/* * Copyright © 2009-2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include "igt.h" #include "intel_decode.h" /* Struct for tracking intel_decode state. */ struct intel_decode { /** stdio file where the output should land. Defaults to stdout. */ FILE *out; /** PCI device ID. */ uint32_t devid; /** * Shorthand device identifier: 3 is 915, 4 is 965, 5 is * Ironlake, etc. */ int gen; /** GPU address of the start of the current packet. */ uint32_t hw_offset; /** CPU virtual address of the start of the current packet. */ uint32_t *data; /** DWORDs of remaining batchbuffer data starting from the packet. */ uint32_t count; /** GPU address of the start of the batchbuffer data. */ uint32_t base_hw_offset; /** CPU Virtual address of the start of the batchbuffer data. */ uint32_t *base_data; /** Number of DWORDs of batchbuffer data. */ uint32_t base_count; /** @{ * GPU head and tail pointers, which will be noted in the dump, or ~0. */ uint32_t head, tail; /** @} */ /** * Whether to dump the dwords after MI_BATCHBUFFER_END. * * This sometimes provides clues in corrupted batchbuffers, * and is used by the intel-gpu-tools. */ bool dump_past_end; bool overflowed; }; static FILE *out; static uint32_t saved_s2 = 0, saved_s4 = 0; static char saved_s2_set = 0, saved_s4_set = 0; static uint32_t head_offset = 0xffffffff; /* undefined */ static uint32_t tail_offset = 0xffffffff; /* undefined */ #ifndef ARRAY_SIZE #define ARRAY_SIZE(A) (sizeof(A)/sizeof(A[0])) #endif #define BUFFER_FAIL(_count, _len, _name) do { \ fprintf(out, "Buffer size too small in %s (%d < %d)\n", \ (_name), (_count), (_len)); \ return _count; \ } while (0) static float int_as_float(uint32_t intval) { union intfloat { uint32_t i; float f; } uval; uval.i = intval; return uval.f; } static void DRM_PRINTFLIKE(3, 4) instr_out(struct intel_decode *ctx, unsigned int index, const char *fmt, ...) { va_list va; const char *parseinfo; uint32_t offset = ctx->hw_offset + index * 4; if (index > ctx->count) { if (!ctx->overflowed) { fprintf(out, "ERROR: Decode attempted to continue beyond end of batchbuffer\n"); ctx->overflowed = true; } return; } if (offset == head_offset) parseinfo = "HEAD"; else if (offset == tail_offset) parseinfo = "TAIL"; else parseinfo = " "; fprintf(out, "0x%08x: %s 0x%08x: %s", offset, parseinfo, ctx->data[index], index == 0 ? "" : " "); va_start(va, fmt); vfprintf(out, fmt, va); va_end(va); } static int decode_MI_SET_CONTEXT(struct intel_decode *ctx) { uint32_t data = ctx->data[1]; if (ctx->gen > 7) return 1; instr_out(ctx, 0, "MI_SET_CONTEXT\n"); instr_out(ctx, 1, "gtt offset = 0x%x%s%s\n", data & ~0xfff, data & (1<<1)? ", Force Restore": "", data & (1<<0)? ", Restore Inhibit": ""); return 2; } static int decode_MI_WAIT_FOR_EVENT(struct intel_decode *ctx) { const char *cc_wait; int cc_shift = 0; uint32_t data = ctx->data[0]; if (ctx->gen <= 5) cc_shift = 9; else cc_shift = 16; switch ((data >> cc_shift) & 0x1f) { case 1: cc_wait = ", cc wait 1"; break; case 2: cc_wait = ", cc wait 2"; break; case 3: cc_wait = ", cc wait 3"; break; case 4: cc_wait = ", cc wait 4"; break; case 5: cc_wait = ", cc wait 4"; break; default: cc_wait = ""; break; } if (ctx->gen <= 5) { instr_out(ctx, 0, "MI_WAIT_FOR_EVENT%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", data & (1<<18)? ", pipe B start vblank wait": "", data & (1<<17)? ", pipe A start vblank wait": "", data & (1<<16)? ", overlay flip pending wait": "", data & (1<<14)? ", pipe B hblank wait": "", data & (1<<13)? ", pipe A hblank wait": "", cc_wait, data & (1<<8)? ", plane C pending flip wait": "", data & (1<<7)? ", pipe B vblank wait": "", data & (1<<6)? ", plane B pending flip wait": "", data & (1<<5)? ", pipe B scan line wait": "", data & (1<<4)? ", fbc idle wait": "", data & (1<<3)? ", pipe A vblank wait": "", data & (1<<2)? ", plane A pending flip wait": "", data & (1<<1)? ", plane A scan line wait": ""); } else { instr_out(ctx, 0, "MI_WAIT_FOR_EVENT%s%s%s%s%s%s%s%s%s%s%s%s\n", data & (1<<20)? ", sprite C pending flip wait": "", /* ivb */ cc_wait, data & (1<<13)? ", pipe B hblank wait": "", data & (1<<11)? ", pipe B vblank wait": "", data & (1<<10)? ", sprite B pending flip wait": "", data & (1<<9)? ", plane B pending flip wait": "", data & (1<<8)? ", plane B scan line wait": "", data & (1<<5)? ", pipe A hblank wait": "", data & (1<<3)? ", pipe A vblank wait": "", data & (1<<2)? ", sprite A pending flip wait": "", data & (1<<1)? ", plane A pending flip wait": "", data & (1<<0)? ", plane A scan line wait": ""); } return 1; } static int decode_mi(struct intel_decode *ctx) { unsigned int opcode, len = -1; const char *post_sync_op = ""; uint32_t *data = ctx->data; struct { uint32_t opcode; int len_mask; unsigned int min_len; unsigned int max_len; const char *name; int (*func)(struct intel_decode *ctx); } opcodes_mi[] = { { 0x08, 0, 1, 1, "MI_ARB_ON_OFF" }, { 0x0a, 0, 1, 1, "MI_BATCH_BUFFER_END" }, { 0x30, 0x3f, 3, 3, "MI_BATCH_BUFFER" }, { 0x31, 0x3f, 2, 3, "MI_BATCH_BUFFER_START" }, { 0x14, 0x3f, 3, 3, "MI_DISPLAY_BUFFER_INFO" }, { 0x04, 0, 1, 1, "MI_FLUSH" }, { 0x22, 0x1f, 3, 3, "MI_LOAD_REGISTER_IMM" }, { 0x13, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_EXCL" }, { 0x12, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_INCL" }, { 0x00, 0, 1, 1, "MI_NOOP" }, { 0x11, 0x3f, 2, 2, "MI_OVERLAY_FLIP" }, { 0x07, 0, 1, 1, "MI_REPORT_HEAD" }, { 0x18, 0x3f, 2, 2, "MI_SET_CONTEXT", decode_MI_SET_CONTEXT }, { 0x20, 0x3f, 3, 4, "MI_STORE_DATA_IMM" }, { 0x21, 0x3f, 3, 4, "MI_STORE_DATA_INDEX" }, { 0x24, 0x3f, 3, 3, "MI_STORE_REGISTER_MEM" }, { 0x02, 0, 1, 1, "MI_USER_INTERRUPT" }, { 0x03, 0, 1, 1, "MI_WAIT_FOR_EVENT", decode_MI_WAIT_FOR_EVENT }, { 0x16, 0x7f, 3, 3, "MI_SEMAPHORE_MBOX" }, { 0x26, 0x1f, 3, 4, "MI_FLUSH_DW" }, { 0x28, 0x3f, 3, 3, "MI_REPORT_PERF_COUNT" }, { 0x29, 0xff, 3, 3, "MI_LOAD_REGISTER_MEM" }, { 0x0b, 0, 1, 1, "MI_SUSPEND_FLUSH"}, { 0x05, 0, 1, 1, "MI_ARB_CHECK"}, }, *opcode_mi = NULL; /* check instruction length */ for (opcode = 0; opcode < sizeof(opcodes_mi) / sizeof(opcodes_mi[0]); opcode++) { if ((data[0] & 0x1f800000) >> 23 == opcodes_mi[opcode].opcode) { len = 1; if (opcodes_mi[opcode].max_len > 1) { len = (data[0] & opcodes_mi[opcode].len_mask) + 2; if (len < opcodes_mi[opcode].min_len || len > opcodes_mi[opcode].max_len) { fprintf(out, "Bad length (%d) in %s, [%d, %d]\n", len, opcodes_mi[opcode].name, opcodes_mi[opcode].min_len, opcodes_mi[opcode].max_len); } } opcode_mi = &opcodes_mi[opcode]; break; } } if (opcode_mi && opcode_mi->func) return opcode_mi->func(ctx); switch ((data[0] & 0x1f800000) >> 23) { case 0x0a: instr_out(ctx, 0, "MI_BATCH_BUFFER_END\n"); return -1; case 0x16: instr_out(ctx, 0, "MI_SEMAPHORE_MBOX%s%s%s%s %u\n", data[0] & (1 << 22) ? " global gtt," : "", data[0] & (1 << 21) ? " update semaphore," : "", data[0] & (1 << 20) ? " compare semaphore," : "", data[0] & (1 << 18) ? " use compare reg" : "", (data[0] & (0x3 << 16)) >> 16); instr_out(ctx, 1, "value\n"); instr_out(ctx, 2, "address\n"); return len; case 0x21: instr_out(ctx, 0, "MI_STORE_DATA_INDEX%s\n", data[0] & (1 << 21) ? " use per-process HWS," : ""); instr_out(ctx, 1, "index\n"); instr_out(ctx, 2, "dword\n"); if (len == 4) instr_out(ctx, 3, "upper dword\n"); return len; case 0x00: if (data[0] & (1 << 22)) instr_out(ctx, 0, "MI_NOOP write NOPID reg, val=0x%x\n", data[0] & ((1 << 22) - 1)); else instr_out(ctx, 0, "MI_NOOP\n"); return len; case 0x26: switch (data[0] & (0x3 << 14)) { case (0 << 14): post_sync_op = "no write"; break; case (1 << 14): post_sync_op = "write data"; break; case (2 << 14): post_sync_op = "reserved"; break; case (3 << 14): post_sync_op = "write TIMESTAMP"; break; } instr_out(ctx, 0, "MI_FLUSH_DW%s%s%s%s post_sync_op='%s' %s%s\n", data[0] & (1 << 22) ? " enable protected mem (BCS-only)," : "", data[0] & (1 << 21) ? " store in hws," : "", data[0] & (1 << 18) ? " invalidate tlb," : "", data[0] & (1 << 17) ? " flush gfdt," : "", post_sync_op, data[0] & (1 << 8) ? " enable notify interrupt," : "", data[0] & (1 << 7) ? " invalidate video state (BCS-only)," : ""); if (data[0] & (1 << 21)) instr_out(ctx, 1, "hws index\n"); else instr_out(ctx, 1, "address\n"); instr_out(ctx, 2, "dword\n"); if (len == 4) instr_out(ctx, 3, "upper dword\n"); return len; } for (opcode = 0; opcode < sizeof(opcodes_mi) / sizeof(opcodes_mi[0]); opcode++) { if ((data[0] & 0x1f800000) >> 23 == opcodes_mi[opcode].opcode) { unsigned int i; instr_out(ctx, 0, "%s\n", opcodes_mi[opcode].name); for (i = 1; i < len; i++) { instr_out(ctx, i, "dword %d\n", i); } return len; } } instr_out(ctx, 0, "MI UNKNOWN\n"); return 1; } static void decode_2d_br00(struct intel_decode *ctx, const char *cmd) { instr_out(ctx, 0, "%s (rgb %sabled, alpha %sabled, src tile %d, dst tile %d)\n", cmd, (ctx->data[0] & (1 << 20)) ? "en" : "dis", (ctx->data[0] & (1 << 21)) ? "en" : "dis", (ctx->data[0] >> 15) & 1, (ctx->data[0] >> 11) & 1); } static void decode_2d_br01(struct intel_decode *ctx) { const char *format; switch ((ctx->data[1] >> 24) & 0x3) { case 0: format = "8"; break; case 1: format = "565"; break; case 2: format = "1555"; break; case 3: format = "8888"; break; } instr_out(ctx, 1, "format %s, pitch %d, rop 0x%02x, " "clipping %sabled, %s%s \n", format, (short)(ctx->data[1] & 0xffff), (ctx->data[1] >> 16) & 0xff, ctx->data[1] & (1 << 30) ? "en" : "dis", ctx->data[1] & (1 << 31) ? "solid pattern enabled, " : "", ctx->data[1] & (1 << 31) ? "mono pattern transparency enabled, " : ""); } static int decode_2d(struct intel_decode *ctx) { unsigned int opcode, len; uint32_t *data = ctx->data; struct { uint32_t opcode; unsigned int min_len; unsigned int max_len; const char *name; } opcodes_2d[] = { { 0x40, 5, 5, "COLOR_BLT" }, { 0x43, 6, 6, "SRC_COPY_BLT" }, { 0x01, 8, 8, "XY_SETUP_BLT" }, { 0x11, 9, 9, "XY_SETUP_MONO_PATTERN_SL_BLT" }, { 0x03, 3, 3, "XY_SETUP_CLIP_BLT" }, { 0x24, 2, 2, "XY_PIXEL_BLT" }, { 0x25, 3, 3, "XY_SCANLINES_BLT" }, { 0x26, 4, 4, "Y_TEXT_BLT" }, { 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" }, { 0x50, 6, 6, "XY_COLOR_BLT" }, { 0x51, 6, 6, "XY_PAT_BLT" }, { 0x76, 8, 8, "XY_PAT_CHROMA_BLT" }, { 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" }, { 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" }, { 0x52, 9, 9, "XY_MONO_PAT_BLT" }, { 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" }, { 0x53, 8, 8, "XY_SRC_COPY_BLT" }, { 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" }, { 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" }, { 0x55, 9, 9, "XY_FULL_BLT" }, { 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" }, { 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" }, { 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" }, { 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" }, { 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT"}, }; switch ((data[0] & 0x1fc00000) >> 22) { case 0x25: instr_out(ctx, 0, "XY_SCANLINES_BLT (pattern seed (%d, %d), dst tile %d)\n", (data[0] >> 12) & 0x8, (data[0] >> 8) & 0x8, (data[0] >> 11) & 1); len = (data[0] & 0x000000ff) + 2; if (len != 3) fprintf(out, "Bad count in XY_SCANLINES_BLT\n"); instr_out(ctx, 1, "dest (%d,%d)\n", data[1] & 0xffff, data[1] >> 16); instr_out(ctx, 2, "dest (%d,%d)\n", data[2] & 0xffff, data[2] >> 16); return len; case 0x01: decode_2d_br00(ctx, "XY_SETUP_BLT"); len = (data[0] & 0x000000ff) + 2; if (len != 8) fprintf(out, "Bad count in XY_SETUP_BLT\n"); decode_2d_br01(ctx); instr_out(ctx, 2, "cliprect (%d,%d)\n", data[2] & 0xffff, data[2] >> 16); instr_out(ctx, 3, "cliprect (%d,%d)\n", data[3] & 0xffff, data[3] >> 16); instr_out(ctx, 4, "setup dst offset 0x%08x\n", data[4]); instr_out(ctx, 5, "setup background color\n"); instr_out(ctx, 6, "setup foreground color\n"); instr_out(ctx, 7, "color pattern offset\n"); return len; case 0x03: decode_2d_br00(ctx, "XY_SETUP_CLIP_BLT"); len = (data[0] & 0x000000ff) + 2; if (len != 3) fprintf(out, "Bad count in XY_SETUP_CLIP_BLT\n"); instr_out(ctx, 1, "cliprect (%d,%d)\n", data[1] & 0xffff, data[2] >> 16); instr_out(ctx, 2, "cliprect (%d,%d)\n", data[2] & 0xffff, data[3] >> 16); return len; case 0x11: decode_2d_br00(ctx, "XY_SETUP_MONO_PATTERN_SL_BLT"); len = (data[0] & 0x000000ff) + 2; if (len != 9) fprintf(out, "Bad count in XY_SETUP_MONO_PATTERN_SL_BLT\n"); decode_2d_br01(ctx); instr_out(ctx, 2, "cliprect (%d,%d)\n", data[2] & 0xffff, data[2] >> 16); instr_out(ctx, 3, "cliprect (%d,%d)\n", data[3] & 0xffff, data[3] >> 16); instr_out(ctx, 4, "setup dst offset 0x%08x\n", data[4]); instr_out(ctx, 5, "setup background color\n"); instr_out(ctx, 6, "setup foreground color\n"); instr_out(ctx, 7, "mono pattern dw0\n"); instr_out(ctx, 8, "mono pattern dw1\n"); return len; case 0x50: decode_2d_br00(ctx, "XY_COLOR_BLT"); len = (data[0] & 0x000000ff) + 2; if (len != 6) fprintf(out, "Bad count in XY_COLOR_BLT\n"); decode_2d_br01(ctx); instr_out(ctx, 2, "(%d,%d)\n", data[2] & 0xffff, data[2] >> 16); instr_out(ctx, 3, "(%d,%d)\n", data[3] & 0xffff, data[3] >> 16); instr_out(ctx, 4, "offset 0x%08x\n", data[4]); instr_out(ctx, 5, "color\n"); return len; case 0x53: decode_2d_br00(ctx, "XY_SRC_COPY_BLT"); len = (data[0] & 0x000000ff) + 2; if (len != 8) fprintf(out, "Bad count in XY_SRC_COPY_BLT\n"); decode_2d_br01(ctx); instr_out(ctx, 2, "dst (%d,%d)\n", data[2] & 0xffff, data[2] >> 16); instr_out(ctx, 3, "dst (%d,%d)\n", data[3] & 0xffff, data[3] >> 16); instr_out(ctx, 4, "dst offset 0x%08x\n", data[4]); instr_out(ctx, 5, "src (%d,%d)\n", data[5] & 0xffff, data[5] >> 16); instr_out(ctx, 6, "src pitch %d\n", (short)(data[6] & 0xffff)); instr_out(ctx, 7, "src offset 0x%08x\n", data[7]); return len; } for (opcode = 0; opcode < sizeof(opcodes_2d) / sizeof(opcodes_2d[0]); opcode++) { if ((data[0] & 0x1fc00000) >> 22 == opcodes_2d[opcode].opcode) { unsigned int i; len = 1; instr_out(ctx, 0, "%s\n", opcodes_2d[opcode].name); if (opcodes_2d[opcode].max_len > 1) { len = (data[0] & 0x000000ff) + 2; if (len < opcodes_2d[opcode].min_len || len > opcodes_2d[opcode].max_len) { fprintf(out, "Bad count in %s\n", opcodes_2d[opcode].name); } } for (i = 1; i < len; i++) { instr_out(ctx, i, "dword %d\n", i); } return len; } } instr_out(ctx, 0, "2D UNKNOWN\n"); return 1; } static int decode_3d_1c(struct intel_decode *ctx) { uint32_t *data = ctx->data; uint32_t opcode; opcode = (data[0] & 0x00f80000) >> 19; switch (opcode) { case 0x11: instr_out(ctx, 0, "3DSTATE_DEPTH_SUBRECTANGLE_DISABLE\n"); return 1; case 0x10: instr_out(ctx, 0, "3DSTATE_SCISSOR_ENABLE %s\n", data[0] & 1 ? "enabled" : "disabled"); return 1; case 0x01: instr_out(ctx, 0, "3DSTATE_MAP_COORD_SET_I830\n"); return 1; case 0x0a: instr_out(ctx, 0, "3DSTATE_MAP_CUBE_I830\n"); return 1; case 0x05: instr_out(ctx, 0, "3DSTATE_MAP_TEX_STREAM_I830\n"); return 1; } instr_out(ctx, 0, "3D UNKNOWN: 3d_1c opcode = 0x%x\n", opcode); return 1; } /** Sets the string dstname to describe the destination of the PS instruction */ static void i915_get_instruction_dst(uint32_t *data, int i, char *dstname, int do_mask) { uint32_t a0 = data[i]; int dst_nr = (a0 >> 14) & 0xf; char dstmask[8]; const char *sat; if (do_mask) { if (((a0 >> 10) & 0xf) == 0xf) { dstmask[0] = 0; } else { int dstmask_index = 0; dstmask[dstmask_index++] = '.'; if (a0 & (1 << 10)) dstmask[dstmask_index++] = 'x'; if (a0 & (1 << 11)) dstmask[dstmask_index++] = 'y'; if (a0 & (1 << 12)) dstmask[dstmask_index++] = 'z'; if (a0 & (1 << 13)) dstmask[dstmask_index++] = 'w'; dstmask[dstmask_index++] = 0; } if (a0 & (1 << 22)) sat = ".sat"; else sat = ""; } else { dstmask[0] = 0; sat = ""; } switch ((a0 >> 19) & 0x7) { case 0: if (dst_nr > 15) fprintf(out, "bad destination reg R%d\n", dst_nr); sprintf(dstname, "R%d%s%s", dst_nr, dstmask, sat); break; case 4: if (dst_nr > 0) fprintf(out, "bad destination reg oC%d\n", dst_nr); sprintf(dstname, "oC%s%s", dstmask, sat); break; case 5: if (dst_nr > 0) fprintf(out, "bad destination reg oD%d\n", dst_nr); sprintf(dstname, "oD%s%s", dstmask, sat); break; case 6: if (dst_nr > 3) fprintf(out, "bad destination reg U%d\n", dst_nr); sprintf(dstname, "U%d%s%s", dst_nr, dstmask, sat); break; default: sprintf(dstname, "RESERVED"); break; } } static const char * i915_get_channel_swizzle(uint32_t select) { switch (select & 0x7) { case 0: return (select & 8) ? "-x" : "x"; case 1: return (select & 8) ? "-y" : "y"; case 2: return (select & 8) ? "-z" : "z"; case 3: return (select & 8) ? "-w" : "w"; case 4: return (select & 8) ? "-0" : "0"; case 5: return (select & 8) ? "-1" : "1"; default: return (select & 8) ? "-bad" : "bad"; } } static void i915_get_instruction_src_name(uint32_t src_type, uint32_t src_nr, char *name) { switch (src_type) { case 0: sprintf(name, "R%d", src_nr); if (src_nr > 15) fprintf(out, "bad src reg %s\n", name); break; case 1: if (src_nr < 8) sprintf(name, "T%d", src_nr); else if (src_nr == 8) sprintf(name, "DIFFUSE"); else if (src_nr == 9) sprintf(name, "SPECULAR"); else if (src_nr == 10) sprintf(name, "FOG"); else { fprintf(out, "bad src reg T%d\n", src_nr); sprintf(name, "RESERVED"); } break; case 2: sprintf(name, "C%d", src_nr); if (src_nr > 31) fprintf(out, "bad src reg %s\n", name); break; case 4: sprintf(name, "oC"); if (src_nr > 0) fprintf(out, "bad src reg oC%d\n", src_nr); break; case 5: sprintf(name, "oD"); if (src_nr > 0) fprintf(out, "bad src reg oD%d\n", src_nr); break; case 6: sprintf(name, "U%d", src_nr); if (src_nr > 3) fprintf(out, "bad src reg %s\n", name); break; default: fprintf(out, "bad src reg type %d\n", src_type); sprintf(name, "RESERVED"); break; } } static void i915_get_instruction_src0(uint32_t *data, int i, char *srcname) { uint32_t a0 = data[i]; uint32_t a1 = data[i + 1]; int src_nr = (a0 >> 2) & 0x1f; const char *swizzle_x = i915_get_channel_swizzle((a1 >> 28) & 0xf); const char *swizzle_y = i915_get_channel_swizzle((a1 >> 24) & 0xf); const char *swizzle_z = i915_get_channel_swizzle((a1 >> 20) & 0xf); const char *swizzle_w = i915_get_channel_swizzle((a1 >> 16) & 0xf); char swizzle[100]; i915_get_instruction_src_name((a0 >> 7) & 0x7, src_nr, srcname); sprintf(swizzle, ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z, swizzle_w); if (strcmp(swizzle, ".xyzw") != 0) strcat(srcname, swizzle); } static void i915_get_instruction_src1(uint32_t *data, int i, char *srcname) { uint32_t a1 = data[i + 1]; uint32_t a2 = data[i + 2]; int src_nr = (a1 >> 8) & 0x1f; const char *swizzle_x = i915_get_channel_swizzle((a1 >> 4) & 0xf); const char *swizzle_y = i915_get_channel_swizzle((a1 >> 0) & 0xf); const char *swizzle_z = i915_get_channel_swizzle((a2 >> 28) & 0xf); const char *swizzle_w = i915_get_channel_swizzle((a2 >> 24) & 0xf); char swizzle[100]; i915_get_instruction_src_name((a1 >> 13) & 0x7, src_nr, srcname); sprintf(swizzle, ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z, swizzle_w); if (strcmp(swizzle, ".xyzw") != 0) strcat(srcname, swizzle); } static void i915_get_instruction_src2(uint32_t *data, int i, char *srcname) { uint32_t a2 = data[i + 2]; int src_nr = (a2 >> 16) & 0x1f; const char *swizzle_x = i915_get_channel_swizzle((a2 >> 12) & 0xf); const char *swizzle_y = i915_get_channel_swizzle((a2 >> 8) & 0xf); const char *swizzle_z = i915_get_channel_swizzle((a2 >> 4) & 0xf); const char *swizzle_w = i915_get_channel_swizzle((a2 >> 0) & 0xf); char swizzle[100]; i915_get_instruction_src_name((a2 >> 21) & 0x7, src_nr, srcname); sprintf(swizzle, ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z, swizzle_w); if (strcmp(swizzle, ".xyzw") != 0) strcat(srcname, swizzle); } static void i915_get_instruction_addr(uint32_t src_type, uint32_t src_nr, char *name) { switch (src_type) { case 0: sprintf(name, "R%d", src_nr); if (src_nr > 15) fprintf(out, "bad src reg %s\n", name); break; case 1: if (src_nr < 8) sprintf(name, "T%d", src_nr); else if (src_nr == 8) sprintf(name, "DIFFUSE"); else if (src_nr == 9) sprintf(name, "SPECULAR"); else if (src_nr == 10) sprintf(name, "FOG"); else { fprintf(out, "bad src reg T%d\n", src_nr); sprintf(name, "RESERVED"); } break; case 4: sprintf(name, "oC"); if (src_nr > 0) fprintf(out, "bad src reg oC%d\n", src_nr); break; case 5: sprintf(name, "oD"); if (src_nr > 0) fprintf(out, "bad src reg oD%d\n", src_nr); break; default: fprintf(out, "bad src reg type %d\n", src_type); sprintf(name, "RESERVED"); break; } } static void i915_decode_alu1(struct intel_decode *ctx, int i, char *instr_prefix, const char *op_name) { char dst[100], src0[100]; i915_get_instruction_dst(ctx->data, i, dst, 1); i915_get_instruction_src0(ctx->data, i, src0); instr_out(ctx, i++, "%s: %s %s, %s\n", instr_prefix, op_name, dst, src0); instr_out(ctx, i++, "%s\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); } static void i915_decode_alu2(struct intel_decode *ctx, int i, char *instr_prefix, const char *op_name) { char dst[100], src0[100], src1[100]; i915_get_instruction_dst(ctx->data, i, dst, 1); i915_get_instruction_src0(ctx->data, i, src0); i915_get_instruction_src1(ctx->data, i, src1); instr_out(ctx, i++, "%s: %s %s, %s, %s\n", instr_prefix, op_name, dst, src0, src1); instr_out(ctx, i++, "%s\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); } static void i915_decode_alu3(struct intel_decode *ctx, int i, char *instr_prefix, const char *op_name) { char dst[100], src0[100], src1[100], src2[100]; i915_get_instruction_dst(ctx->data, i, dst, 1); i915_get_instruction_src0(ctx->data, i, src0); i915_get_instruction_src1(ctx->data, i, src1); i915_get_instruction_src2(ctx->data, i, src2); instr_out(ctx, i++, "%s: %s %s, %s, %s, %s\n", instr_prefix, op_name, dst, src0, src1, src2); instr_out(ctx, i++, "%s\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); } static void i915_decode_tex(struct intel_decode *ctx, int i, const char *instr_prefix, const char *tex_name) { uint32_t t0 = ctx->data[i]; uint32_t t1 = ctx->data[i + 1]; char dst_name[100]; char addr_name[100]; int sampler_nr; i915_get_instruction_dst(ctx->data, i, dst_name, 0); i915_get_instruction_addr((t1 >> 24) & 0x7, (t1 >> 17) & 0xf, addr_name); sampler_nr = t0 & 0xf; instr_out(ctx, i++, "%s: %s %s, S%d, %s\n", instr_prefix, tex_name, dst_name, sampler_nr, addr_name); instr_out(ctx, i++, "%s\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); } static void i915_decode_dcl(struct intel_decode *ctx, int i, char *instr_prefix) { uint32_t d0 = ctx->data[i]; const char *sampletype; int dcl_nr = (d0 >> 14) & 0xf; const char *dcl_x = d0 & (1 << 10) ? "x" : ""; const char *dcl_y = d0 & (1 << 11) ? "y" : ""; const char *dcl_z = d0 & (1 << 12) ? "z" : ""; const char *dcl_w = d0 & (1 << 13) ? "w" : ""; char dcl_mask[10]; switch ((d0 >> 19) & 0x3) { case 1: sprintf(dcl_mask, ".%s%s%s%s", dcl_x, dcl_y, dcl_z, dcl_w); if (strcmp(dcl_mask, ".") == 0) fprintf(out, "bad (empty) dcl mask\n"); if (dcl_nr > 10) fprintf(out, "bad T%d dcl register number\n", dcl_nr); if (dcl_nr < 8) { if (strcmp(dcl_mask, ".x") != 0 && strcmp(dcl_mask, ".xy") != 0 && strcmp(dcl_mask, ".xz") != 0 && strcmp(dcl_mask, ".w") != 0 && strcmp(dcl_mask, ".xyzw") != 0) { fprintf(out, "bad T%d.%s dcl mask\n", dcl_nr, dcl_mask); } instr_out(ctx, i++, "%s: DCL T%d%s\n", instr_prefix, dcl_nr, dcl_mask); } else { if (strcmp(dcl_mask, ".xz") == 0) fprintf(out, "errataed bad dcl mask %s\n", dcl_mask); else if (strcmp(dcl_mask, ".xw") == 0) fprintf(out, "errataed bad dcl mask %s\n", dcl_mask); else if (strcmp(dcl_mask, ".xzw") == 0) fprintf(out, "errataed bad dcl mask %s\n", dcl_mask); if (dcl_nr == 8) { instr_out(ctx, i++, "%s: DCL DIFFUSE%s\n", instr_prefix, dcl_mask); } else if (dcl_nr == 9) { instr_out(ctx, i++, "%s: DCL SPECULAR%s\n", instr_prefix, dcl_mask); } else if (dcl_nr == 10) { instr_out(ctx, i++, "%s: DCL FOG%s\n", instr_prefix, dcl_mask); } } instr_out(ctx, i++, "%s\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); break; case 3: switch ((d0 >> 22) & 0x3) { case 0: sampletype = "2D"; break; case 1: sampletype = "CUBE"; break; case 2: sampletype = "3D"; break; default: sampletype = "RESERVED"; break; } if (dcl_nr > 15) fprintf(out, "bad S%d dcl register number\n", dcl_nr); instr_out(ctx, i++, "%s: DCL S%d %s\n", instr_prefix, dcl_nr, sampletype); instr_out(ctx, i++, "%s\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); break; default: instr_out(ctx, i++, "%s: DCL RESERVED%d\n", instr_prefix, dcl_nr); instr_out(ctx, i++, "%s\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); } } static void i915_decode_instruction(struct intel_decode *ctx, int i, char *instr_prefix) { switch ((ctx->data[i] >> 24) & 0x1f) { case 0x0: instr_out(ctx, i++, "%s: NOP\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); break; case 0x01: i915_decode_alu2(ctx, i, instr_prefix, "ADD"); break; case 0x02: i915_decode_alu1(ctx, i, instr_prefix, "MOV"); break; case 0x03: i915_decode_alu2(ctx, i, instr_prefix, "MUL"); break; case 0x04: i915_decode_alu3(ctx, i, instr_prefix, "MAD"); break; case 0x05: i915_decode_alu3(ctx, i, instr_prefix, "DP2ADD"); break; case 0x06: i915_decode_alu2(ctx, i, instr_prefix, "DP3"); break; case 0x07: i915_decode_alu2(ctx, i, instr_prefix, "DP4"); break; case 0x08: i915_decode_alu1(ctx, i, instr_prefix, "FRC"); break; case 0x09: i915_decode_alu1(ctx, i, instr_prefix, "RCP"); break; case 0x0a: i915_decode_alu1(ctx, i, instr_prefix, "RSQ"); break; case 0x0b: i915_decode_alu1(ctx, i, instr_prefix, "EXP"); break; case 0x0c: i915_decode_alu1(ctx, i, instr_prefix, "LOG"); break; case 0x0d: i915_decode_alu2(ctx, i, instr_prefix, "CMP"); break; case 0x0e: i915_decode_alu2(ctx, i, instr_prefix, "MIN"); break; case 0x0f: i915_decode_alu2(ctx, i, instr_prefix, "MAX"); break; case 0x10: i915_decode_alu1(ctx, i, instr_prefix, "FLR"); break; case 0x11: i915_decode_alu1(ctx, i, instr_prefix, "MOD"); break; case 0x12: i915_decode_alu1(ctx, i, instr_prefix, "TRC"); break; case 0x13: i915_decode_alu2(ctx, i, instr_prefix, "SGE"); break; case 0x14: i915_decode_alu2(ctx, i, instr_prefix, "SLT"); break; case 0x15: i915_decode_tex(ctx, i, instr_prefix, "TEXLD"); break; case 0x16: i915_decode_tex(ctx, i, instr_prefix, "TEXLDP"); break; case 0x17: i915_decode_tex(ctx, i, instr_prefix, "TEXLDB"); break; case 0x19: i915_decode_dcl(ctx, i, instr_prefix); break; default: instr_out(ctx, i++, "%s: unknown\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); instr_out(ctx, i++, "%s\n", instr_prefix); break; } } static const char * decode_compare_func(uint32_t op) { switch (op & 0x7) { case 0: return "always"; case 1: return "never"; case 2: return "less"; case 3: return "equal"; case 4: return "lequal"; case 5: return "greater"; case 6: return "notequal"; case 7: return "gequal"; } return ""; } static const char * decode_stencil_op(uint32_t op) { switch (op & 0x7) { case 0: return "keep"; case 1: return "zero"; case 2: return "replace"; case 3: return "incr_sat"; case 4: return "decr_sat"; case 5: return "greater"; case 6: return "incr"; case 7: return "decr"; } return ""; } #if 0 static const char * decode_logic_op(uint32_t op) { switch (op & 0xf) { case 0: return "clear"; case 1: return "nor"; case 2: return "and_inv"; case 3: return "copy_inv"; case 4: return "and_rvrse"; case 5: return "inv"; case 6: return "xor"; case 7: return "nand"; case 8: return "and"; case 9: return "equiv"; case 10: return "noop"; case 11: return "or_inv"; case 12: return "copy"; case 13: return "or_rvrse"; case 14: return "or"; case 15: return "set"; } return ""; } #endif static const char * decode_blend_fact(uint32_t op) { switch (op & 0xf) { case 1: return "zero"; case 2: return "one"; case 3: return "src_colr"; case 4: return "inv_src_colr"; case 5: return "src_alpha"; case 6: return "inv_src_alpha"; case 7: return "dst_alpha"; case 8: return "inv_dst_alpha"; case 9: return "dst_colr"; case 10: return "inv_dst_colr"; case 11: return "src_alpha_sat"; case 12: return "cnst_colr"; case 13: return "inv_cnst_colr"; case 14: return "cnst_alpha"; case 15: return "inv_const_alpha"; } return ""; } static const char * decode_tex_coord_mode(uint32_t mode) { switch (mode & 0x7) { case 0: return "wrap"; case 1: return "mirror"; case 2: return "clamp_edge"; case 3: return "cube"; case 4: return "clamp_border"; case 5: return "mirror_once"; } return ""; } static const char * decode_sample_filter(uint32_t mode) { switch (mode & 0x7) { case 0: return "nearest"; case 1: return "linear"; case 2: return "anisotropic"; case 3: return "4x4_1"; case 4: return "4x4_2"; case 5: return "4x4_flat"; case 6: return "6x5_mono"; } return ""; } static int decode_3d_1d(struct intel_decode *ctx) { unsigned int len, i, c, idx, word, map, sampler, instr; const char *format, *zformat, *type; uint32_t opcode; uint32_t *data = ctx->data; uint32_t devid = ctx->devid; struct { uint32_t opcode; int i830_only; unsigned int min_len; unsigned int max_len; const char *name; } opcodes_3d_1d[] = { { 0x86, 0, 4, 4, "3DSTATE_CHROMA_KEY" }, { 0x88, 0, 2, 2, "3DSTATE_CONSTANT_BLEND_COLOR" }, { 0x99, 0, 2, 2, "3DSTATE_DEFAULT_DIFFUSE" }, { 0x9a, 0, 2, 2, "3DSTATE_DEFAULT_SPECULAR" }, { 0x98, 0, 2, 2, "3DSTATE_DEFAULT_Z" }, { 0x97, 0, 2, 2, "3DSTATE_DEPTH_OFFSET_SCALE" }, { 0x9d, 0, 65, 65, "3DSTATE_FILTER_COEFFICIENTS_4X4" }, { 0x9e, 0, 4, 4, "3DSTATE_MONO_FILTER" }, { 0x89, 0, 4, 4, "3DSTATE_FOG_MODE" }, { 0x8f, 0, 2, 16, "3DSTATE_MAP_PALLETE_LOAD_32" }, { 0x83, 0, 2, 2, "3DSTATE_SPAN_STIPPLE" }, { 0x8c, 1, 2, 2, "3DSTATE_MAP_COORD_TRANSFORM_I830" }, { 0x8b, 1, 2, 2, "3DSTATE_MAP_VERTEX_TRANSFORM_I830" }, { 0x8d, 1, 3, 3, "3DSTATE_W_STATE_I830" }, { 0x01, 1, 2, 2, "3DSTATE_COLOR_FACTOR_I830" }, { 0x02, 1, 2, 2, "3DSTATE_MAP_COORD_SETBIND_I830"}, }, *opcode_3d_1d; opcode = (data[0] & 0x00ff0000) >> 16; switch (opcode) { case 0x07: /* This instruction is unusual. A 0 length means just * 1 DWORD instead of 2. The 0 length is specified in * one place to be unsupported, but stated to be * required in another, and 0 length LOAD_INDIRECTs * appear to cause no harm at least. */ instr_out(ctx, 0, "3DSTATE_LOAD_INDIRECT\n"); len = (data[0] & 0x000000ff) + 1; i = 1; if (data[0] & (0x01 << 8)) { instr_out(ctx, i++, "SIS.0\n"); instr_out(ctx, i++, "SIS.1\n"); } if (data[0] & (0x02 << 8)) { instr_out(ctx, i++, "DIS.0\n"); } if (data[0] & (0x04 << 8)) { instr_out(ctx, i++, "SSB.0\n"); instr_out(ctx, i++, "SSB.1\n"); } if (data[0] & (0x08 << 8)) { instr_out(ctx, i++, "MSB.0\n"); instr_out(ctx, i++, "MSB.1\n"); } if (data[0] & (0x10 << 8)) { instr_out(ctx, i++, "PSP.0\n"); instr_out(ctx, i++, "PSP.1\n"); } if (data[0] & (0x20 << 8)) { instr_out(ctx, i++, "PSC.0\n"); instr_out(ctx, i++, "PSC.1\n"); } if (len != i) { fprintf(out, "Bad count in 3DSTATE_LOAD_INDIRECT\n"); return len; } return len; case 0x04: instr_out(ctx, 0, "3DSTATE_LOAD_STATE_IMMEDIATE_1\n"); len = (data[0] & 0x0000000f) + 2; i = 1; for (word = 0; word <= 8; word++) { if (data[0] & (1 << (4 + word))) { /* save vertex state for decode */ if (!IS_GEN2(devid)) { int tex_num; if (word == 2) { saved_s2_set = 1; saved_s2 = data[i]; } if (word == 4) { saved_s4_set = 1; saved_s4 = data[i]; } switch (word) { case 0: instr_out(ctx, i, "S0: vbo offset: 0x%08x%s\n", data[i] & (~1), data[i] & 1 ? ", auto cache invalidate disabled" : ""); break; case 1: instr_out(ctx, i, "S1: vertex width: %i, vertex pitch: %i\n", (data[i] >> 24) & 0x3f, (data[i] >> 16) & 0x3f); break; case 2: instr_out(ctx, i, "S2: texcoord formats: "); for (tex_num = 0; tex_num < 8; tex_num++) { switch ((data[i] >> tex_num * 4) & 0xf) { case 0: fprintf(out, "%i=2D ", tex_num); break; case 1: fprintf(out, "%i=3D ", tex_num); break; case 2: fprintf(out, "%i=4D ", tex_num); break; case 3: fprintf(out, "%i=1D ", tex_num); break; case 4: fprintf(out, "%i=2D_16 ", tex_num); break; case 5: fprintf(out, "%i=4D_16 ", tex_num); break; case 0xf: fprintf(out, "%i=NP ", tex_num); break; } } fprintf(out, "\n"); break; case 3: instr_out(ctx, i, "S3: not documented\n"); break; case 4: { const char *cullmode = ""; const char *vfmt_xyzw = ""; switch ((data[i] >> 13) & 0x3) { case 0: cullmode = "both"; break; case 1: cullmode = "none"; break; case 2: cullmode = "cw"; break; case 3: cullmode = "ccw"; break; } switch (data[i] & (7 << 6 | 1 << 2)) { case 1 << 6: vfmt_xyzw = "XYZ,"; break; case 2 << 6: vfmt_xyzw = "XYZW,"; break; case 3 << 6: vfmt_xyzw = "XY,"; break; case 4 << 6: vfmt_xyzw = "XYW,"; break; case 1 << 6 | 1 << 2: vfmt_xyzw = "XYZF,"; break; case 2 << 6 | 1 << 2: vfmt_xyzw = "XYZWF,"; break; case 3 << 6 | 1 << 2: vfmt_xyzw = "XYF,"; break; case 4 << 6 | 1 << 2: vfmt_xyzw = "XYWF,"; break; } instr_out(ctx, i, "S4: point_width=%i, line_width=%.1f," "%s%s%s%s%s cullmode=%s, vfmt=%s%s%s%s%s%s " "%s%s%s%s%s\n", (data[i] >> 23) & 0x1ff, ((data[i] >> 19) & 0xf) / 2.0, data[i] & (0xf << 15) ? " flatshade=" : "", data[i] & (1 << 18) ? "Alpha," : "", data[i] & (1 << 17) ? "Fog," : "", data[i] & (1 << 16) ? "Specular," : "", data[i] & (1 << 15) ? "Color," : "", cullmode, data[i] & (1 << 12) ? "PointWidth," : "", data[i] & (1 << 11) ? "SpecFog," : "", data[i] & (1 << 10) ? "Color," : "", data[i] & (1 << 9) ? "DepthOfs," : "", vfmt_xyzw, data[i] & (1 << 9) ? "FogParam," : "", data[i] & (1 << 5) ? "force default diffuse, " : "", data[i] & (1 << 4) ? "force default specular, " : "", data[i] & (1 << 3) ? "local depth ofs enable, " : "", data[i] & (1 << 1) ? "point sprite enable, " : "", data[i] & (1 << 0) ? "line AA enable, " : ""); break; } case 5: { instr_out(ctx, i, "S5:%s%s%s%s%s" "%s%s%s%s stencil_ref=0x%x, stencil_test=%s, " "stencil_fail=%s, stencil_pass_z_fail=%s, " "stencil_pass_z_pass=%s, %s%s%s%s\n", data[i] & (0xf << 28) ? " write_disable=" : "", data[i] & (1 << 31) ? "Alpha," : "", data[i] & (1 << 30) ? "Red," : "", data[i] & (1 << 29) ? "Green," : "", data[i] & (1 << 28) ? "Blue," : "", data[i] & (1 << 27) ? " force default point size," : "", data[i] & (1 << 26) ? " last pixel enable," : "", data[i] & (1 << 25) ? " global depth ofs enable," : "", data[i] & (1 << 24) ? " fog enable," : "", (data[i] >> 16) & 0xff, decode_compare_func (data[i] >> 13), decode_stencil_op (data[i] >> 10), decode_stencil_op (data[i] >> 7), decode_stencil_op (data[i] >> 4), data[i] & (1 << 3) ? "stencil write enable, " : "", data[i] & (1 << 2) ? "stencil test enable, " : "", data[i] & (1 << 1) ? "color dither enable, " : "", data[i] & (1 << 0) ? "logicop enable, " : ""); } break; case 6: instr_out(ctx, i, "S6: %salpha_test=%s, alpha_ref=0x%x, " "depth_test=%s, %ssrc_blnd_fct=%s, dst_blnd_fct=%s, " "%s%stristrip_provoking_vertex=%i\n", data[i] & (1 << 31) ? "alpha test enable, " : "", decode_compare_func (data[i] >> 28), data[i] & (0xff << 20), decode_compare_func (data[i] >> 16), data[i] & (1 << 15) ? "cbuf blend enable, " : "", decode_blend_fact(data [i] >> 8), decode_blend_fact(data [i] >> 4), data[i] & (1 << 3) ? "depth write enable, " : "", data[i] & (1 << 2) ? "cbuf write enable, " : "", data[i] & (0x3)); break; case 7: instr_out(ctx, i, "S7: depth offset constant: 0x%08x\n", data[i]); break; } } else { instr_out(ctx, i, "S%d: 0x%08x\n", word, data[i]); } i++; } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_LOAD_STATE_IMMEDIATE_1\n"); } return len; case 0x03: instr_out(ctx, 0, "3DSTATE_LOAD_STATE_IMMEDIATE_2\n"); len = (data[0] & 0x0000000f) + 2; i = 1; for (word = 6; word <= 14; word++) { if (data[0] & (1 << word)) { if (word == 6) instr_out(ctx, i++, "TBCF\n"); else if (word >= 7 && word <= 10) { instr_out(ctx, i++, "TB%dC\n", word - 7); instr_out(ctx, i++, "TB%dA\n", word - 7); } else if (word >= 11 && word <= 14) { instr_out(ctx, i, "TM%dS0: offset=0x%08x, %s\n", word - 11, data[i] & 0xfffffffe, data[i] & 1 ? "use fence" : ""); i++; instr_out(ctx, i, "TM%dS1: height=%i, width=%i, %s\n", word - 11, data[i] >> 21, (data[i] >> 10) & 0x3ff, data[i] & 2 ? (data[i] & 1 ? "y-tiled" : "x-tiled") : ""); i++; instr_out(ctx, i, "TM%dS2: pitch=%i, \n", word - 11, ((data[i] >> 21) + 1) * 4); i++; instr_out(ctx, i++, "TM%dS3\n", word - 11); instr_out(ctx, i++, "TM%dS4: dflt color\n", word - 11); } } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_LOAD_STATE_IMMEDIATE_2\n"); } return len; case 0x00: instr_out(ctx, 0, "3DSTATE_MAP_STATE\n"); len = (data[0] & 0x0000003f) + 2; instr_out(ctx, 1, "mask\n"); i = 2; for (map = 0; map <= 15; map++) { if (data[1] & (1 << map)) { int width, height, pitch, dword; const char *tiling; dword = data[i]; instr_out(ctx, i++, "map %d MS2 %s%s%s\n", map, dword & (1 << 31) ? "untrusted surface, " : "", dword & (1 << 1) ? "vertical line stride enable, " : "", dword & (1 << 0) ? "vertical ofs enable, " : ""); dword = data[i]; width = ((dword >> 10) & ((1 << 11) - 1)) + 1; height = ((dword >> 21) & ((1 << 11) - 1)) + 1; tiling = "none"; if (dword & (1 << 2)) tiling = "fenced"; else if (dword & (1 << 1)) tiling = dword & (1 << 0) ? "Y" : "X"; type = " BAD"; format = "BAD"; switch ((dword >> 7) & 0x7) { case 1: type = "8b"; switch ((dword >> 3) & 0xf) { case 0: format = "I"; break; case 1: format = "L"; break; case 4: format = "A"; break; case 5: format = " mono"; break; } break; case 2: type = "16b"; switch ((dword >> 3) & 0xf) { case 0: format = " rgb565"; break; case 1: format = " argb1555"; break; case 2: format = " argb4444"; break; case 5: format = " ay88"; break; case 6: format = " bump655"; break; case 7: format = "I"; break; case 8: format = "L"; break; case 9: format = "A"; break; } break; case 3: type = "32b"; switch ((dword >> 3) & 0xf) { case 0: format = " argb8888"; break; case 1: format = " abgr8888"; break; case 2: format = " xrgb8888"; break; case 3: format = " xbgr8888"; break; case 4: format = " qwvu8888"; break; case 5: format = " axvu8888"; break; case 6: format = " lxvu8888"; break; case 7: format = " xlvu8888"; break; case 8: format = " argb2101010"; break; case 9: format = " abgr2101010"; break; case 10: format = " awvu2101010"; break; case 11: format = " gr1616"; break; case 12: format = " vu1616"; break; case 13: format = " xI824"; break; case 14: format = " xA824"; break; case 15: format = " xL824"; break; } break; case 5: type = "422"; switch ((dword >> 3) & 0xf) { case 0: format = " yuv_swapy"; break; case 1: format = " yuv"; break; case 2: format = " yuv_swapuv"; break; case 3: format = " yuv_swapuvy"; break; } break; case 6: type = "compressed"; switch ((dword >> 3) & 0x7) { case 0: format = " dxt1"; break; case 1: format = " dxt2_3"; break; case 2: format = " dxt4_5"; break; case 3: format = " fxt1"; break; case 4: format = " dxt1_rb"; break; } break; case 7: type = "4b indexed"; switch ((dword >> 3) & 0xf) { case 7: format = " argb8888"; break; } break; } dword = data[i]; instr_out(ctx, i++, "map %d MS3 [width=%d, height=%d, format=%s%s, tiling=%s%s]\n", map, width, height, type, format, tiling, dword & (1 << 9) ? " palette select" : ""); dword = data[i]; pitch = 4 * (((dword >> 21) & ((1 << 11) - 1)) + 1); instr_out(ctx, i++, "map %d MS4 [pitch=%d, max_lod=%i, vol_depth=%i, cube_face_ena=%x, %s]\n", map, pitch, (dword >> 9) & 0x3f, dword & 0xff, (dword >> 15) & 0x3f, dword & (1 << 8) ? "miplayout legacy" : "miplayout right"); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_MAP_STATE\n"); return len; } return len; case 0x06: instr_out(ctx, 0, "3DSTATE_PIXEL_SHADER_CONSTANTS\n"); len = (data[0] & 0x000000ff) + 2; i = 2; for (c = 0; c <= 31; c++) { if (data[1] & (1 << c)) { instr_out(ctx, i, "C%d.X = %f\n", c, int_as_float(data[i])); i++; instr_out(ctx, i, "C%d.Y = %f\n", c, int_as_float(data[i])); i++; instr_out(ctx, i, "C%d.Z = %f\n", c, int_as_float(data[i])); i++; instr_out(ctx, i, "C%d.W = %f\n", c, int_as_float(data[i])); i++; } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_PIXEL_SHADER_CONSTANTS\n"); } return len; case 0x05: instr_out(ctx, 0, "3DSTATE_PIXEL_SHADER_PROGRAM\n"); len = (data[0] & 0x000000ff) + 2; if ((len - 1) % 3 != 0 || len > 370) { fprintf(out, "Bad count in 3DSTATE_PIXEL_SHADER_PROGRAM\n"); } i = 1; for (instr = 0; instr < (len - 1) / 3; instr++) { char instr_prefix[10]; sprintf(instr_prefix, "PS%03d", instr); i915_decode_instruction(ctx, i, instr_prefix); i += 3; } return len; case 0x01: if (IS_GEN2(devid)) break; instr_out(ctx, 0, "3DSTATE_SAMPLER_STATE\n"); instr_out(ctx, 1, "mask\n"); len = (data[0] & 0x0000003f) + 2; i = 2; for (sampler = 0; sampler <= 15; sampler++) { if (data[1] & (1 << sampler)) { uint32_t dword; const char *mip_filter = ""; dword = data[i]; switch ((dword >> 20) & 0x3) { case 0: mip_filter = "none"; break; case 1: mip_filter = "nearest"; break; case 3: mip_filter = "linear"; break; } instr_out(ctx, i++, "sampler %d SS2:%s%s%s " "base_mip_level=%i, mip_filter=%s, mag_filter=%s, min_filter=%s " "lod_bias=%.2f,%s max_aniso=%i, shadow_func=%s\n", sampler, dword & (1 << 31) ? " reverse gamma," : "", dword & (1 << 30) ? " packed2planar," : "", dword & (1 << 29) ? " colorspace conversion," : "", (dword >> 22) & 0x1f, mip_filter, decode_sample_filter(dword >> 17), decode_sample_filter(dword >> 14), ((dword >> 5) & 0x1ff) / (0x10 * 1.0), dword & (1 << 4) ? " shadow," : "", dword & (1 << 3) ? 4 : 2, decode_compare_func(dword)); dword = data[i]; instr_out(ctx, i++, "sampler %d SS3: min_lod=%.2f,%s " "tcmode_x=%s, tcmode_y=%s, tcmode_z=%s,%s texmap_idx=%i,%s\n", sampler, ((dword >> 24) & 0xff) / (0x10 * 1.0), dword & (1 << 17) ? " kill pixel enable," : "", decode_tex_coord_mode(dword >> 12), decode_tex_coord_mode(dword >> 9), decode_tex_coord_mode(dword >> 6), dword & (1 << 5) ? " normalized coords," : "", (dword >> 1) & 0xf, dword & (1 << 0) ? " deinterlacer," : ""); dword = data[i]; instr_out(ctx, i++, "sampler %d SS4: border color\n", sampler); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_SAMPLER_STATE\n"); } return len; case 0x85: len = (data[0] & 0x0000000f) + 2; if (len != 2) fprintf(out, "Bad count in 3DSTATE_DEST_BUFFER_VARIABLES\n"); instr_out(ctx, 0, "3DSTATE_DEST_BUFFER_VARIABLES\n"); switch ((data[1] >> 8) & 0xf) { case 0x0: format = "g8"; break; case 0x1: format = "x1r5g5b5"; break; case 0x2: format = "r5g6b5"; break; case 0x3: format = "a8r8g8b8"; break; case 0x4: format = "ycrcb_swapy"; break; case 0x5: format = "ycrcb_normal"; break; case 0x6: format = "ycrcb_swapuv"; break; case 0x7: format = "ycrcb_swapuvy"; break; case 0x8: format = "a4r4g4b4"; break; case 0x9: format = "a1r5g5b5"; break; case 0xa: format = "a2r10g10b10"; break; default: format = "BAD"; break; } switch ((data[1] >> 2) & 0x3) { case 0x0: zformat = "u16"; break; case 0x1: zformat = "f16"; break; case 0x2: zformat = "u24x8"; break; default: zformat = "BAD"; break; } instr_out(ctx, 1, "%s format, %s depth format, early Z %sabled\n", format, zformat, (data[1] & (1 << 31)) ? "en" : "dis"); return len; case 0x8e: { const char *name, *tiling; len = (data[0] & 0x0000000f) + 2; if (len != 3) fprintf(out, "Bad count in 3DSTATE_BUFFER_INFO\n"); switch ((data[1] >> 24) & 0x7) { case 0x3: name = "color"; break; case 0x7: name = "depth"; break; default: name = "unknown"; break; } tiling = "none"; if (data[1] & (1 << 23)) tiling = "fenced"; else if (data[1] & (1 << 22)) tiling = data[1] & (1 << 21) ? "Y" : "X"; instr_out(ctx, 0, "3DSTATE_BUFFER_INFO\n"); instr_out(ctx, 1, "%s, tiling = %s, pitch=%d\n", name, tiling, data[1] & 0xffff); instr_out(ctx, 2, "address\n"); return len; } case 0x81: len = (data[0] & 0x0000000f) + 2; if (len != 3) fprintf(out, "Bad count in 3DSTATE_SCISSOR_RECTANGLE\n"); instr_out(ctx, 0, "3DSTATE_SCISSOR_RECTANGLE\n"); instr_out(ctx, 1, "(%d,%d)\n", data[1] & 0xffff, data[1] >> 16); instr_out(ctx, 2, "(%d,%d)\n", data[2] & 0xffff, data[2] >> 16); return len; case 0x80: len = (data[0] & 0x0000000f) + 2; if (len != 5) fprintf(out, "Bad count in 3DSTATE_DRAWING_RECTANGLE\n"); instr_out(ctx, 0, "3DSTATE_DRAWING_RECTANGLE\n"); instr_out(ctx, 1, "%s\n", data[1] & (1 << 30) ? "depth ofs disabled " : ""); instr_out(ctx, 2, "(%d,%d)\n", data[2] & 0xffff, data[2] >> 16); instr_out(ctx, 3, "(%d,%d)\n", data[3] & 0xffff, data[3] >> 16); instr_out(ctx, 4, "(%d,%d)\n", data[4] & 0xffff, data[4] >> 16); return len; case 0x9c: len = (data[0] & 0x0000000f) + 2; if (len != 7) fprintf(out, "Bad count in 3DSTATE_CLEAR_PARAMETERS\n"); instr_out(ctx, 0, "3DSTATE_CLEAR_PARAMETERS\n"); instr_out(ctx, 1, "prim_type=%s, clear=%s%s%s\n", data[1] & (1 << 16) ? "CLEAR_RECT" : "ZONE_INIT", data[1] & (1 << 2) ? "color," : "", data[1] & (1 << 1) ? "depth," : "", data[1] & (1 << 0) ? "stencil," : ""); instr_out(ctx, 2, "clear color\n"); instr_out(ctx, 3, "clear depth/stencil\n"); instr_out(ctx, 4, "color value (rgba8888)\n"); instr_out(ctx, 5, "depth value %f\n", int_as_float(data[5])); instr_out(ctx, 6, "clear stencil\n"); return len; } for (idx = 0; idx < ARRAY_SIZE(opcodes_3d_1d); idx++) { opcode_3d_1d = &opcodes_3d_1d[idx]; if (opcode_3d_1d->i830_only && !IS_GEN2(devid)) continue; if (((data[0] & 0x00ff0000) >> 16) == opcode_3d_1d->opcode) { len = 1; instr_out(ctx, 0, "%s\n", opcode_3d_1d->name); if (opcode_3d_1d->max_len > 1) { len = (data[0] & 0x0000ffff) + 2; if (len < opcode_3d_1d->min_len || len > opcode_3d_1d->max_len) { fprintf(out, "Bad count in %s\n", opcode_3d_1d->name); } } for (i = 1; i < len; i++) { instr_out(ctx, i, "dword %d\n", i); } return len; } } instr_out(ctx, 0, "3D UNKNOWN: 3d_1d opcode = 0x%x\n", opcode); return 1; } static int decode_3d_primitive(struct intel_decode *ctx) { uint32_t *data = ctx->data; uint32_t count = ctx->count; char immediate = (data[0] & (1 << 23)) == 0; unsigned int len, i, j, ret; const char *primtype; int original_s2 = saved_s2; int original_s4 = saved_s4; switch ((data[0] >> 18) & 0xf) { case 0x0: primtype = "TRILIST"; break; case 0x1: primtype = "TRISTRIP"; break; case 0x2: primtype = "TRISTRIP_REVERSE"; break; case 0x3: primtype = "TRIFAN"; break; case 0x4: primtype = "POLYGON"; break; case 0x5: primtype = "LINELIST"; break; case 0x6: primtype = "LINESTRIP"; break; case 0x7: primtype = "RECTLIST"; break; case 0x8: primtype = "POINTLIST"; break; case 0x9: primtype = "DIB"; break; case 0xa: primtype = "CLEAR_RECT"; saved_s4 = 3 << 6; saved_s2 = ~0; break; default: primtype = "unknown"; break; } /* XXX: 3DPRIM_DIB not supported */ if (immediate) { len = (data[0] & 0x0003ffff) + 2; instr_out(ctx, 0, "3DPRIMITIVE inline %s\n", primtype); if (count < len) BUFFER_FAIL(count, len, "3DPRIMITIVE inline"); if (!saved_s2_set || !saved_s4_set) { fprintf(out, "unknown vertex format\n"); for (i = 1; i < len; i++) { instr_out(ctx, i, " vertex data (%f float)\n", int_as_float(data[i])); } } else { unsigned int vertex = 0; for (i = 1; i < len;) { unsigned int tc; #define VERTEX_OUT(fmt, ...) do { \ if (i < len) \ instr_out(ctx, i, " V%d."fmt"\n", vertex, __VA_ARGS__); \ else \ fprintf(out, " missing data in V%d\n", vertex); \ i++; \ } while (0) VERTEX_OUT("X = %f", int_as_float(data[i])); VERTEX_OUT("Y = %f", int_as_float(data[i])); switch (saved_s4 >> 6 & 0x7) { case 0x1: VERTEX_OUT("Z = %f", int_as_float(data[i])); break; case 0x2: VERTEX_OUT("Z = %f", int_as_float(data[i])); VERTEX_OUT("W = %f", int_as_float(data[i])); break; case 0x3: break; case 0x4: VERTEX_OUT("W = %f", int_as_float(data[i])); break; default: fprintf(out, "bad S4 position mask\n"); } if (saved_s4 & (1 << 10)) { VERTEX_OUT ("color = (A=0x%02x, R=0x%02x, G=0x%02x, " "B=0x%02x)", data[i] >> 24, (data[i] >> 16) & 0xff, (data[i] >> 8) & 0xff, data[i] & 0xff); } if (saved_s4 & (1 << 11)) { VERTEX_OUT ("spec = (A=0x%02x, R=0x%02x, G=0x%02x, " "B=0x%02x)", data[i] >> 24, (data[i] >> 16) & 0xff, (data[i] >> 8) & 0xff, data[i] & 0xff); } if (saved_s4 & (1 << 12)) VERTEX_OUT("width = 0x%08x)", data[i]); for (tc = 0; tc <= 7; tc++) { switch ((saved_s2 >> (tc * 4)) & 0xf) { case 0x0: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data [i])); VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data [i])); break; case 0x1: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data [i])); VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data [i])); VERTEX_OUT("T%d.Z = %f", tc, int_as_float(data [i])); break; case 0x2: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data [i])); VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data [i])); VERTEX_OUT("T%d.Z = %f", tc, int_as_float(data [i])); VERTEX_OUT("T%d.W = %f", tc, int_as_float(data [i])); break; case 0x3: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data [i])); break; case 0x4: VERTEX_OUT ("T%d.XY = 0x%08x half-float", tc, data[i]); break; case 0x5: VERTEX_OUT ("T%d.XY = 0x%08x half-float", tc, data[i]); VERTEX_OUT ("T%d.ZW = 0x%08x half-float", tc, data[i]); break; case 0xf: break; default: fprintf(out, "bad S2.T%d format\n", tc); } } vertex++; } } ret = len; } else { /* indirect vertices */ len = data[0] & 0x0000ffff; /* index count */ if (data[0] & (1 << 17)) { /* random vertex access */ if (count < (len + 1) / 2 + 1) { BUFFER_FAIL(count, (len + 1) / 2 + 1, "3DPRIMITIVE random indirect"); } instr_out(ctx, 0, "3DPRIMITIVE random indirect %s (%d)\n", primtype, len); if (len == 0) { /* vertex indices continue until 0xffff is * found */ for (i = 1; i < count; i++) { if ((data[i] & 0xffff) == 0xffff) { instr_out(ctx, i, " indices: (terminator)\n"); ret = i; goto out; } else if ((data[i] >> 16) == 0xffff) { instr_out(ctx, i, " indices: 0x%04x, (terminator)\n", data[i] & 0xffff); ret = i; goto out; } else { instr_out(ctx, i, " indices: 0x%04x, 0x%04x\n", data[i] & 0xffff, data[i] >> 16); } } fprintf(out, "3DPRIMITIVE: no terminator found in index buffer\n"); ret = count; goto out; } else { /* fixed size vertex index buffer */ for (j = 1, i = 0; i < len; i += 2, j++) { if (i * 2 == len - 1) { instr_out(ctx, j, " indices: 0x%04x\n", data[j] & 0xffff); } else { instr_out(ctx, j, " indices: 0x%04x, 0x%04x\n", data[j] & 0xffff, data[j] >> 16); } } } ret = (len + 1) / 2 + 1; goto out; } else { /* sequential vertex access */ instr_out(ctx, 0, "3DPRIMITIVE sequential indirect %s, %d starting from " "%d\n", primtype, len, data[1] & 0xffff); instr_out(ctx, 1, " start\n"); ret = 2; goto out; } } out: saved_s2 = original_s2; saved_s4 = original_s4; return ret; } static int decode_3d(struct intel_decode *ctx) { uint32_t opcode; unsigned int idx; uint32_t *data = ctx->data; struct { uint32_t opcode; unsigned int min_len; unsigned int max_len; const char *name; } opcodes_3d[] = { { 0x06, 1, 1, "3DSTATE_ANTI_ALIASING" }, { 0x08, 1, 1, "3DSTATE_BACKFACE_STENCIL_OPS" }, { 0x09, 1, 1, "3DSTATE_BACKFACE_STENCIL_MASKS" }, { 0x16, 1, 1, "3DSTATE_COORD_SET_BINDINGS" }, { 0x15, 1, 1, "3DSTATE_FOG_COLOR" }, { 0x0b, 1, 1, "3DSTATE_INDEPENDENT_ALPHA_BLEND" }, { 0x0d, 1, 1, "3DSTATE_MODES_4" }, { 0x0c, 1, 1, "3DSTATE_MODES_5" }, { 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES"}, }, *opcode_3d; opcode = (data[0] & 0x1f000000) >> 24; switch (opcode) { case 0x1f: return decode_3d_primitive(ctx); case 0x1d: return decode_3d_1d(ctx); case 0x1c: return decode_3d_1c(ctx); } for (idx = 0; idx < ARRAY_SIZE(opcodes_3d); idx++) { opcode_3d = &opcodes_3d[idx]; if (opcode == opcode_3d->opcode) { unsigned int len = 1, i; instr_out(ctx, 0, "%s\n", opcode_3d->name); if (opcode_3d->max_len > 1) { len = (data[0] & 0xff) + 2; if (len < opcode_3d->min_len || len > opcode_3d->max_len) { fprintf(out, "Bad count in %s\n", opcode_3d->name); } } for (i = 1; i < len; i++) { instr_out(ctx, i, "dword %d\n", i); } return len; } } instr_out(ctx, 0, "3D UNKNOWN: 3d opcode = 0x%x\n", opcode); return 1; } static const char *get_965_surfacetype(unsigned int surfacetype) { switch (surfacetype) { case 0: return "1D"; case 1: return "2D"; case 2: return "3D"; case 3: return "CUBE"; case 4: return "BUFFER"; case 7: return "NULL"; default: return "unknown"; } } static const char *get_965_depthformat(unsigned int depthformat) { switch (depthformat) { case 0: return "s8_z24float"; case 1: return "z32float"; case 2: return "z24s8"; case 5: return "z16"; default: return "unknown"; } } static const char *get_965_element_component(uint32_t data, int component) { uint32_t component_control = (data >> (16 + (3 - component) * 4)) & 0x7; switch (component_control) { case 0: return "nostore"; case 1: switch (component) { case 0: return "X"; case 1: return "Y"; case 2: return "Z"; case 3: return "W"; default: return "fail"; } case 2: return "0.0"; case 3: return "1.0"; case 4: return "0x1"; case 5: return "VID"; default: return "fail"; } } static const char *get_965_prim_type(uint32_t primtype) { switch (primtype) { case 0x01: return "point list"; case 0x02: return "line list"; case 0x03: return "line strip"; case 0x04: return "tri list"; case 0x05: return "tri strip"; case 0x06: return "tri fan"; case 0x07: return "quad list"; case 0x08: return "quad strip"; case 0x09: return "line list adj"; case 0x0a: return "line strip adj"; case 0x0b: return "tri list adj"; case 0x0c: return "tri strip adj"; case 0x0d: return "tri strip reverse"; case 0x0e: return "polygon"; case 0x0f: return "rect list"; case 0x10: return "line loop"; case 0x11: return "point list bf"; case 0x12: return "line strip cont"; case 0x13: return "line strip bf"; case 0x14: return "line strip cont bf"; case 0x15: return "tri fan no stipple"; default: return "fail"; } } static int i965_decode_urb_fence(struct intel_decode *ctx, int len) { uint32_t vs_fence, clip_fence, gs_fence, sf_fence, vfe_fence, cs_fence; uint32_t *data = ctx->data; if (len != 3) fprintf(out, "Bad count in URB_FENCE\n"); vs_fence = data[1] & 0x3ff; gs_fence = (data[1] >> 10) & 0x3ff; clip_fence = (data[1] >> 20) & 0x3ff; sf_fence = data[2] & 0x3ff; vfe_fence = (data[2] >> 10) & 0x3ff; cs_fence = (data[2] >> 20) & 0x7ff; instr_out(ctx, 0, "URB_FENCE: %s%s%s%s%s%s\n", (data[0] >> 13) & 1 ? "cs " : "", (data[0] >> 12) & 1 ? "vfe " : "", (data[0] >> 11) & 1 ? "sf " : "", (data[0] >> 10) & 1 ? "clip " : "", (data[0] >> 9) & 1 ? "gs " : "", (data[0] >> 8) & 1 ? "vs " : ""); instr_out(ctx, 1, "vs fence: %d, clip_fence: %d, gs_fence: %d\n", vs_fence, clip_fence, gs_fence); instr_out(ctx, 2, "sf fence: %d, vfe_fence: %d, cs_fence: %d\n", sf_fence, vfe_fence, cs_fence); if (gs_fence < vs_fence) fprintf(out, "gs fence < vs fence!\n"); if (clip_fence < gs_fence) fprintf(out, "clip fence < gs fence!\n"); if (sf_fence < clip_fence) fprintf(out, "sf fence < clip fence!\n"); if (cs_fence < sf_fence) fprintf(out, "cs fence < sf fence!\n"); return len; } static void state_base_out(struct intel_decode *ctx, unsigned int index, const char *name) { if (ctx->data[index] & 1) { instr_out(ctx, index, "%s state base address 0x%08x\n", name, ctx->data[index] & ~1); } else { instr_out(ctx, index, "%s state base not updated\n", name); } } static void state_max_out(struct intel_decode *ctx, unsigned int index, const char *name) { if (ctx->data[index] & 1) { if (ctx->data[index] == 1) { instr_out(ctx, index, "%s state upper bound disabled\n", name); } else { instr_out(ctx, index, "%s state upper bound 0x%08x\n", name, ctx->data[index] & ~1); } } else { instr_out(ctx, index, "%s state upper bound not updated\n", name); } } static int gen7_3DSTATE_VIEWPORT_STATE_POINTERS_CC(struct intel_decode *ctx) { instr_out(ctx, 0, "3DSTATE_VIEWPORT_STATE_POINTERS_CC\n"); instr_out(ctx, 1, "pointer to CC viewport\n"); return 2; } static int gen7_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP(struct intel_decode *ctx) { instr_out(ctx, 0, "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP\n"); instr_out(ctx, 1, "pointer to SF_CLIP viewport\n"); return 2; } static int gen7_3DSTATE_BLEND_STATE_POINTERS(struct intel_decode *ctx) { instr_out(ctx, 0, "3DSTATE_BLEND_STATE_POINTERS\n"); instr_out(ctx, 1, "pointer to BLEND_STATE at 0x%08x (%s)\n", ctx->data[1] & ~1, (ctx->data[1] & 1) ? "changed" : "unchanged"); return 2; } static int gen7_3DSTATE_DEPTH_STENCIL_STATE_POINTERS(struct intel_decode *ctx) { instr_out(ctx, 0, "3DSTATE_DEPTH_STENCIL_STATE_POINTERS\n"); instr_out(ctx, 1, "pointer to DEPTH_STENCIL_STATE at 0x%08x (%s)\n", ctx->data[1] & ~1, (ctx->data[1] & 1) ? "changed" : "unchanged"); return 2; } static int gen7_3DSTATE_HIER_DEPTH_BUFFER(struct intel_decode *ctx) { instr_out(ctx, 0, "3DSTATE_HIER_DEPTH_BUFFER\n"); instr_out(ctx, 1, "pitch %db\n", (ctx->data[1] & 0x1ffff) + 1); instr_out(ctx, 2, "pointer to HiZ buffer\n"); return 3; } static int gen6_3DSTATE_CC_STATE_POINTERS(struct intel_decode *ctx) { instr_out(ctx, 0, "3DSTATE_CC_STATE_POINTERS\n"); instr_out(ctx, 1, "blend change %d\n", ctx->data[1] & 1); instr_out(ctx, 2, "depth stencil change %d\n", ctx->data[2] & 1); instr_out(ctx, 3, "cc change %d\n", ctx->data[3] & 1); return 4; } static int gen7_3DSTATE_CC_STATE_POINTERS(struct intel_decode *ctx) { instr_out(ctx, 0, "3DSTATE_CC_STATE_POINTERS\n"); instr_out(ctx, 1, "pointer to COLOR_CALC_STATE at 0x%08x " "(%s)\n", ctx->data[1] & ~1, (ctx->data[1] & 1) ? "changed" : "unchanged"); return 2; } static int gen7_3DSTATE_URB_unit(struct intel_decode *ctx, const char *unit) { int start_kb = ((ctx->data[1] >> 25) & 0x3f) * 8; /* the field is # of 512-bit rows - 1, we print bytes */ int entry_size = (((ctx->data[1] >> 16) & 0x1ff) + 1); int nr_entries = ctx->data[1] & 0xffff; instr_out(ctx, 0, "3DSTATE_URB_%s\n", unit); instr_out(ctx, 1, "%dKB start, size=%d 64B rows, nr_entries=%d, total size %dB\n", start_kb, entry_size, nr_entries, nr_entries * 64 * entry_size); return 2; } static int gen7_3DSTATE_URB_VS(struct intel_decode *ctx) { return gen7_3DSTATE_URB_unit(ctx, "VS"); } static int gen7_3DSTATE_URB_HS(struct intel_decode *ctx) { return gen7_3DSTATE_URB_unit(ctx, "HS"); } static int gen7_3DSTATE_URB_DS(struct intel_decode *ctx) { return gen7_3DSTATE_URB_unit(ctx, "DS"); } static int gen7_3DSTATE_URB_GS(struct intel_decode *ctx) { return gen7_3DSTATE_URB_unit(ctx, "GS"); } static int gen7_3DSTATE_CONSTANT(struct intel_decode *ctx, const char *unit) { int rlen[4]; rlen[0] = (ctx->data[1] >> 0) & 0xffff; rlen[1] = (ctx->data[1] >> 16) & 0xffff; rlen[2] = (ctx->data[2] >> 0) & 0xffff; rlen[3] = (ctx->data[2] >> 16) & 0xffff; instr_out(ctx, 0, "3DSTATE_CONSTANT_%s\n", unit); instr_out(ctx, 1, "len 0 = %d, len 1 = %d\n", rlen[0], rlen[1]); instr_out(ctx, 2, "len 2 = %d, len 3 = %d\n", rlen[2], rlen[3]); instr_out(ctx, 3, "pointer to constbuf 0\n"); instr_out(ctx, 4, "pointer to constbuf 1\n"); instr_out(ctx, 5, "pointer to constbuf 2\n"); instr_out(ctx, 6, "pointer to constbuf 3\n"); return 7; } static int gen7_3DSTATE_CONSTANT_VS(struct intel_decode *ctx) { return gen7_3DSTATE_CONSTANT(ctx, "VS"); } static int gen7_3DSTATE_CONSTANT_GS(struct intel_decode *ctx) { return gen7_3DSTATE_CONSTANT(ctx, "GS"); } static int gen7_3DSTATE_CONSTANT_PS(struct intel_decode *ctx) { return gen7_3DSTATE_CONSTANT(ctx, "PS"); } static int gen7_3DSTATE_CONSTANT_DS(struct intel_decode *ctx) { return gen7_3DSTATE_CONSTANT(ctx, "DS"); } static int gen7_3DSTATE_CONSTANT_HS(struct intel_decode *ctx) { return gen7_3DSTATE_CONSTANT(ctx, "HS"); } static int gen6_3DSTATE_WM(struct intel_decode *ctx) { instr_out(ctx, 0, "3DSTATE_WM\n"); instr_out(ctx, 1, "kernel start pointer 0\n"); instr_out(ctx, 2, "SPF=%d, VME=%d, Sampler Count %d, " "Binding table count %d\n", (ctx->data[2] >> 31) & 1, (ctx->data[2] >> 30) & 1, (ctx->data[2] >> 27) & 7, (ctx->data[2] >> 18) & 0xff); instr_out(ctx, 3, "scratch offset\n"); instr_out(ctx, 4, "Depth Clear %d, Depth Resolve %d, HiZ Resolve %d, " "Dispatch GRF start[0] %d, start[1] %d, start[2] %d\n", (ctx->data[4] & (1 << 30)) != 0, (ctx->data[4] & (1 << 28)) != 0, (ctx->data[4] & (1 << 27)) != 0, (ctx->data[4] >> 16) & 0x7f, (ctx->data[4] >> 8) & 0x7f, (ctx->data[4] & 0x7f)); instr_out(ctx, 5, "MaxThreads %d, PS KillPixel %d, PS computed Z %d, " "PS use sourceZ %d, Thread Dispatch %d, PS use sourceW %d, " "Dispatch32 %d, Dispatch16 %d, Dispatch8 %d\n", ((ctx->data[5] >> 25) & 0x7f) + 1, (ctx->data[5] & (1 << 22)) != 0, (ctx->data[5] & (1 << 21)) != 0, (ctx->data[5] & (1 << 20)) != 0, (ctx->data[5] & (1 << 19)) != 0, (ctx->data[5] & (1 << 8)) != 0, (ctx->data[5] & (1 << 2)) != 0, (ctx->data[5] & (1 << 1)) != 0, (ctx->data[5] & (1 << 0)) != 0); instr_out(ctx, 6, "Num SF output %d, Pos XY offset %d, ZW interp mode %d , " "Barycentric interp mode 0x%x, Point raster rule %d, " "Multisample mode %d, " "Multisample Dispatch mode %d\n", (ctx->data[6] >> 20) & 0x3f, (ctx->data[6] >> 18) & 3, (ctx->data[6] >> 16) & 3, (ctx->data[6] >> 10) & 0x3f, (ctx->data[6] & (1 << 9)) != 0, (ctx->data[6] >> 1) & 3, (ctx->data[6] & 1)); instr_out(ctx, 7, "kernel start pointer 1\n"); instr_out(ctx, 8, "kernel start pointer 2\n"); return 9; } static int gen7_3DSTATE_WM(struct intel_decode *ctx) { const char *computed_depth = ""; const char *early_depth = ""; const char *zw_interp = ""; switch ((ctx->data[1] >> 23) & 0x3) { case 0: computed_depth = ""; break; case 1: computed_depth = "computed depth"; break; case 2: computed_depth = "computed depth >="; break; case 3: computed_depth = "computed depth <="; break; } switch ((ctx->data[1] >> 21) & 0x3) { case 0: early_depth = ""; break; case 1: early_depth = ", EDSC_PSEXEC"; break; case 2: early_depth = ", EDSC_PREPS"; break; case 3: early_depth = ", BAD EDSC"; break; } switch ((ctx->data[1] >> 17) & 0x3) { case 0: early_depth = ""; break; case 1: early_depth = ", BAD ZW interp"; break; case 2: early_depth = ", ZW centroid"; break; case 3: early_depth = ", ZW sample"; break; } instr_out(ctx, 0, "3DSTATE_WM\n"); instr_out(ctx, 1, "(%s%s%s%s%s%s)%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", (ctx->data[1] & (1 << 11)) ? "PP " : "", (ctx->data[1] & (1 << 12)) ? "PC " : "", (ctx->data[1] & (1 << 13)) ? "PS " : "", (ctx->data[1] & (1 << 14)) ? "NPP " : "", (ctx->data[1] & (1 << 15)) ? "NPC " : "", (ctx->data[1] & (1 << 16)) ? "NPS " : "", (ctx->data[1] & (1 << 30)) ? ", depth clear" : "", (ctx->data[1] & (1 << 29)) ? "" : ", disabled", (ctx->data[1] & (1 << 28)) ? ", depth resolve" : "", (ctx->data[1] & (1 << 27)) ? ", hiz resolve" : "", (ctx->data[1] & (1 << 25)) ? ", kill" : "", computed_depth, early_depth, zw_interp, (ctx->data[1] & (1 << 20)) ? ", source depth" : "", (ctx->data[1] & (1 << 19)) ? ", source W" : "", (ctx->data[1] & (1 << 10)) ? ", coverage" : "", (ctx->data[1] & (1 << 4)) ? ", poly stipple" : "", (ctx->data[1] & (1 << 3)) ? ", line stipple" : "", (ctx->data[1] & (1 << 2)) ? ", point UL" : ", point UR" ); instr_out(ctx, 2, "MS\n"); return 3; } static int gen4_3DPRIMITIVE(struct intel_decode *ctx) { instr_out(ctx, 0, "3DPRIMITIVE: %s %s\n", get_965_prim_type((ctx->data[0] >> 10) & 0x1f), (ctx->data[0] & (1 << 15)) ? "random" : "sequential"); instr_out(ctx, 1, "vertex count\n"); instr_out(ctx, 2, "start vertex\n"); instr_out(ctx, 3, "instance count\n"); instr_out(ctx, 4, "start instance\n"); instr_out(ctx, 5, "index bias\n"); return 6; } static int gen7_3DPRIMITIVE(struct intel_decode *ctx) { bool indirect = !!(ctx->data[0] & (1 << 10)); instr_out(ctx, 0, "3DPRIMITIVE: %s%s\n", indirect ? " indirect" : "", (ctx->data[0] & (1 << 8)) ? " predicated" : ""); instr_out(ctx, 1, "%s %s\n", get_965_prim_type(ctx->data[1] & 0x3f), (ctx->data[1] & (1 << 8)) ? "random" : "sequential"); instr_out(ctx, 2, indirect ? "ignored" : "vertex count\n"); instr_out(ctx, 3, indirect ? "ignored" : "start vertex\n"); instr_out(ctx, 4, indirect ? "ignored" : "instance count\n"); instr_out(ctx, 5, indirect ? "ignored" : "start instance\n"); instr_out(ctx, 6, indirect ? "ignored" : "index bias\n"); return 7; } static int decode_3d_965(struct intel_decode *ctx) { uint32_t opcode; unsigned int len; unsigned int i, j, sba_len; const char *desc1 = NULL; uint32_t *data = ctx->data; uint32_t devid = ctx->devid; struct { uint32_t opcode; uint32_t len_mask; int unsigned min_len; int unsigned max_len; const char *name; int gen; int (*func)(struct intel_decode *ctx); } opcodes_3d[] = { { 0x6000, 0x00ff, 3, 3, "URB_FENCE" }, { 0x6001, 0xffff, 2, 2, "CS_URB_STATE" }, { 0x6002, 0x00ff, 2, 2, "CONSTANT_BUFFER" }, { 0x6101, 0xffff, 6, 10, "STATE_BASE_ADDRESS" }, { 0x6102, 0xffff, 2, 2, "STATE_SIP" }, { 0x6104, 0xffff, 1, 1, "3DSTATE_PIPELINE_SELECT" }, { 0x680b, 0xffff, 1, 1, "3DSTATE_VF_STATISTICS" }, { 0x6904, 0xffff, 1, 1, "3DSTATE_PIPELINE_SELECT" }, { 0x7800, 0xffff, 7, 7, "3DSTATE_PIPELINED_POINTERS" }, { 0x7801, 0x00ff, 4, 6, "3DSTATE_BINDING_TABLE_POINTERS" }, { 0x7802, 0x00ff, 4, 4, "3DSTATE_SAMPLER_STATE_POINTERS" }, { 0x7805, 0x00ff, 7, 7, "3DSTATE_DEPTH_BUFFER", 7 }, { 0x7805, 0x00ff, 3, 3, "3DSTATE_URB" }, { 0x7804, 0x00ff, 3, 3, "3DSTATE_CLEAR_PARAMS" }, { 0x7806, 0x00ff, 3, 3, "3DSTATE_STENCIL_BUFFER" }, { 0x790f, 0x00ff, 3, 3, "3DSTATE_HIER_DEPTH_BUFFER", 6 }, { 0x7807, 0x00ff, 3, 3, "3DSTATE_HIER_DEPTH_BUFFER", 7, gen7_3DSTATE_HIER_DEPTH_BUFFER }, { 0x7808, 0x00ff, 5, 257, "3DSTATE_VERTEX_BUFFERS" }, { 0x7809, 0x00ff, 3, 256, "3DSTATE_VERTEX_ELEMENTS" }, { 0x780a, 0x00ff, 3, 3, "3DSTATE_INDEX_BUFFER" }, { 0x780b, 0xffff, 1, 1, "3DSTATE_VF_STATISTICS" }, { 0x780d, 0x00ff, 4, 4, "3DSTATE_VIEWPORT_STATE_POINTERS" }, { 0x780e, 0xffff, 4, 4, NULL, 6, gen6_3DSTATE_CC_STATE_POINTERS }, { 0x780e, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_CC_STATE_POINTERS }, { 0x780f, 0x00ff, 2, 2, "3DSTATE_SCISSOR_POINTERS" }, { 0x7810, 0x00ff, 6, 6, "3DSTATE_VS" }, { 0x7811, 0x00ff, 7, 7, "3DSTATE_GS" }, { 0x7812, 0x00ff, 4, 4, "3DSTATE_CLIP" }, { 0x7813, 0x00ff, 20, 20, "3DSTATE_SF", 6 }, { 0x7813, 0x00ff, 7, 7, "3DSTATE_SF", 7 }, { 0x7814, 0x00ff, 3, 3, "3DSTATE_WM", 7, gen7_3DSTATE_WM }, { 0x7814, 0x00ff, 9, 9, "3DSTATE_WM", 6, gen6_3DSTATE_WM }, { 0x7815, 0x00ff, 5, 5, "3DSTATE_CONSTANT_VS_STATE", 6 }, { 0x7815, 0x00ff, 7, 7, "3DSTATE_CONSTANT_VS", 7, gen7_3DSTATE_CONSTANT_VS }, { 0x7816, 0x00ff, 5, 5, "3DSTATE_CONSTANT_GS_STATE", 6 }, { 0x7816, 0x00ff, 7, 7, "3DSTATE_CONSTANT_GS", 7, gen7_3DSTATE_CONSTANT_GS }, { 0x7817, 0x00ff, 5, 5, "3DSTATE_CONSTANT_PS_STATE", 6 }, { 0x7817, 0x00ff, 7, 7, "3DSTATE_CONSTANT_PS", 7, gen7_3DSTATE_CONSTANT_PS }, { 0x7818, 0xffff, 2, 2, "3DSTATE_SAMPLE_MASK" }, { 0x7819, 0x00ff, 7, 7, "3DSTATE_CONSTANT_HS", 7, gen7_3DSTATE_CONSTANT_HS }, { 0x781a, 0x00ff, 7, 7, "3DSTATE_CONSTANT_DS", 7, gen7_3DSTATE_CONSTANT_DS }, { 0x781b, 0x00ff, 7, 7, "3DSTATE_HS" }, { 0x781c, 0x00ff, 4, 4, "3DSTATE_TE" }, { 0x781d, 0x00ff, 6, 6, "3DSTATE_DS" }, { 0x781e, 0x00ff, 3, 3, "3DSTATE_STREAMOUT" }, { 0x781f, 0x00ff, 14, 14, "3DSTATE_SBE" }, { 0x7820, 0x00ff, 8, 8, "3DSTATE_PS" }, { 0x7821, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP }, { 0x7823, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_VIEWPORT_STATE_POINTERS_CC }, { 0x7824, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_BLEND_STATE_POINTERS }, { 0x7825, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_DEPTH_STENCIL_STATE_POINTERS }, { 0x7826, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_VS" }, { 0x7827, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_HS" }, { 0x7828, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_DS" }, { 0x7829, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_GS" }, { 0x782a, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_PS" }, { 0x782b, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_VS" }, { 0x782c, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_HS" }, { 0x782d, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_DS" }, { 0x782e, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_GS" }, { 0x782f, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_PS" }, { 0x7830, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_VS }, { 0x7831, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_HS }, { 0x7832, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_DS }, { 0x7833, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_GS }, { 0x7900, 0xffff, 4, 4, "3DSTATE_DRAWING_RECTANGLE" }, { 0x7901, 0xffff, 5, 5, "3DSTATE_CONSTANT_COLOR" }, { 0x7905, 0xffff, 5, 7, "3DSTATE_DEPTH_BUFFER" }, { 0x7906, 0xffff, 2, 2, "3DSTATE_POLY_STIPPLE_OFFSET" }, { 0x7907, 0xffff, 33, 33, "3DSTATE_POLY_STIPPLE_PATTERN" }, { 0x7908, 0xffff, 3, 3, "3DSTATE_LINE_STIPPLE" }, { 0x7909, 0xffff, 2, 2, "3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP" }, { 0x7909, 0xffff, 2, 2, "3DSTATE_CLEAR_PARAMS" }, { 0x790a, 0xffff, 3, 3, "3DSTATE_AA_LINE_PARAMETERS" }, { 0x790b, 0xffff, 4, 4, "3DSTATE_GS_SVB_INDEX" }, { 0x790d, 0xffff, 3, 3, "3DSTATE_MULTISAMPLE", 6 }, { 0x790d, 0xffff, 4, 4, "3DSTATE_MULTISAMPLE", 7 }, { 0x7910, 0x00ff, 2, 2, "3DSTATE_CLEAR_PARAMS" }, { 0x7912, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_VS" }, { 0x7913, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_HS" }, { 0x7914, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_DS" }, { 0x7915, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_GS" }, { 0x7916, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_PS" }, { 0x7917, 0x00ff, 2, 2+128*2, "3DSTATE_SO_DECL_LIST" }, { 0x7918, 0x00ff, 4, 4, "3DSTATE_SO_BUFFER" }, { 0x7a00, 0x00ff, 4, 6, "PIPE_CONTROL" }, { 0x7b00, 0x00ff, 7, 7, NULL, 7, gen7_3DPRIMITIVE }, { 0x7b00, 0x00ff, 6, 6, NULL, 0, gen4_3DPRIMITIVE }, }, *opcode_3d = NULL; opcode = (data[0] & 0xffff0000) >> 16; for (i = 0; i < ARRAY_SIZE(opcodes_3d); i++) { if (opcode != opcodes_3d[i].opcode) continue; /* If it's marked as not our gen, skip. */ if (opcodes_3d[i].gen && opcodes_3d[i].gen != ctx->gen) continue; opcode_3d = &opcodes_3d[i]; break; } if (opcode_3d) { if (opcode_3d->max_len == 1) len = 1; else len = (data[0] & opcode_3d->len_mask) + 2; if (len < opcode_3d->min_len || len > opcode_3d->max_len) { fprintf(out, "Bad length %d in %s, expected %d-%d\n", len, opcode_3d->name, opcode_3d->min_len, opcode_3d->max_len); } } else { len = (data[0] & 0x0000ffff) + 2; } switch (opcode) { case 0x6000: return i965_decode_urb_fence(ctx, len); case 0x6001: instr_out(ctx, 0, "CS_URB_STATE\n"); instr_out(ctx, 1, "entry_size: %d [%d bytes], n_entries: %d\n", (data[1] >> 4) & 0x1f, (((data[1] >> 4) & 0x1f) + 1) * 64, data[1] & 0x7); return len; case 0x6002: instr_out(ctx, 0, "CONSTANT_BUFFER: %s\n", (data[0] >> 8) & 1 ? "valid" : "invalid"); instr_out(ctx, 1, "offset: 0x%08x, length: %d bytes\n", data[1] & ~0x3f, ((data[1] & 0x3f) + 1) * 64); return len; case 0x6101: i = 0; instr_out(ctx, 0, "STATE_BASE_ADDRESS\n"); i++; if (IS_GEN6(devid) || IS_GEN7(devid)) sba_len = 10; else if (IS_GEN5(devid)) sba_len = 8; else sba_len = 6; if (len != sba_len) fprintf(out, "Bad count in STATE_BASE_ADDRESS\n"); state_base_out(ctx, i++, "general"); state_base_out(ctx, i++, "surface"); if (IS_GEN6(devid) || IS_GEN7(devid)) state_base_out(ctx, i++, "dynamic"); state_base_out(ctx, i++, "indirect"); if (IS_GEN5(devid) || IS_GEN6(devid) || IS_GEN7(devid)) state_base_out(ctx, i++, "instruction"); state_max_out(ctx, i++, "general"); if (IS_GEN6(devid) || IS_GEN7(devid)) state_max_out(ctx, i++, "dynamic"); state_max_out(ctx, i++, "indirect"); if (IS_GEN5(devid) || IS_GEN6(devid) || IS_GEN7(devid)) state_max_out(ctx, i++, "instruction"); return len; case 0x7800: instr_out(ctx, 0, "3DSTATE_PIPELINED_POINTERS\n"); instr_out(ctx, 1, "VS state\n"); instr_out(ctx, 2, "GS state\n"); instr_out(ctx, 3, "Clip state\n"); instr_out(ctx, 4, "SF state\n"); instr_out(ctx, 5, "WM state\n"); instr_out(ctx, 6, "CC state\n"); return len; case 0x7801: if (len != 6 && len != 4) fprintf(out, "Bad count in 3DSTATE_BINDING_TABLE_POINTERS\n"); if (len == 6) { instr_out(ctx, 0, "3DSTATE_BINDING_TABLE_POINTERS\n"); instr_out(ctx, 1, "VS binding table\n"); instr_out(ctx, 2, "GS binding table\n"); instr_out(ctx, 3, "Clip binding table\n"); instr_out(ctx, 4, "SF binding table\n"); instr_out(ctx, 5, "WM binding table\n"); } else { instr_out(ctx, 0, "3DSTATE_BINDING_TABLE_POINTERS: VS mod %d, " "GS mod %d, PS mod %d\n", (data[0] & (1 << 8)) != 0, (data[0] & (1 << 9)) != 0, (data[0] & (1 << 12)) != 0); instr_out(ctx, 1, "VS binding table\n"); instr_out(ctx, 2, "GS binding table\n"); instr_out(ctx, 3, "WM binding table\n"); } return len; case 0x7802: instr_out(ctx, 0, "3DSTATE_SAMPLER_STATE_POINTERS: VS mod %d, " "GS mod %d, PS mod %d\n", (data[0] & (1 << 8)) != 0, (data[0] & (1 << 9)) != 0, (data[0] & (1 << 12)) != 0); instr_out(ctx, 1, "VS sampler state\n"); instr_out(ctx, 2, "GS sampler state\n"); instr_out(ctx, 3, "WM sampler state\n"); return len; case 0x7805: /* Actually 3DSTATE_DEPTH_BUFFER on gen7. */ if (ctx->gen == 7) break; instr_out(ctx, 0, "3DSTATE_URB\n"); instr_out(ctx, 1, "VS entries %d, alloc size %d (1024bit row)\n", data[1] & 0xffff, ((data[1] >> 16) & 0x07f) + 1); instr_out(ctx, 2, "GS entries %d, alloc size %d (1024bit row)\n", (data[2] >> 8) & 0x3ff, (data[2] & 7) + 1); return len; case 0x7808: if ((len - 1) % 4 != 0) fprintf(out, "Bad count in 3DSTATE_VERTEX_BUFFERS\n"); instr_out(ctx, 0, "3DSTATE_VERTEX_BUFFERS\n"); for (i = 1; i < len;) { int idx, access; if (IS_GEN6(devid)) { idx = 26; access = 20; } else { idx = 27; access = 26; } instr_out(ctx, i, "buffer %d: %s, pitch %db\n", data[i] >> idx, data[i] & (1 << access) ? "random" : "sequential", data[i] & 0x07ff); i++; instr_out(ctx, i++, "buffer address\n"); instr_out(ctx, i++, "max index\n"); instr_out(ctx, i++, "mbz\n"); } return len; case 0x7809: if ((len + 1) % 2 != 0) fprintf(out, "Bad count in 3DSTATE_VERTEX_ELEMENTS\n"); instr_out(ctx, 0, "3DSTATE_VERTEX_ELEMENTS\n"); for (i = 1; i < len;) { instr_out(ctx, i, "buffer %d: %svalid, type 0x%04x, " "src offset 0x%04x bytes\n", data[i] >> ((IS_GEN6(devid) || IS_GEN7(devid)) ? 26 : 27), data[i] & (1 << ((IS_GEN6(devid) || IS_GEN7(devid)) ? 25 : 26)) ? "" : "in", (data[i] >> 16) & 0x1ff, data[i] & 0x07ff); i++; instr_out(ctx, i, "(%s, %s, %s, %s), " "dst offset 0x%02x bytes\n", get_965_element_component(data[i], 0), get_965_element_component(data[i], 1), get_965_element_component(data[i], 2), get_965_element_component(data[i], 3), (data[i] & 0xff) * 4); i++; } return len; case 0x780d: instr_out(ctx, 0, "3DSTATE_VIEWPORT_STATE_POINTERS\n"); instr_out(ctx, 1, "clip\n"); instr_out(ctx, 2, "sf\n"); instr_out(ctx, 3, "cc\n"); return len; case 0x780a: instr_out(ctx, 0, "3DSTATE_INDEX_BUFFER\n"); instr_out(ctx, 1, "beginning buffer address\n"); instr_out(ctx, 2, "ending buffer address\n"); return len; case 0x780f: instr_out(ctx, 0, "3DSTATE_SCISSOR_POINTERS\n"); instr_out(ctx, 1, "scissor rect offset\n"); return len; case 0x7810: instr_out(ctx, 0, "3DSTATE_VS\n"); instr_out(ctx, 1, "kernel pointer\n"); instr_out(ctx, 2, "SPF=%d, VME=%d, Sampler Count %d, " "Binding table count %d\n", (data[2] >> 31) & 1, (data[2] >> 30) & 1, (data[2] >> 27) & 7, (data[2] >> 18) & 0xff); instr_out(ctx, 3, "scratch offset\n"); instr_out(ctx, 4, "Dispatch GRF start %d, VUE read length %d, " "VUE read offset %d\n", (data[4] >> 20) & 0x1f, (data[4] >> 11) & 0x3f, (data[4] >> 4) & 0x3f); instr_out(ctx, 5, "Max Threads %d, Vertex Cache %sable, " "VS func %sable\n", ((data[5] >> 25) & 0x7f) + 1, (data[5] & (1 << 1)) != 0 ? "dis" : "en", (data[5] & 1) != 0 ? "en" : "dis"); return len; case 0x7811: instr_out(ctx, 0, "3DSTATE_GS\n"); instr_out(ctx, 1, "kernel pointer\n"); instr_out(ctx, 2, "SPF=%d, VME=%d, Sampler Count %d, " "Binding table count %d\n", (data[2] >> 31) & 1, (data[2] >> 30) & 1, (data[2] >> 27) & 7, (data[2] >> 18) & 0xff); instr_out(ctx, 3, "scratch offset\n"); instr_out(ctx, 4, "Dispatch GRF start %d, VUE read length %d, " "VUE read offset %d\n", (data[4] & 0xf), (data[4] >> 11) & 0x3f, (data[4] >> 4) & 0x3f); instr_out(ctx, 5, "Max Threads %d, Rendering %sable\n", ((data[5] >> 25) & 0x7f) + 1, (data[5] & (1 << 8)) != 0 ? "en" : "dis"); instr_out(ctx, 6, "Reorder %sable, Discard Adjaceny %sable, " "GS %sable\n", (data[6] & (1 << 30)) != 0 ? "en" : "dis", (data[6] & (1 << 29)) != 0 ? "en" : "dis", (data[6] & (1 << 15)) != 0 ? "en" : "dis"); return len; case 0x7812: instr_out(ctx, 0, "3DSTATE_CLIP\n"); instr_out(ctx, 1, "UserClip distance cull test mask 0x%x\n", data[1] & 0xff); instr_out(ctx, 2, "Clip %sable, API mode %s, Viewport XY test %sable, " "Viewport Z test %sable, Guardband test %sable, Clip mode %d, " "Perspective Divide %sable, Non-Perspective Barycentric %sable, " "Tri Provoking %d, Line Provoking %d, Trifan Provoking %d\n", (data[2] & (1 << 31)) != 0 ? "en" : "dis", (data[2] & (1 << 30)) != 0 ? "D3D" : "OGL", (data[2] & (1 << 28)) != 0 ? "en" : "dis", (data[2] & (1 << 27)) != 0 ? "en" : "dis", (data[2] & (1 << 26)) != 0 ? "en" : "dis", (data[2] >> 13) & 7, (data[2] & (1 << 9)) != 0 ? "dis" : "en", (data[2] & (1 << 8)) != 0 ? "en" : "dis", (data[2] >> 4) & 3, (data[2] >> 2) & 3, (data[2] & 3)); instr_out(ctx, 3, "Min PointWidth %d, Max PointWidth %d, " "Force Zero RTAIndex %sable, Max VPIndex %d\n", (data[3] >> 17) & 0x7ff, (data[3] >> 6) & 0x7ff, (data[3] & (1 << 5)) != 0 ? "en" : "dis", (data[3] & 0xf)); return len; case 0x7813: if (ctx->gen == 7) break; instr_out(ctx, 0, "3DSTATE_SF\n"); instr_out(ctx, 1, "Attrib Out %d, Attrib Swizzle %sable, VUE read length %d, " "VUE read offset %d\n", (data[1] >> 22) & 0x3f, (data[1] & (1 << 21)) != 0 ? "en" : "dis", (data[1] >> 11) & 0x1f, (data[1] >> 4) & 0x3f); instr_out(ctx, 2, "Legacy Global DepthBias %sable, FrontFace fill %d, BF fill %d, " "VP transform %sable, FrontWinding_%s\n", (data[2] & (1 << 11)) != 0 ? "en" : "dis", (data[2] >> 5) & 3, (data[2] >> 3) & 3, (data[2] & (1 << 1)) != 0 ? "en" : "dis", (data[2] & 1) != 0 ? "CCW" : "CW"); instr_out(ctx, 3, "AA %sable, CullMode %d, Scissor %sable, Multisample m ode %d\n", (data[3] & (1 << 31)) != 0 ? "en" : "dis", (data[3] >> 29) & 3, (data[3] & (1 << 11)) != 0 ? "en" : "dis", (data[3] >> 8) & 3); instr_out(ctx, 4, "Last Pixel %sable, SubPixel Precision %d, Use PixelWidth %d\n", (data[4] & (1 << 31)) != 0 ? "en" : "dis", (data[4] & (1 << 12)) != 0 ? 4 : 8, (data[4] & (1 << 11)) != 0); instr_out(ctx, 5, "Global Depth Offset Constant %f\n", *(float *)(&data[5])); instr_out(ctx, 6, "Global Depth Offset Scale %f\n", *(float *)(&data[6])); instr_out(ctx, 7, "Global Depth Offset Clamp %f\n", *(float *)(&data[7])); for (i = 0, j = 0; i < 8; i++, j += 2) instr_out(ctx, i + 8, "Attrib %d (Override %s%s%s%s, Const Source %d, Swizzle Select %d, " "Source %d); Attrib %d (Override %s%s%s%s, Const Source %d, Swizzle Select %d, Source %d)\n", j + 1, (data[8 + i] & (1 << 31)) != 0 ? "W" : "", (data[8 + i] & (1 << 30)) != 0 ? "Z" : "", (data[8 + i] & (1 << 29)) != 0 ? "Y" : "", (data[8 + i] & (1 << 28)) != 0 ? "X" : "", (data[8 + i] >> 25) & 3, (data[8 + i] >> 22) & 3, (data[8 + i] >> 16) & 0x1f, j, (data[8 + i] & (1 << 15)) != 0 ? "W" : "", (data[8 + i] & (1 << 14)) != 0 ? "Z" : "", (data[8 + i] & (1 << 13)) != 0 ? "Y" : "", (data[8 + i] & (1 << 12)) != 0 ? "X" : "", (data[8 + i] >> 9) & 3, (data[8 + i] >> 6) & 3, (data[8 + i] & 0x1f)); instr_out(ctx, 16, "Point Sprite TexCoord Enable\n"); instr_out(ctx, 17, "Const Interp Enable\n"); instr_out(ctx, 18, "Attrib 7-0 WrapShortest Enable\n"); instr_out(ctx, 19, "Attrib 15-8 WrapShortest Enable\n"); return len; case 0x7900: instr_out(ctx, 0, "3DSTATE_DRAWING_RECTANGLE\n"); instr_out(ctx, 1, "top left: %d,%d\n", data[1] & 0xffff, (data[1] >> 16) & 0xffff); instr_out(ctx, 2, "bottom right: %d,%d\n", data[2] & 0xffff, (data[2] >> 16) & 0xffff); instr_out(ctx, 3, "origin: %d,%d\n", (int)data[3] & 0xffff, ((int)data[3] >> 16) & 0xffff); return len; case 0x7905: instr_out(ctx, 0, "3DSTATE_DEPTH_BUFFER\n"); if (IS_GEN5(devid) || IS_GEN6(devid)) instr_out(ctx, 1, "%s, %s, pitch = %d bytes, %stiled, HiZ %d, Separate Stencil %d\n", get_965_surfacetype(data[1] >> 29), get_965_depthformat((data[1] >> 18) & 0x7), (data[1] & 0x0001ffff) + 1, data[1] & (1 << 27) ? "" : "not ", (data[1] & (1 << 22)) != 0, (data[1] & (1 << 21)) != 0); else instr_out(ctx, 1, "%s, %s, pitch = %d bytes, %stiled\n", get_965_surfacetype(data[1] >> 29), get_965_depthformat((data[1] >> 18) & 0x7), (data[1] & 0x0001ffff) + 1, data[1] & (1 << 27) ? "" : "not "); instr_out(ctx, 2, "depth offset\n"); instr_out(ctx, 3, "%dx%d\n", ((data[3] & 0x0007ffc0) >> 6) + 1, ((data[3] & 0xfff80000) >> 19) + 1); instr_out(ctx, 4, "volume depth\n"); if (len >= 6) instr_out(ctx, 5, "\n"); if (len >= 7) { if (IS_GEN6(devid)) instr_out(ctx, 6, "\n"); else instr_out(ctx, 6, "render target view extent\n"); } return len; case 0x7a00: if (IS_GEN12(devid)) { if (len != 6) fprintf(out, "Bad count in PIPE_CONTROL\n"); instr_out(ctx, 0, "PIPE_CONTROL\n"); instr_out(ctx, 1, "flags\n"); instr_out(ctx, 2, "write address low\n"); instr_out(ctx, 3, "write address high\n"); instr_out(ctx, 4, "write data low\n"); instr_out(ctx, 5, "write data high\n"); return len; } else if (IS_GEN6(devid) || IS_GEN7(devid)) { if (len != 4 && len != 5) fprintf(out, "Bad count in PIPE_CONTROL\n"); switch ((data[1] >> 14) & 0x3) { case 0: desc1 = "no write"; break; case 1: desc1 = "qword write"; break; case 2: desc1 = "PS_DEPTH_COUNT write"; break; case 3: desc1 = "TIMESTAMP write"; break; } instr_out(ctx, 0, "PIPE_CONTROL\n"); instr_out(ctx, 1, "%s, %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", desc1, data[1] & (1 << 20) ? "cs stall, " : "", data[1] & (1 << 19) ? "global snapshot count reset, " : "", data[1] & (1 << 18) ? "tlb invalidate, " : "", data[1] & (1 << 17) ? "gfdt flush, " : "", data[1] & (1 << 17) ? "media state clear, " : "", data[1] & (1 << 13) ? "depth stall, " : "", data[1] & (1 << 12) ? "render target cache flush, " : "", data[1] & (1 << 11) ? "instruction cache invalidate, " : "", data[1] & (1 << 10) ? "texture cache invalidate, " : "", data[1] & (1 << 9) ? "indirect state invalidate, " : "", data[1] & (1 << 8) ? "notify irq, " : "", data[1] & (1 << 7) ? "PIPE_CONTROL flush, " : "", data[1] & (1 << 6) ? "protect mem app_id, " : "", data[1] & (1 << 5) ? "DC flush, " : "", data[1] & (1 << 4) ? "vf fetch invalidate, " : "", data[1] & (1 << 3) ? "constant cache invalidate, " : "", data[1] & (1 << 2) ? "state cache invalidate, " : "", data[1] & (1 << 1) ? "stall at scoreboard, " : "", data[1] & (1 << 0) ? "depth cache flush, " : ""); if (len == 5) { instr_out(ctx, 2, "destination address\n"); instr_out(ctx, 3, "immediate dword low\n"); instr_out(ctx, 4, "immediate dword high\n"); } else { for (i = 2; i < len; i++) { instr_out(ctx, i, "\n"); } } return len; } else { if (len != 4) fprintf(out, "Bad count in PIPE_CONTROL\n"); switch ((data[0] >> 14) & 0x3) { case 0: desc1 = "no write"; break; case 1: desc1 = "qword write"; break; case 2: desc1 = "PS_DEPTH_COUNT write"; break; case 3: desc1 = "TIMESTAMP write"; break; } instr_out(ctx, 0, "PIPE_CONTROL: %s, %sdepth stall, %sRC write flush, " "%sinst flush\n", desc1, data[0] & (1 << 13) ? "" : "no ", data[0] & (1 << 12) ? "" : "no ", data[0] & (1 << 11) ? "" : "no "); instr_out(ctx, 1, "destination address\n"); instr_out(ctx, 2, "immediate dword low\n"); instr_out(ctx, 3, "immediate dword high\n"); return len; } } if (opcode_3d) { if (opcode_3d->func) { return opcode_3d->func(ctx); } else { instr_out(ctx, 0, "%s\n", opcode_3d->name); for (i = 1; i < len; i++) { instr_out(ctx, i, "dword %d\n", i); } return len; } } instr_out(ctx, 0, "3D UNKNOWN: 3d_965 opcode = 0x%x\n", opcode); return 1; } static int decode_3d_i830(struct intel_decode *ctx) { unsigned int idx; uint32_t opcode; uint32_t *data = ctx->data; struct { uint32_t opcode; unsigned int min_len; unsigned int max_len; const char *name; } opcodes_3d[] = { { 0x02, 1, 1, "3DSTATE_MODES_3" }, { 0x03, 1, 1, "3DSTATE_ENABLES_1" }, { 0x04, 1, 1, "3DSTATE_ENABLES_2" }, { 0x05, 1, 1, "3DSTATE_VFT0" }, { 0x06, 1, 1, "3DSTATE_AA" }, { 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES" }, { 0x08, 1, 1, "3DSTATE_MODES_1" }, { 0x09, 1, 1, "3DSTATE_STENCIL_TEST" }, { 0x0a, 1, 1, "3DSTATE_VFT1" }, { 0x0b, 1, 1, "3DSTATE_INDPT_ALPHA_BLEND" }, { 0x0c, 1, 1, "3DSTATE_MODES_5" }, { 0x0d, 1, 1, "3DSTATE_MAP_BLEND_OP" }, { 0x0e, 1, 1, "3DSTATE_MAP_BLEND_ARG" }, { 0x0f, 1, 1, "3DSTATE_MODES_2" }, { 0x15, 1, 1, "3DSTATE_FOG_COLOR" }, { 0x16, 1, 1, "3DSTATE_MODES_4"}, }, *opcode_3d; opcode = (data[0] & 0x1f000000) >> 24; switch (opcode) { case 0x1f: return decode_3d_primitive(ctx); case 0x1d: return decode_3d_1d(ctx); case 0x1c: return decode_3d_1c(ctx); } for (idx = 0; idx < ARRAY_SIZE(opcodes_3d); idx++) { opcode_3d = &opcodes_3d[idx]; if ((data[0] & 0x1f000000) >> 24 == opcode_3d->opcode) { unsigned int len = 1, i; instr_out(ctx, 0, "%s\n", opcode_3d->name); if (opcode_3d->max_len > 1) { len = (data[0] & 0xff) + 2; if (len < opcode_3d->min_len || len > opcode_3d->max_len) { fprintf(out, "Bad count in %s\n", opcode_3d->name); } } for (i = 1; i < len; i++) { instr_out(ctx, i, "dword %d\n", i); } return len; } } instr_out(ctx, 0, "3D UNKNOWN: 3d_i830 opcode = 0x%x\n", opcode); return 1; } struct intel_decode * intel_decode_context_alloc(uint32_t devid) { struct intel_decode *ctx; int gen = 0; gen = intel_gen(devid); ctx = calloc(1, sizeof(struct intel_decode)); if (!ctx) return NULL; ctx->devid = devid; ctx->gen = gen; ctx->out = stdout; return ctx; } void intel_decode_context_free(struct intel_decode *ctx) { free(ctx); } void intel_decode_set_dump_past_end(struct intel_decode *ctx, int dump_past_end) { ctx->dump_past_end = !!dump_past_end; } void intel_decode_set_batch_pointer(struct intel_decode *ctx, void *data, uint32_t hw_offset, int count) { ctx->base_data = data; ctx->base_hw_offset = hw_offset; ctx->base_count = count; } void intel_decode_set_head_tail(struct intel_decode *ctx, uint32_t head, uint32_t tail) { ctx->head = head; ctx->tail = tail; } void intel_decode_set_output_file(struct intel_decode *ctx, FILE *output) { ctx->out = output; } /** * Decodes an i830-i915 batch buffer, writing the output to stdout. * * \param data batch buffer contents * \param count number of DWORDs to decode in the batch buffer * \param hw_offset hardware address for the buffer */ void intel_decode(struct intel_decode *ctx) { int ret; unsigned int index = 0; uint32_t devid; int size; void *temp; if (!ctx) return; /* Put a scratch page full of obviously undefined data after * the batchbuffer. This lets us avoid a bunch of length * checking in statically sized packets. */ size = ctx->base_count * 4; temp = malloc(size + 4096); memcpy(temp, ctx->base_data, size); memset((char *)temp + size, 0xd0, 4096); ctx->data = temp; ctx->hw_offset = ctx->base_hw_offset; ctx->count = ctx->base_count; devid = ctx->devid; head_offset = ctx->head; tail_offset = ctx->tail; out = ctx->out; saved_s2_set = 0; saved_s4_set = 1; while (ctx->count > 0) { index = 0; switch ((ctx->data[index] & 0xe0000000) >> 29) { case 0x0: ret = decode_mi(ctx); /* If MI_BATCHBUFFER_END happened, then dump * the rest of the output in case we some day * want it in debugging, but don't decode it * since it'll just confuse in the common * case. */ if (ret == -1) { if (ctx->dump_past_end) { index++; } else { for (index = index + 1; index < ctx->count; index++) { instr_out(ctx, index, "\n"); } } } else index += ret; break; case 0x2: index += decode_2d(ctx); break; case 0x3: if (AT_LEAST_GEN(devid, 4)) { index += decode_3d_965(ctx); } else if (IS_GEN3(devid)) { index += decode_3d(ctx); } else { index += decode_3d_i830(ctx); } break; default: instr_out(ctx, index, "UNKNOWN\n"); index++; break; } fflush(out); if (ctx->count < index) break; ctx->count -= index; ctx->data += index; ctx->hw_offset += 4 * index; } free(temp); }