diff options
-rw-r--r-- | include/linux/sched.h | 5 | ||||
-rw-r--r-- | kernel/sched/Makefile | 2 | ||||
-rw-r--r-- | kernel/sched/core.c | 7 | ||||
-rw-r--r-- | kernel/sched/fair.c | 183 | ||||
-rw-r--r-- | kernel/sched/loadavg.c (renamed from kernel/sched/proc.c) | 236 | ||||
-rw-r--r-- | kernel/sched/sched.h | 8 |
6 files changed, 222 insertions, 219 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h index 26a2e6122734..85cf253bc366 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -173,7 +173,12 @@ extern unsigned long nr_iowait_cpu(int cpu); extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); extern void calc_global_load(unsigned long ticks); + +#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) extern void update_cpu_load_nohz(void); +#else +static inline void update_cpu_load_nohz(void) { } +#endif extern unsigned long get_parent_ip(unsigned long addr); diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile index 46be87024875..67687973ce80 100644 --- a/kernel/sched/Makefile +++ b/kernel/sched/Makefile @@ -11,7 +11,7 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer endif -obj-y += core.o proc.o clock.o cputime.o +obj-y += core.o loadavg.o clock.o cputime.o obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o obj-y += wait.o completion.o idle.o obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o diff --git a/kernel/sched/core.c b/kernel/sched/core.c index fdf972d56f65..527fc28a737a 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -2397,9 +2397,9 @@ unsigned long nr_iowait_cpu(int cpu) void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) { - struct rq *this = this_rq(); - *nr_waiters = atomic_read(&this->nr_iowait); - *load = this->cpu_load[0]; + struct rq *rq = this_rq(); + *nr_waiters = atomic_read(&rq->nr_iowait); + *load = rq->load.weight; } #ifdef CONFIG_SMP @@ -2497,6 +2497,7 @@ void scheduler_tick(void) update_rq_clock(rq); curr->sched_class->task_tick(rq, curr, 0); update_cpu_load_active(rq); + calc_global_load_tick(rq); raw_spin_unlock(&rq->lock); perf_event_task_tick(); diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index ffeaa4105e48..4bc6013886ec 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -4323,6 +4323,189 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) } #ifdef CONFIG_SMP + +/* + * per rq 'load' arrray crap; XXX kill this. + */ + +/* + * The exact cpuload at various idx values, calculated at every tick would be + * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load + * + * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called + * on nth tick when cpu may be busy, then we have: + * load = ((2^idx - 1) / 2^idx)^(n-1) * load + * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load + * + * decay_load_missed() below does efficient calculation of + * load = ((2^idx - 1) / 2^idx)^(n-1) * load + * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load + * + * The calculation is approximated on a 128 point scale. + * degrade_zero_ticks is the number of ticks after which load at any + * particular idx is approximated to be zero. + * degrade_factor is a precomputed table, a row for each load idx. + * Each column corresponds to degradation factor for a power of two ticks, + * based on 128 point scale. + * Example: + * row 2, col 3 (=12) says that the degradation at load idx 2 after + * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). + * + * With this power of 2 load factors, we can degrade the load n times + * by looking at 1 bits in n and doing as many mult/shift instead of + * n mult/shifts needed by the exact degradation. + */ +#define DEGRADE_SHIFT 7 +static const unsigned char + degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; +static const unsigned char + degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { + {0, 0, 0, 0, 0, 0, 0, 0}, + {64, 32, 8, 0, 0, 0, 0, 0}, + {96, 72, 40, 12, 1, 0, 0}, + {112, 98, 75, 43, 15, 1, 0}, + {120, 112, 98, 76, 45, 16, 2} }; + +/* + * Update cpu_load for any missed ticks, due to tickless idle. The backlog + * would be when CPU is idle and so we just decay the old load without + * adding any new load. + */ +static unsigned long +decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) +{ + int j = 0; + + if (!missed_updates) + return load; + + if (missed_updates >= degrade_zero_ticks[idx]) + return 0; + + if (idx == 1) + return load >> missed_updates; + + while (missed_updates) { + if (missed_updates % 2) + load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; + + missed_updates >>= 1; + j++; + } + return load; +} + +/* + * Update rq->cpu_load[] statistics. This function is usually called every + * scheduler tick (TICK_NSEC). With tickless idle this will not be called + * every tick. We fix it up based on jiffies. + */ +static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, + unsigned long pending_updates) +{ + int i, scale; + + this_rq->nr_load_updates++; + + /* Update our load: */ + this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ + for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { + unsigned long old_load, new_load; + + /* scale is effectively 1 << i now, and >> i divides by scale */ + + old_load = this_rq->cpu_load[i]; + old_load = decay_load_missed(old_load, pending_updates - 1, i); + new_load = this_load; + /* + * Round up the averaging division if load is increasing. This + * prevents us from getting stuck on 9 if the load is 10, for + * example. + */ + if (new_load > old_load) + new_load += scale - 1; + + this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; + } + + sched_avg_update(this_rq); +} + +#ifdef CONFIG_NO_HZ_COMMON +/* + * There is no sane way to deal with nohz on smp when using jiffies because the + * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading + * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. + * + * Therefore we cannot use the delta approach from the regular tick since that + * would seriously skew the load calculation. However we'll make do for those + * updates happening while idle (nohz_idle_balance) or coming out of idle + * (tick_nohz_idle_exit). + * + * This means we might still be one tick off for nohz periods. + */ + +/* + * Called from nohz_idle_balance() to update the load ratings before doing the + * idle balance. + */ +static void update_idle_cpu_load(struct rq *this_rq) +{ + unsigned long curr_jiffies = ACCESS_ONCE(jiffies); + unsigned long load = this_rq->cfs.runnable_load_avg; + unsigned long pending_updates; + + /* + * bail if there's load or we're actually up-to-date. + */ + if (load || curr_jiffies == this_rq->last_load_update_tick) + return; + + pending_updates = curr_jiffies - this_rq->last_load_update_tick; + this_rq->last_load_update_tick = curr_jiffies; + + __update_cpu_load(this_rq, load, pending_updates); +} + +/* + * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. + */ +void update_cpu_load_nohz(void) +{ + struct rq *this_rq = this_rq(); + unsigned long curr_jiffies = ACCESS_ONCE(jiffies); + unsigned long pending_updates; + + if (curr_jiffies == this_rq->last_load_update_tick) + return; + + raw_spin_lock(&this_rq->lock); + pending_updates = curr_jiffies - this_rq->last_load_update_tick; + if (pending_updates) { + this_rq->last_load_update_tick = curr_jiffies; + /* + * We were idle, this means load 0, the current load might be + * !0 due to remote wakeups and the sort. + */ + __update_cpu_load(this_rq, 0, pending_updates); + } + raw_spin_unlock(&this_rq->lock); +} +#endif /* CONFIG_NO_HZ */ + +/* + * Called from scheduler_tick() + */ +void update_cpu_load_active(struct rq *this_rq) +{ + unsigned long load = this_rq->cfs.runnable_load_avg; + /* + * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). + */ + this_rq->last_load_update_tick = jiffies; + __update_cpu_load(this_rq, load, 1); +} + /* Used instead of source_load when we know the type == 0 */ static unsigned long weighted_cpuload(const int cpu) { diff --git a/kernel/sched/proc.c b/kernel/sched/loadavg.c index 8ecd552fe4f2..ef7159012cf3 100644 --- a/kernel/sched/proc.c +++ b/kernel/sched/loadavg.c @@ -1,7 +1,9 @@ /* - * kernel/sched/proc.c + * kernel/sched/loadavg.c * - * Kernel load calculations, forked from sched/core.c + * This file contains the magic bits required to compute the global loadavg + * figure. Its a silly number but people think its important. We go through + * great pains to make it work on big machines and tickless kernels. */ #include <linux/export.h> @@ -81,7 +83,7 @@ long calc_load_fold_active(struct rq *this_rq) long nr_active, delta = 0; nr_active = this_rq->nr_running; - nr_active += (long) this_rq->nr_uninterruptible; + nr_active += (long)this_rq->nr_uninterruptible; if (nr_active != this_rq->calc_load_active) { delta = nr_active - this_rq->calc_load_active; @@ -186,6 +188,7 @@ void calc_load_enter_idle(void) delta = calc_load_fold_active(this_rq); if (delta) { int idx = calc_load_write_idx(); + atomic_long_add(delta, &calc_load_idle[idx]); } } @@ -241,18 +244,20 @@ fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) { unsigned long result = 1UL << frac_bits; - if (n) for (;;) { - if (n & 1) { - result *= x; - result += 1UL << (frac_bits - 1); - result >>= frac_bits; + if (n) { + for (;;) { + if (n & 1) { + result *= x; + result += 1UL << (frac_bits - 1); + result >>= frac_bits; + } + n >>= 1; + if (!n) + break; + x *= x; + x += 1UL << (frac_bits - 1); + x >>= frac_bits; } - n >>= 1; - if (!n) - break; - x *= x; - x += 1UL << (frac_bits - 1); - x >>= frac_bits; } return result; @@ -285,7 +290,6 @@ static unsigned long calc_load_n(unsigned long load, unsigned long exp, unsigned long active, unsigned int n) { - return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); } @@ -339,6 +343,8 @@ static inline void calc_global_nohz(void) { } /* * calc_load - update the avenrun load estimates 10 ticks after the * CPUs have updated calc_load_tasks. + * + * Called from the global timer code. */ void calc_global_load(unsigned long ticks) { @@ -370,10 +376,10 @@ void calc_global_load(unsigned long ticks) } /* - * Called from update_cpu_load() to periodically update this CPU's + * Called from scheduler_tick() to periodically update this CPU's * active count. */ -static void calc_load_account_active(struct rq *this_rq) +void calc_global_load_tick(struct rq *this_rq) { long delta; @@ -386,199 +392,3 @@ static void calc_load_account_active(struct rq *this_rq) this_rq->calc_load_update += LOAD_FREQ; } - -/* - * End of global load-average stuff - */ - -/* - * The exact cpuload at various idx values, calculated at every tick would be - * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load - * - * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called - * on nth tick when cpu may be busy, then we have: - * load = ((2^idx - 1) / 2^idx)^(n-1) * load - * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load - * - * decay_load_missed() below does efficient calculation of - * load = ((2^idx - 1) / 2^idx)^(n-1) * load - * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load - * - * The calculation is approximated on a 128 point scale. - * degrade_zero_ticks is the number of ticks after which load at any - * particular idx is approximated to be zero. - * degrade_factor is a precomputed table, a row for each load idx. - * Each column corresponds to degradation factor for a power of two ticks, - * based on 128 point scale. - * Example: - * row 2, col 3 (=12) says that the degradation at load idx 2 after - * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). - * - * With this power of 2 load factors, we can degrade the load n times - * by looking at 1 bits in n and doing as many mult/shift instead of - * n mult/shifts needed by the exact degradation. - */ -#define DEGRADE_SHIFT 7 -static const unsigned char - degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; -static const unsigned char - degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { - {0, 0, 0, 0, 0, 0, 0, 0}, - {64, 32, 8, 0, 0, 0, 0, 0}, - {96, 72, 40, 12, 1, 0, 0}, - {112, 98, 75, 43, 15, 1, 0}, - {120, 112, 98, 76, 45, 16, 2} }; - -/* - * Update cpu_load for any missed ticks, due to tickless idle. The backlog - * would be when CPU is idle and so we just decay the old load without - * adding any new load. - */ -static unsigned long -decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) -{ - int j = 0; - - if (!missed_updates) - return load; - - if (missed_updates >= degrade_zero_ticks[idx]) - return 0; - - if (idx == 1) - return load >> missed_updates; - - while (missed_updates) { - if (missed_updates % 2) - load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; - - missed_updates >>= 1; - j++; - } - return load; -} - -/* - * Update rq->cpu_load[] statistics. This function is usually called every - * scheduler tick (TICK_NSEC). With tickless idle this will not be called - * every tick. We fix it up based on jiffies. - */ -static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, - unsigned long pending_updates) -{ - int i, scale; - - this_rq->nr_load_updates++; - - /* Update our load: */ - this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ - for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { - unsigned long old_load, new_load; - - /* scale is effectively 1 << i now, and >> i divides by scale */ - - old_load = this_rq->cpu_load[i]; - old_load = decay_load_missed(old_load, pending_updates - 1, i); - new_load = this_load; - /* - * Round up the averaging division if load is increasing. This - * prevents us from getting stuck on 9 if the load is 10, for - * example. - */ - if (new_load > old_load) - new_load += scale - 1; - - this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; - } - - sched_avg_update(this_rq); -} - -#ifdef CONFIG_SMP -static inline unsigned long get_rq_runnable_load(struct rq *rq) -{ - return rq->cfs.runnable_load_avg; -} -#else -static inline unsigned long get_rq_runnable_load(struct rq *rq) -{ - return rq->load.weight; -} -#endif - -#ifdef CONFIG_NO_HZ_COMMON -/* - * There is no sane way to deal with nohz on smp when using jiffies because the - * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading - * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. - * - * Therefore we cannot use the delta approach from the regular tick since that - * would seriously skew the load calculation. However we'll make do for those - * updates happening while idle (nohz_idle_balance) or coming out of idle - * (tick_nohz_idle_exit). - * - * This means we might still be one tick off for nohz periods. - */ - -/* - * Called from nohz_idle_balance() to update the load ratings before doing the - * idle balance. - */ -void update_idle_cpu_load(struct rq *this_rq) -{ - unsigned long curr_jiffies = ACCESS_ONCE(jiffies); - unsigned long load = get_rq_runnable_load(this_rq); - unsigned long pending_updates; - - /* - * bail if there's load or we're actually up-to-date. - */ - if (load || curr_jiffies == this_rq->last_load_update_tick) - return; - - pending_updates = curr_jiffies - this_rq->last_load_update_tick; - this_rq->last_load_update_tick = curr_jiffies; - - __update_cpu_load(this_rq, load, pending_updates); -} - -/* - * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. - */ -void update_cpu_load_nohz(void) -{ - struct rq *this_rq = this_rq(); - unsigned long curr_jiffies = ACCESS_ONCE(jiffies); - unsigned long pending_updates; - - if (curr_jiffies == this_rq->last_load_update_tick) - return; - - raw_spin_lock(&this_rq->lock); - pending_updates = curr_jiffies - this_rq->last_load_update_tick; - if (pending_updates) { - this_rq->last_load_update_tick = curr_jiffies; - /* - * We were idle, this means load 0, the current load might be - * !0 due to remote wakeups and the sort. - */ - __update_cpu_load(this_rq, 0, pending_updates); - } - raw_spin_unlock(&this_rq->lock); -} -#endif /* CONFIG_NO_HZ */ - -/* - * Called from scheduler_tick() - */ -void update_cpu_load_active(struct rq *this_rq) -{ - unsigned long load = get_rq_runnable_load(this_rq); - /* - * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). - */ - this_rq->last_load_update_tick = jiffies; - __update_cpu_load(this_rq, load, 1); - - calc_load_account_active(this_rq); -} diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index e0e129993958..09ed26a89f31 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -26,8 +26,14 @@ extern __read_mostly int scheduler_running; extern unsigned long calc_load_update; extern atomic_long_t calc_load_tasks; +extern void calc_global_load_tick(struct rq *this_rq); extern long calc_load_fold_active(struct rq *this_rq); + +#ifdef CONFIG_SMP extern void update_cpu_load_active(struct rq *this_rq); +#else +static inline void update_cpu_load_active(struct rq *this_rq) { } +#endif /* * Helpers for converting nanosecond timing to jiffy resolution @@ -1298,8 +1304,6 @@ extern void init_dl_task_timer(struct sched_dl_entity *dl_se); unsigned long to_ratio(u64 period, u64 runtime); -extern void update_idle_cpu_load(struct rq *this_rq); - extern void init_task_runnable_average(struct task_struct *p); static inline void add_nr_running(struct rq *rq, unsigned count) |