diff options
author | Mauro Carvalho Chehab <mchehab+samsung@kernel.org> | 2019-07-26 09:51:23 -0300 |
---|---|---|
committer | Jonathan Corbet <corbet@lwn.net> | 2019-07-31 13:30:15 -0600 |
commit | e77e9187ae1caf2d83dd5e7f0c1466254b644a4c (patch) | |
tree | 526a9e2c250e3a82e1a949102237cd8a9dc04822 /Documentation/parisc | |
parent | 6d6486a0c59759681e75d1a2bd6684c501fcbd0e (diff) |
docs: parisc: convert to ReST and add to documentation body
Manually convert the two PA-RISC documents to ReST, adding them
to the Linux documentation body.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/parisc')
-rw-r--r-- | Documentation/parisc/debugging.rst (renamed from Documentation/parisc/debugging) | 7 | ||||
-rw-r--r-- | Documentation/parisc/index.rst | 18 | ||||
-rw-r--r-- | Documentation/parisc/registers.rst (renamed from Documentation/parisc/registers) | 59 |
3 files changed, 67 insertions, 17 deletions
diff --git a/Documentation/parisc/debugging b/Documentation/parisc/debugging.rst index 7d75223fa18d..de1b60402c5b 100644 --- a/Documentation/parisc/debugging +++ b/Documentation/parisc/debugging.rst @@ -1,8 +1,13 @@ +================= +PA-RISC Debugging +================= + okay, here are some hints for debugging the lower-level parts of linux/parisc. 1. Absolute addresses +===================== A lot of the assembly code currently runs in real mode, which means absolute addresses are used instead of virtual addresses as in the @@ -12,6 +17,7 @@ currently). 2. HPMCs +======== When real-mode code tries to access non-existent memory, you'll get an HPMC instead of a kernel oops. To debug an HPMC, try to find @@ -27,6 +33,7 @@ access it. 3. Q bit fun +============ Certain, very critical code has to clear the Q bit in the PSW. What happens when the Q bit is cleared is the CPU does not update the diff --git a/Documentation/parisc/index.rst b/Documentation/parisc/index.rst new file mode 100644 index 000000000000..aa3ee0470425 --- /dev/null +++ b/Documentation/parisc/index.rst @@ -0,0 +1,18 @@ +.. SPDX-License-Identifier: GPL-2.0 + +==================== +PA-RISC Architecture +==================== + +.. toctree:: + :maxdepth: 2 + + debugging + registers + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/parisc/registers b/Documentation/parisc/registers.rst index 10c7d1730f5d..59c8ecf3e856 100644 --- a/Documentation/parisc/registers +++ b/Documentation/parisc/registers.rst @@ -1,11 +1,16 @@ +================================ Register Usage for Linux/PA-RISC +================================ [ an asterisk is used for planned usage which is currently unimplemented ] - General Registers as specified by ABI +General Registers as specified by ABI +===================================== - Control Registers +Control Registers +----------------- +=============================== =============================================== CR 0 (Recovery Counter) used for ptrace CR 1-CR 7(undefined) unused CR 8 (Protection ID) per-process value* @@ -29,26 +34,35 @@ CR28 (TR 4) not used CR29 (TR 5) not used CR30 (TR 6) current / 0 CR31 (TR 7) Temporary register, used in various places +=============================== =============================================== - Space Registers (kernel mode) +Space Registers (kernel mode) +----------------------------- +=============================== =============================================== SR0 temporary space register SR4-SR7 set to 0 SR1 temporary space register SR2 kernel should not clobber this SR3 used for userspace accesses (current process) +=============================== =============================================== - Space Registers (user mode) +Space Registers (user mode) +--------------------------- +=============================== =============================================== SR0 temporary space register SR1 temporary space register SR2 holds space of linux gateway page SR3 holds user address space value while in kernel SR4-SR7 Defines short address space for user/kernel +=============================== =============================================== - Processor Status Word +Processor Status Word +--------------------- +=============================== =============================================== W (64-bit addresses) 0 E (Little-endian) 0 S (Secure Interval Timer) 0 @@ -69,15 +83,19 @@ Q (collect interruption state) 1 (0 in code directly preceding an rfi) P (Protection Identifiers) 1* D (Data address translation) 1, 0 while executing real-mode code I (external interrupt mask) used by cli()/sti() macros +=============================== =============================================== - "Invisible" Registers +"Invisible" Registers +--------------------- +=============================== =============================================== PSW default W value 0 PSW default E value 0 Shadow Registers used by interruption handler code TOC enable bit 1 +=============================== =============================================== -========================================================================= +------------------------------------------------------------------------- The PA-RISC architecture defines 7 registers as "shadow registers". Those are used in RETURN FROM INTERRUPTION AND RESTORE instruction to reduce @@ -85,7 +103,8 @@ the state save and restore time by eliminating the need for general register (GR) saves and restores in interruption handlers. Shadow registers are the GRs 1, 8, 9, 16, 17, 24, and 25. -========================================================================= +------------------------------------------------------------------------- + Register usage notes, originally from John Marvin, with some additional notes from Randolph Chung. @@ -96,10 +115,12 @@ course, you need to save them if you care about them, before calling another procedure. Some of the above registers do have special meanings that you should be aware of: - r1: The addil instruction is hardwired to place its result in r1, + r1: + The addil instruction is hardwired to place its result in r1, so if you use that instruction be aware of that. - r2: This is the return pointer. In general you don't want to + r2: + This is the return pointer. In general you don't want to use this, since you need the pointer to get back to your caller. However, it is grouped with this set of registers since the caller can't rely on the value being the same @@ -107,23 +128,27 @@ that you should be aware of: and return through that register after trashing r2, and that should not cause a problem for the calling routine. - r19-r22: these are generally regarded as temporary registers. + r19-r22: + these are generally regarded as temporary registers. Note that in 64 bit they are arg7-arg4. - r23-r26: these are arg3-arg0, i.e. you can use them if you + r23-r26: + these are arg3-arg0, i.e. you can use them if you don't care about the values that were passed in anymore. - r28,r29: are ret0 and ret1. They are what you pass return values + r28,r29: + are ret0 and ret1. They are what you pass return values in. r28 is the primary return. When returning small structures r29 may also be used to pass data back to the caller. - r30: stack pointer + r30: + stack pointer - r31: the ble instruction puts the return pointer in here. + r31: + the ble instruction puts the return pointer in here. -r3-r18,r27,r30 need to be saved and restored. r3-r18 are just + r3-r18,r27,r30 need to be saved and restored. r3-r18 are just general purpose registers. r27 is the data pointer, and is used to make references to global variables easier. r30 is the stack pointer. - |