.rst @@ -18,18 +18,18 @@ major kernel release happening every two or three months. The recent release history looks like this: ====== ================= - 4.11 April 30, 2017 - 4.12 July 2, 2017 - 4.13 September 3, 2017 - 4.14 November 12, 2017 - 4.15 January 28, 2018 - 4.16 April 1, 2018 + 5.0 March 3, 2019 + 5.1 May 5, 2019 + 5.2 July 7, 2019 + 5.3 September 15, 2019 + 5.4 November 24, 2019 + 5.5 January 6, 2020 ====== ================= -Every 4.x release is a major kernel release with new features, internal -API changes, and more. A typical 4.x release contain about 13,000 -changesets with changes to several hundred thousand lines of code. 4.x is -thus the leading edge of Linux kernel development; the kernel uses a +Every 5.x release is a major kernel release with new features, internal +API changes, and more. A typical release can contain about 13,000 +changesets with changes to several hundred thousand lines of code. 5.x is +the leading edge of Linux kernel development; the kernel uses a rolling development model which is continually integrating major changes. A relatively straightforward discipline is followed with regard to the @@ -48,9 +48,9 @@ detail later on). The merge window lasts for approximately two weeks. At the end of this time, Linus Torvalds will declare that the window is closed and release the -first of the "rc" kernels. For the kernel which is destined to be 2.6.40, +first of the "rc" kernels. For the kernel which is destined to be 5.6, for example, the release which happens at the end of the merge window will -be called 2.6.40-rc1. The -rc1 release is the signal that the time to +be called 5.6-rc1. The -rc1 release is the signal that the time to merge new features has passed, and that the time to stabilize the next kernel has begun. @@ -67,22 +67,23 @@ add at any time). As fixes make their way into the mainline, the patch rate will slow over time. Linus releases new -rc kernels about once a week; a normal series will get up to somewhere between -rc6 and -rc9 before the kernel is -considered to be sufficiently stable and the final 2.6.x release is made. +considered to be sufficiently stable and the final release is made. At that point the whole process starts over again. -As an example, here is how the 4.16 development cycle went (all dates in -2018): +As an example, here is how the 5.4 development cycle went (all dates in +2019): ============== =============================== - January 28 4.15 stable release - February 11 4.16-rc1, merge window closes - February 18 4.16-rc2 - February 25 4.16-rc3 - March 4 4.16-rc4 - March 11 4.16-rc5 - March 18 4.16-rc6 - March 25 4.16-rc7 - April 1 4.16 stable release + September 15 5.3 stable release + September 30 5.4-rc1, merge window closes + October 6 5.4-rc2 + October 13 5.4-rc3 + October 20 5.4-rc4 + October 27 5.4-rc5 + November 3 5.4-rc6 + November 10 5.4-rc7 + November 17 5.4-rc8 + November 24 5.4 stable release ============== =============================== How do the developers decide when to close the development cycle and create @@ -98,43 +99,44 @@ release is made. In the real world, this kind of perfection is hard to achieve; there are just too many variables in a project of this size. There comes a point where delaying the final release just makes the problem worse; the pile of changes waiting for the next merge window will grow -larger, creating even more regressions the next time around. So most 4.x +larger, creating even more regressions the next time around. So most 5.x kernels go out with a handful of known regressions though, hopefully, none of them are serious. Once a stable release is made, its ongoing maintenance is passed off to the -"stable team," currently consisting of Greg Kroah-Hartman. The stable team -will release occasional updates to the stable release using the 4.x.y -numbering scheme. To be considered for an update release, a patch must (1) -fix a significant bug, and (2) already be merged into the mainline for the -next development kernel. Kernels will typically receive stable updates for -a little more than one development cycle past their initial release. So, -for example, the 4.13 kernel's history looked like: +"stable team," currently Greg Kroah-Hartman. The stable team will release +occasional updates to the stable release using the 5.x.y numbering scheme. +To be considered for an update release, a patch must (1) fix a significant +bug, and (2) already be merged into the mainline for the next development +kernel. Kernels will typically receive stable updates for a little more +than one development cycle past their initial release. So, for example, the +5.2 kernel's history looked like this (all dates in 2019): ============== =============================== - September 3 4.13 stable release - September 13 4.13.1 - September 20 4.13.2 - September 27 4.13.3 - October 5 4.13.4 - October 12 4.13.5 + September 15 5.2 stable release + July 14 5.2.1 + July 21 5.2.2 + July 26 5.2.3 + July 28 5.2.4 + July 31 5.2.5 ... ... - November 24 4.13.16 + October 11 5.2.21 ============== =============================== -4.13.16 was the final stable update of the 4.13 release. +5.2.21 was the final stable update of the 5.2 release. Some kernels are designated "long term" kernels; they will receive support for a longer period. As of this writing, the current long term kernels and their maintainers are: - ====== ====================== ============================== - 3.16 Ben Hutchings (very long-term stable kernel) - 4.1 Sasha Levin - 4.4 Greg Kroah-Hartman (very long-term stable kernel) - 4.9 Greg Kroah-Hartman - 4.14 Greg Kroah-Hartman - ====== ====================== ============================== + ====== ================================ ======================= + 3.16 Ben Hutchings (very long-term kernel) + 4.4 Greg Kroah-Hartman & Sasha Levin (very long-term kernel) + 4.9 Greg Kroah-Hartman & Sasha Levin + 4.14 Greg Kroah-Hartman & Sasha Levin + 4.19 Greg Kroah-Hartman & Sasha Levin + 5.4 Greg Kroah-Hartman & Sasha Levin + ====== ================================ ======================= The selection of a kernel for long-term support is purely a matter of a maintainer having the need and the time to maintain that release. There @@ -215,12 +217,12 @@ How patches get into the Kernel ------------------------------- There is exactly one person who can merge patches into the mainline kernel -repository: Linus Torvalds. But, of the over 9,500 patches which went -into the 2.6.38 kernel, only 112 (around 1.3%) were directly chosen by Linus -himself. The kernel project has long since grown to a size where no single -developer could possibly inspect and select every patch unassisted. The -way the kernel developers have addressed this growth is through the use of -a lieutenant system built around a chain of trust. +repository: Linus Torvalds. But, for example, of the over 9,500 patches +which went into the 2.6.38 kernel, only 112 (around 1.3%) were directly +chosen by Linus himself. The kernel project has long since grown to a size +where no single developer could possibly inspect and select every patch +unassisted. The way the kernel developers have addressed this growth is +through the use of a lieutenant system built around a chain of trust. The kernel code base is logically broken down into a set of subsystems: networking, specific architecture support, memory management, video |