/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_processing/audio_processing_impl.h" #include #include #include "webrtc/base/checks.h" #include "webrtc/base/platform_file.h" #include "webrtc/common_audio/audio_converter.h" #include "webrtc/common_audio/channel_buffer.h" #include "webrtc/common_audio/include/audio_util.h" #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" extern "C" { #include "webrtc/modules/audio_processing/aec/aec_core.h" } #include "webrtc/modules/audio_processing/agc/agc_manager_direct.h" #include "webrtc/modules/audio_processing/audio_buffer.h" #include "webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.h" #include "webrtc/modules/audio_processing/common.h" #include "webrtc/modules/audio_processing/echo_cancellation_impl.h" #include "webrtc/modules/audio_processing/echo_control_mobile_impl.h" #include "webrtc/modules/audio_processing/gain_control_impl.h" #include "webrtc/modules/audio_processing/high_pass_filter_impl.h" #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h" #include "webrtc/modules/audio_processing/level_estimator_impl.h" #include "webrtc/modules/audio_processing/noise_suppression_impl.h" #include "webrtc/modules/audio_processing/processing_component.h" #include "webrtc/modules/audio_processing/transient/transient_suppressor.h" #include "webrtc/modules/audio_processing/voice_detection_impl.h" #include "webrtc/modules/interface/module_common_types.h" #include "webrtc/system_wrappers/include/critical_section_wrapper.h" #include "webrtc/system_wrappers/include/file_wrapper.h" #include "webrtc/system_wrappers/include/logging.h" #include "webrtc/system_wrappers/include/metrics.h" #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Files generated at build-time by the protobuf compiler. #ifdef WEBRTC_ANDROID_PLATFORM_BUILD #include "external/webrtc/webrtc/modules/audio_processing/debug.pb.h" #else #include "webrtc/audio_processing/debug.pb.h" #endif #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP #define RETURN_ON_ERR(expr) \ do { \ int err = (expr); \ if (err != kNoError) { \ return err; \ } \ } while (0) namespace webrtc { namespace { static bool LayoutHasKeyboard(AudioProcessing::ChannelLayout layout) { switch (layout) { case AudioProcessing::kMono: case AudioProcessing::kStereo: return false; case AudioProcessing::kMonoAndKeyboard: case AudioProcessing::kStereoAndKeyboard: return true; } assert(false); return false; } } // namespace // Throughout webrtc, it's assumed that success is represented by zero. static_assert(AudioProcessing::kNoError == 0, "kNoError must be zero"); // This class has two main functionalities: // // 1) It is returned instead of the real GainControl after the new AGC has been // enabled in order to prevent an outside user from overriding compression // settings. It doesn't do anything in its implementation, except for // delegating the const methods and Enable calls to the real GainControl, so // AGC can still be disabled. // // 2) It is injected into AgcManagerDirect and implements volume callbacks for // getting and setting the volume level. It just caches this value to be used // in VoiceEngine later. class GainControlForNewAgc : public GainControl, public VolumeCallbacks { public: explicit GainControlForNewAgc(GainControlImpl* gain_control) : real_gain_control_(gain_control), volume_(0) {} // GainControl implementation. int Enable(bool enable) override { return real_gain_control_->Enable(enable); } bool is_enabled() const override { return real_gain_control_->is_enabled(); } int set_stream_analog_level(int level) override { volume_ = level; return AudioProcessing::kNoError; } int stream_analog_level() override { return volume_; } int set_mode(Mode mode) override { return AudioProcessing::kNoError; } Mode mode() const override { return GainControl::kAdaptiveAnalog; } int set_target_level_dbfs(int level) override { return AudioProcessing::kNoError; } int target_level_dbfs() const override { return real_gain_control_->target_level_dbfs(); } int set_compression_gain_db(int gain) override { return AudioProcessing::kNoError; } int compression_gain_db() const override { return real_gain_control_->compression_gain_db(); } int enable_limiter(bool enable) override { return AudioProcessing::kNoError; } bool is_limiter_enabled() const override { return real_gain_control_->is_limiter_enabled(); } int set_analog_level_limits(int minimum, int maximum) override { return AudioProcessing::kNoError; } int analog_level_minimum() const override { return real_gain_control_->analog_level_minimum(); } int analog_level_maximum() const override { return real_gain_control_->analog_level_maximum(); } bool stream_is_saturated() const override { return real_gain_control_->stream_is_saturated(); } // VolumeCallbacks implementation. void SetMicVolume(int volume) override { volume_ = volume; } int GetMicVolume() override { return volume_; } private: GainControl* real_gain_control_; int volume_; }; const int AudioProcessing::kNativeSampleRatesHz[] = { AudioProcessing::kSampleRate8kHz, AudioProcessing::kSampleRate16kHz, AudioProcessing::kSampleRate32kHz, AudioProcessing::kSampleRate48kHz}; const size_t AudioProcessing::kNumNativeSampleRates = arraysize(AudioProcessing::kNativeSampleRatesHz); const int AudioProcessing::kMaxNativeSampleRateHz = AudioProcessing:: kNativeSampleRatesHz[AudioProcessing::kNumNativeSampleRates - 1]; const int AudioProcessing::kMaxAECMSampleRateHz = kSampleRate16kHz; AudioProcessing* AudioProcessing::Create() { Config config; return Create(config, nullptr); } AudioProcessing* AudioProcessing::Create(const Config& config) { return Create(config, nullptr); } AudioProcessing* AudioProcessing::Create(const Config& config, Beamformer* beamformer) { AudioProcessingImpl* apm = new AudioProcessingImpl(config, beamformer); if (apm->Initialize() != kNoError) { delete apm; apm = NULL; } return apm; } AudioProcessingImpl::AudioProcessingImpl(const Config& config) : AudioProcessingImpl(config, nullptr) {} AudioProcessingImpl::AudioProcessingImpl(const Config& config, Beamformer* beamformer) : echo_cancellation_(NULL), echo_control_mobile_(NULL), gain_control_(NULL), high_pass_filter_(NULL), level_estimator_(NULL), noise_suppression_(NULL), voice_detection_(NULL), crit_(CriticalSectionWrapper::CreateCriticalSection()), #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP debug_file_(FileWrapper::Create()), event_msg_(new audioproc::Event()), #endif api_format_({{{kSampleRate16kHz, 1, false}, {kSampleRate16kHz, 1, false}, {kSampleRate16kHz, 1, false}, {kSampleRate16kHz, 1, false}}}), fwd_proc_format_(kSampleRate16kHz), rev_proc_format_(kSampleRate16kHz, 1), split_rate_(kSampleRate16kHz), stream_delay_ms_(0), delay_offset_ms_(0), was_stream_delay_set_(false), last_stream_delay_ms_(0), last_aec_system_delay_ms_(0), stream_delay_jumps_(-1), aec_system_delay_jumps_(-1), output_will_be_muted_(false), key_pressed_(false), #if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS) use_new_agc_(false), #else use_new_agc_(config.Get().enabled), #endif agc_startup_min_volume_(config.Get().startup_min_volume), #if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS) transient_suppressor_enabled_(false), #else transient_suppressor_enabled_(config.Get().enabled), #endif beamformer_enabled_(config.Get().enabled), beamformer_(beamformer), array_geometry_(config.Get().array_geometry), target_direction_(config.Get().target_direction), intelligibility_enabled_(config.Get().enabled) { echo_cancellation_ = new EchoCancellationImpl(this, crit_); component_list_.push_back(echo_cancellation_); echo_control_mobile_ = new EchoControlMobileImpl(this, crit_); component_list_.push_back(echo_control_mobile_); gain_control_ = new GainControlImpl(this, crit_); component_list_.push_back(gain_control_); high_pass_filter_ = new HighPassFilterImpl(this, crit_); component_list_.push_back(high_pass_filter_); level_estimator_ = new LevelEstimatorImpl(this, crit_); component_list_.push_back(level_estimator_); noise_suppression_ = new NoiseSuppressionImpl(this, crit_); component_list_.push_back(noise_suppression_); voice_detection_ = new VoiceDetectionImpl(this, crit_); component_list_.push_back(voice_detection_); gain_control_for_new_agc_.reset(new GainControlForNewAgc(gain_control_)); SetExtraOptions(config); } AudioProcessingImpl::~AudioProcessingImpl() { { CriticalSectionScoped crit_scoped(crit_); // Depends on gain_control_ and gain_control_for_new_agc_. agc_manager_.reset(); // Depends on gain_control_. gain_control_for_new_agc_.reset(); while (!component_list_.empty()) { ProcessingComponent* component = component_list_.front(); component->Destroy(); delete component; component_list_.pop_front(); } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { debug_file_->CloseFile(); } #endif } delete crit_; crit_ = NULL; } int AudioProcessingImpl::Initialize() { CriticalSectionScoped crit_scoped(crit_); return InitializeLocked(); } int AudioProcessingImpl::Initialize(int input_sample_rate_hz, int output_sample_rate_hz, int reverse_sample_rate_hz, ChannelLayout input_layout, ChannelLayout output_layout, ChannelLayout reverse_layout) { const ProcessingConfig processing_config = { {{input_sample_rate_hz, ChannelsFromLayout(input_layout), LayoutHasKeyboard(input_layout)}, {output_sample_rate_hz, ChannelsFromLayout(output_layout), LayoutHasKeyboard(output_layout)}, {reverse_sample_rate_hz, ChannelsFromLayout(reverse_layout), LayoutHasKeyboard(reverse_layout)}, {reverse_sample_rate_hz, ChannelsFromLayout(reverse_layout), LayoutHasKeyboard(reverse_layout)}}}; return Initialize(processing_config); } int AudioProcessingImpl::Initialize(const ProcessingConfig& processing_config) { CriticalSectionScoped crit_scoped(crit_); return InitializeLocked(processing_config); } int AudioProcessingImpl::InitializeLocked() { const int fwd_audio_buffer_channels = beamformer_enabled_ ? api_format_.input_stream().num_channels() : api_format_.output_stream().num_channels(); const int rev_audio_buffer_out_num_frames = api_format_.reverse_output_stream().num_frames() == 0 ? rev_proc_format_.num_frames() : api_format_.reverse_output_stream().num_frames(); if (api_format_.reverse_input_stream().num_channels() > 0) { render_audio_.reset(new AudioBuffer( api_format_.reverse_input_stream().num_frames(), api_format_.reverse_input_stream().num_channels(), rev_proc_format_.num_frames(), rev_proc_format_.num_channels(), rev_audio_buffer_out_num_frames)); if (rev_conversion_needed()) { render_converter_ = AudioConverter::Create( api_format_.reverse_input_stream().num_channels(), api_format_.reverse_input_stream().num_frames(), api_format_.reverse_output_stream().num_channels(), api_format_.reverse_output_stream().num_frames()); } else { render_converter_.reset(nullptr); } } else { render_audio_.reset(nullptr); render_converter_.reset(nullptr); } capture_audio_.reset(new AudioBuffer( api_format_.input_stream().num_frames(), api_format_.input_stream().num_channels(), fwd_proc_format_.num_frames(), fwd_audio_buffer_channels, api_format_.output_stream().num_frames())); // Initialize all components. for (auto item : component_list_) { int err = item->Initialize(); if (err != kNoError) { return err; } } InitializeExperimentalAgc(); InitializeTransient(); InitializeBeamformer(); InitializeIntelligibility(); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { int err = WriteInitMessage(); if (err != kNoError) { return err; } } #endif return kNoError; } int AudioProcessingImpl::InitializeLocked(const ProcessingConfig& config) { for (const auto& stream : config.streams) { if (stream.num_channels() < 0) { return kBadNumberChannelsError; } if (stream.num_channels() > 0 && stream.sample_rate_hz() <= 0) { return kBadSampleRateError; } } const int num_in_channels = config.input_stream().num_channels(); const int num_out_channels = config.output_stream().num_channels(); // Need at least one input channel. // Need either one output channel or as many outputs as there are inputs. if (num_in_channels == 0 || !(num_out_channels == 1 || num_out_channels == num_in_channels)) { return kBadNumberChannelsError; } if (beamformer_enabled_ && (static_cast(num_in_channels) != array_geometry_.size() || num_out_channels > 1)) { return kBadNumberChannelsError; } api_format_ = config; // We process at the closest native rate >= min(input rate, output rate)... const int min_proc_rate = std::min(api_format_.input_stream().sample_rate_hz(), api_format_.output_stream().sample_rate_hz()); int fwd_proc_rate; for (size_t i = 0; i < kNumNativeSampleRates; ++i) { fwd_proc_rate = kNativeSampleRatesHz[i]; if (fwd_proc_rate >= min_proc_rate) { break; } } // ...with one exception. if (echo_control_mobile_->is_enabled() && min_proc_rate > kMaxAECMSampleRateHz) { fwd_proc_rate = kMaxAECMSampleRateHz; } fwd_proc_format_ = StreamConfig(fwd_proc_rate); // We normally process the reverse stream at 16 kHz. Unless... int rev_proc_rate = kSampleRate16kHz; if (fwd_proc_format_.sample_rate_hz() == kSampleRate8kHz) { // ...the forward stream is at 8 kHz. rev_proc_rate = kSampleRate8kHz; } else { if (api_format_.reverse_input_stream().sample_rate_hz() == kSampleRate32kHz) { // ...or the input is at 32 kHz, in which case we use the splitting // filter rather than the resampler. rev_proc_rate = kSampleRate32kHz; } } // Always downmix the reverse stream to mono for analysis. This has been // demonstrated to work well for AEC in most practical scenarios. rev_proc_format_ = StreamConfig(rev_proc_rate, 1); if (fwd_proc_format_.sample_rate_hz() == kSampleRate32kHz || fwd_proc_format_.sample_rate_hz() == kSampleRate48kHz) { split_rate_ = kSampleRate16kHz; } else { split_rate_ = fwd_proc_format_.sample_rate_hz(); } return InitializeLocked(); } // Calls InitializeLocked() if any of the audio parameters have changed from // their current values. int AudioProcessingImpl::MaybeInitializeLocked( const ProcessingConfig& processing_config) { if (processing_config == api_format_) { return kNoError; } return InitializeLocked(processing_config); } void AudioProcessingImpl::SetExtraOptions(const Config& config) { CriticalSectionScoped crit_scoped(crit_); for (auto item : component_list_) { item->SetExtraOptions(config); } if (transient_suppressor_enabled_ != config.Get().enabled) { transient_suppressor_enabled_ = config.Get().enabled; InitializeTransient(); } } int AudioProcessingImpl::proc_sample_rate_hz() const { return fwd_proc_format_.sample_rate_hz(); } int AudioProcessingImpl::proc_split_sample_rate_hz() const { return split_rate_; } int AudioProcessingImpl::num_reverse_channels() const { return rev_proc_format_.num_channels(); } int AudioProcessingImpl::num_input_channels() const { return api_format_.input_stream().num_channels(); } int AudioProcessingImpl::num_output_channels() const { return api_format_.output_stream().num_channels(); } void AudioProcessingImpl::set_output_will_be_muted(bool muted) { CriticalSectionScoped lock(crit_); output_will_be_muted_ = muted; if (agc_manager_.get()) { agc_manager_->SetCaptureMuted(output_will_be_muted_); } } int AudioProcessingImpl::ProcessStream(const float* const* src, size_t samples_per_channel, int input_sample_rate_hz, ChannelLayout input_layout, int output_sample_rate_hz, ChannelLayout output_layout, float* const* dest) { CriticalSectionScoped crit_scoped(crit_); StreamConfig input_stream = api_format_.input_stream(); input_stream.set_sample_rate_hz(input_sample_rate_hz); input_stream.set_num_channels(ChannelsFromLayout(input_layout)); input_stream.set_has_keyboard(LayoutHasKeyboard(input_layout)); StreamConfig output_stream = api_format_.output_stream(); output_stream.set_sample_rate_hz(output_sample_rate_hz); output_stream.set_num_channels(ChannelsFromLayout(output_layout)); output_stream.set_has_keyboard(LayoutHasKeyboard(output_layout)); if (samples_per_channel != input_stream.num_frames()) { return kBadDataLengthError; } return ProcessStream(src, input_stream, output_stream, dest); } int AudioProcessingImpl::ProcessStream(const float* const* src, const StreamConfig& input_config, const StreamConfig& output_config, float* const* dest) { CriticalSectionScoped crit_scoped(crit_); if (!src || !dest) { return kNullPointerError; } ProcessingConfig processing_config = api_format_; processing_config.input_stream() = input_config; processing_config.output_stream() = output_config; RETURN_ON_ERR(MaybeInitializeLocked(processing_config)); assert(processing_config.input_stream().num_frames() == api_format_.input_stream().num_frames()); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { RETURN_ON_ERR(WriteConfigMessage(false)); event_msg_->set_type(audioproc::Event::STREAM); audioproc::Stream* msg = event_msg_->mutable_stream(); const size_t channel_size = sizeof(float) * api_format_.input_stream().num_frames(); for (int i = 0; i < api_format_.input_stream().num_channels(); ++i) msg->add_input_channel(src[i], channel_size); } #endif capture_audio_->CopyFrom(src, api_format_.input_stream()); RETURN_ON_ERR(ProcessStreamLocked()); capture_audio_->CopyTo(api_format_.output_stream(), dest); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { audioproc::Stream* msg = event_msg_->mutable_stream(); const size_t channel_size = sizeof(float) * api_format_.output_stream().num_frames(); for (int i = 0; i < api_format_.output_stream().num_channels(); ++i) msg->add_output_channel(dest[i], channel_size); RETURN_ON_ERR(WriteMessageToDebugFile()); } #endif return kNoError; } int AudioProcessingImpl::ProcessStream(AudioFrame* frame) { CriticalSectionScoped crit_scoped(crit_); if (!frame) { return kNullPointerError; } // Must be a native rate. if (frame->sample_rate_hz_ != kSampleRate8kHz && frame->sample_rate_hz_ != kSampleRate16kHz && frame->sample_rate_hz_ != kSampleRate32kHz && frame->sample_rate_hz_ != kSampleRate48kHz) { return kBadSampleRateError; } if (echo_control_mobile_->is_enabled() && frame->sample_rate_hz_ > kMaxAECMSampleRateHz) { LOG(LS_ERROR) << "AECM only supports 16 or 8 kHz sample rates"; return kUnsupportedComponentError; } // TODO(ajm): The input and output rates and channels are currently // constrained to be identical in the int16 interface. ProcessingConfig processing_config = api_format_; processing_config.input_stream().set_sample_rate_hz(frame->sample_rate_hz_); processing_config.input_stream().set_num_channels(frame->num_channels_); processing_config.output_stream().set_sample_rate_hz(frame->sample_rate_hz_); processing_config.output_stream().set_num_channels(frame->num_channels_); RETURN_ON_ERR(MaybeInitializeLocked(processing_config)); if (frame->samples_per_channel_ != api_format_.input_stream().num_frames()) { return kBadDataLengthError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { event_msg_->set_type(audioproc::Event::STREAM); audioproc::Stream* msg = event_msg_->mutable_stream(); const size_t data_size = sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_; msg->set_input_data(frame->data_, data_size); } #endif capture_audio_->DeinterleaveFrom(frame); RETURN_ON_ERR(ProcessStreamLocked()); capture_audio_->InterleaveTo(frame, output_copy_needed(is_data_processed())); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { audioproc::Stream* msg = event_msg_->mutable_stream(); const size_t data_size = sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_; msg->set_output_data(frame->data_, data_size); RETURN_ON_ERR(WriteMessageToDebugFile()); } #endif return kNoError; } int AudioProcessingImpl::ProcessStreamLocked() { #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { audioproc::Stream* msg = event_msg_->mutable_stream(); msg->set_delay(stream_delay_ms_); msg->set_drift(echo_cancellation_->stream_drift_samples()); msg->set_level(gain_control()->stream_analog_level()); msg->set_keypress(key_pressed_); } #endif MaybeUpdateHistograms(); AudioBuffer* ca = capture_audio_.get(); // For brevity. if (use_new_agc_ && gain_control_->is_enabled()) { agc_manager_->AnalyzePreProcess(ca->channels()[0], ca->num_channels(), fwd_proc_format_.num_frames()); } bool data_processed = is_data_processed(); if (analysis_needed(data_processed)) { ca->SplitIntoFrequencyBands(); } if (intelligibility_enabled_) { intelligibility_enhancer_->AnalyzeCaptureAudio( ca->split_channels_f(kBand0To8kHz), split_rate_, ca->num_channels()); } if (beamformer_enabled_) { beamformer_->ProcessChunk(*ca->split_data_f(), ca->split_data_f()); ca->set_num_channels(1); } RETURN_ON_ERR(high_pass_filter_->ProcessCaptureAudio(ca)); RETURN_ON_ERR(gain_control_->AnalyzeCaptureAudio(ca)); RETURN_ON_ERR(noise_suppression_->AnalyzeCaptureAudio(ca)); RETURN_ON_ERR(echo_cancellation_->ProcessCaptureAudio(ca)); if (echo_control_mobile_->is_enabled() && noise_suppression_->is_enabled()) { ca->CopyLowPassToReference(); } RETURN_ON_ERR(noise_suppression_->ProcessCaptureAudio(ca)); RETURN_ON_ERR(echo_control_mobile_->ProcessCaptureAudio(ca)); RETURN_ON_ERR(voice_detection_->ProcessCaptureAudio(ca)); if (use_new_agc_ && gain_control_->is_enabled() && (!beamformer_enabled_ || beamformer_->is_target_present())) { agc_manager_->Process(ca->split_bands_const(0)[kBand0To8kHz], ca->num_frames_per_band(), split_rate_); } RETURN_ON_ERR(gain_control_->ProcessCaptureAudio(ca)); if (synthesis_needed(data_processed)) { ca->MergeFrequencyBands(); } // TODO(aluebs): Investigate if the transient suppression placement should be // before or after the AGC. if (transient_suppressor_enabled_) { float voice_probability = agc_manager_.get() ? agc_manager_->voice_probability() : 1.f; transient_suppressor_->Suppress( ca->channels_f()[0], ca->num_frames(), ca->num_channels(), ca->split_bands_const_f(0)[kBand0To8kHz], ca->num_frames_per_band(), ca->keyboard_data(), ca->num_keyboard_frames(), voice_probability, key_pressed_); } // The level estimator operates on the recombined data. RETURN_ON_ERR(level_estimator_->ProcessStream(ca)); was_stream_delay_set_ = false; return kNoError; } int AudioProcessingImpl::AnalyzeReverseStream(const float* const* data, size_t samples_per_channel, int rev_sample_rate_hz, ChannelLayout layout) { const StreamConfig reverse_config = { rev_sample_rate_hz, ChannelsFromLayout(layout), LayoutHasKeyboard(layout), }; if (samples_per_channel != reverse_config.num_frames()) { return kBadDataLengthError; } return AnalyzeReverseStream(data, reverse_config, reverse_config); } int AudioProcessingImpl::ProcessReverseStream( const float* const* src, const StreamConfig& reverse_input_config, const StreamConfig& reverse_output_config, float* const* dest) { RETURN_ON_ERR( AnalyzeReverseStream(src, reverse_input_config, reverse_output_config)); if (is_rev_processed()) { render_audio_->CopyTo(api_format_.reverse_output_stream(), dest); } else if (rev_conversion_needed()) { render_converter_->Convert(src, reverse_input_config.num_samples(), dest, reverse_output_config.num_samples()); } else { CopyAudioIfNeeded(src, reverse_input_config.num_frames(), reverse_input_config.num_channels(), dest); } return kNoError; } int AudioProcessingImpl::AnalyzeReverseStream( const float* const* src, const StreamConfig& reverse_input_config, const StreamConfig& reverse_output_config) { CriticalSectionScoped crit_scoped(crit_); if (src == NULL) { return kNullPointerError; } if (reverse_input_config.num_channels() <= 0) { return kBadNumberChannelsError; } ProcessingConfig processing_config = api_format_; processing_config.reverse_input_stream() = reverse_input_config; processing_config.reverse_output_stream() = reverse_output_config; RETURN_ON_ERR(MaybeInitializeLocked(processing_config)); assert(reverse_input_config.num_frames() == api_format_.reverse_input_stream().num_frames()); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { event_msg_->set_type(audioproc::Event::REVERSE_STREAM); audioproc::ReverseStream* msg = event_msg_->mutable_reverse_stream(); const size_t channel_size = sizeof(float) * api_format_.reverse_input_stream().num_frames(); for (int i = 0; i < api_format_.reverse_input_stream().num_channels(); ++i) msg->add_channel(src[i], channel_size); RETURN_ON_ERR(WriteMessageToDebugFile()); } #endif render_audio_->CopyFrom(src, api_format_.reverse_input_stream()); return ProcessReverseStreamLocked(); } int AudioProcessingImpl::ProcessReverseStream(AudioFrame* frame) { RETURN_ON_ERR(AnalyzeReverseStream(frame)); if (is_rev_processed()) { render_audio_->InterleaveTo(frame, true); } return kNoError; } int AudioProcessingImpl::AnalyzeReverseStream(AudioFrame* frame) { CriticalSectionScoped crit_scoped(crit_); if (frame == NULL) { return kNullPointerError; } // Must be a native rate. if (frame->sample_rate_hz_ != kSampleRate8kHz && frame->sample_rate_hz_ != kSampleRate16kHz && frame->sample_rate_hz_ != kSampleRate32kHz && frame->sample_rate_hz_ != kSampleRate48kHz) { return kBadSampleRateError; } // This interface does not tolerate different forward and reverse rates. if (frame->sample_rate_hz_ != api_format_.input_stream().sample_rate_hz()) { return kBadSampleRateError; } if (frame->num_channels_ <= 0) { return kBadNumberChannelsError; } ProcessingConfig processing_config = api_format_; processing_config.reverse_input_stream().set_sample_rate_hz( frame->sample_rate_hz_); processing_config.reverse_input_stream().set_num_channels( frame->num_channels_); processing_config.reverse_output_stream().set_sample_rate_hz( frame->sample_rate_hz_); processing_config.reverse_output_stream().set_num_channels( frame->num_channels_); RETURN_ON_ERR(MaybeInitializeLocked(processing_config)); if (frame->samples_per_channel_ != api_format_.reverse_input_stream().num_frames()) { return kBadDataLengthError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { event_msg_->set_type(audioproc::Event::REVERSE_STREAM); audioproc::ReverseStream* msg = event_msg_->mutable_reverse_stream(); const size_t data_size = sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_; msg->set_data(frame->data_, data_size); RETURN_ON_ERR(WriteMessageToDebugFile()); } #endif render_audio_->DeinterleaveFrom(frame); return ProcessReverseStreamLocked(); } int AudioProcessingImpl::ProcessReverseStreamLocked() { AudioBuffer* ra = render_audio_.get(); // For brevity. if (rev_proc_format_.sample_rate_hz() == kSampleRate32kHz) { ra->SplitIntoFrequencyBands(); } if (intelligibility_enabled_) { intelligibility_enhancer_->ProcessRenderAudio( ra->split_channels_f(kBand0To8kHz), split_rate_, ra->num_channels()); } RETURN_ON_ERR(echo_cancellation_->ProcessRenderAudio(ra)); RETURN_ON_ERR(echo_control_mobile_->ProcessRenderAudio(ra)); if (!use_new_agc_) { RETURN_ON_ERR(gain_control_->ProcessRenderAudio(ra)); } if (rev_proc_format_.sample_rate_hz() == kSampleRate32kHz && is_rev_processed()) { ra->MergeFrequencyBands(); } return kNoError; } int AudioProcessingImpl::set_stream_delay_ms(int delay) { Error retval = kNoError; was_stream_delay_set_ = true; delay += delay_offset_ms_; if (delay < 0) { delay = 0; retval = kBadStreamParameterWarning; } // TODO(ajm): the max is rather arbitrarily chosen; investigate. if (delay > 500) { delay = 500; retval = kBadStreamParameterWarning; } stream_delay_ms_ = delay; return retval; } int AudioProcessingImpl::stream_delay_ms() const { return stream_delay_ms_; } bool AudioProcessingImpl::was_stream_delay_set() const { return was_stream_delay_set_; } void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) { key_pressed_ = key_pressed; } void AudioProcessingImpl::set_delay_offset_ms(int offset) { CriticalSectionScoped crit_scoped(crit_); delay_offset_ms_ = offset; } int AudioProcessingImpl::delay_offset_ms() const { return delay_offset_ms_; } int AudioProcessingImpl::StartDebugRecording( const char filename[AudioProcessing::kMaxFilenameSize]) { CriticalSectionScoped crit_scoped(crit_); static_assert(kMaxFilenameSize == FileWrapper::kMaxFileNameSize, ""); if (filename == NULL) { return kNullPointerError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Stop any ongoing recording. if (debug_file_->Open()) { if (debug_file_->CloseFile() == -1) { return kFileError; } } if (debug_file_->OpenFile(filename, false) == -1) { debug_file_->CloseFile(); return kFileError; } RETURN_ON_ERR(WriteConfigMessage(true)); RETURN_ON_ERR(WriteInitMessage()); return kNoError; #else return kUnsupportedFunctionError; #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } int AudioProcessingImpl::StartDebugRecording(FILE* handle) { CriticalSectionScoped crit_scoped(crit_); if (handle == NULL) { return kNullPointerError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Stop any ongoing recording. if (debug_file_->Open()) { if (debug_file_->CloseFile() == -1) { return kFileError; } } if (debug_file_->OpenFromFileHandle(handle, true, false) == -1) { return kFileError; } RETURN_ON_ERR(WriteConfigMessage(true)); RETURN_ON_ERR(WriteInitMessage()); return kNoError; #else return kUnsupportedFunctionError; #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } int AudioProcessingImpl::StartDebugRecordingForPlatformFile( rtc::PlatformFile handle) { FILE* stream = rtc::FdopenPlatformFileForWriting(handle); return StartDebugRecording(stream); } int AudioProcessingImpl::StopDebugRecording() { CriticalSectionScoped crit_scoped(crit_); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // We just return if recording hasn't started. if (debug_file_->Open()) { if (debug_file_->CloseFile() == -1) { return kFileError; } } return kNoError; #else return kUnsupportedFunctionError; #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } EchoCancellation* AudioProcessingImpl::echo_cancellation() const { return echo_cancellation_; } EchoControlMobile* AudioProcessingImpl::echo_control_mobile() const { return echo_control_mobile_; } GainControl* AudioProcessingImpl::gain_control() const { if (use_new_agc_) { return gain_control_for_new_agc_.get(); } return gain_control_; } HighPassFilter* AudioProcessingImpl::high_pass_filter() const { return high_pass_filter_; } LevelEstimator* AudioProcessingImpl::level_estimator() const { return level_estimator_; } NoiseSuppression* AudioProcessingImpl::noise_suppression() const { return noise_suppression_; } VoiceDetection* AudioProcessingImpl::voice_detection() const { return voice_detection_; } bool AudioProcessingImpl::is_data_processed() const { if (beamformer_enabled_) { return true; } int enabled_count = 0; for (auto item : component_list_) { if (item->is_component_enabled()) { enabled_count++; } } // Data is unchanged if no components are enabled, or if only level_estimator_ // or voice_detection_ is enabled. if (enabled_count == 0) { return false; } else if (enabled_count == 1) { if (level_estimator_->is_enabled() || voice_detection_->is_enabled()) { return false; } } else if (enabled_count == 2) { if (level_estimator_->is_enabled() && voice_detection_->is_enabled()) { return false; } } return true; } bool AudioProcessingImpl::output_copy_needed(bool is_data_processed) const { // Check if we've upmixed or downmixed the audio. return ((api_format_.output_stream().num_channels() != api_format_.input_stream().num_channels()) || is_data_processed || transient_suppressor_enabled_); } bool AudioProcessingImpl::synthesis_needed(bool is_data_processed) const { return (is_data_processed && (fwd_proc_format_.sample_rate_hz() == kSampleRate32kHz || fwd_proc_format_.sample_rate_hz() == kSampleRate48kHz)); } bool AudioProcessingImpl::analysis_needed(bool is_data_processed) const { if (!is_data_processed && !voice_detection_->is_enabled() && !transient_suppressor_enabled_) { // Only level_estimator_ is enabled. return false; } else if (fwd_proc_format_.sample_rate_hz() == kSampleRate32kHz || fwd_proc_format_.sample_rate_hz() == kSampleRate48kHz) { // Something besides level_estimator_ is enabled, and we have super-wb. return true; } return false; } bool AudioProcessingImpl::is_rev_processed() const { return intelligibility_enabled_ && intelligibility_enhancer_->active(); } bool AudioProcessingImpl::rev_conversion_needed() const { return (api_format_.reverse_input_stream() != api_format_.reverse_output_stream()); } void AudioProcessingImpl::InitializeExperimentalAgc() { if (use_new_agc_) { if (!agc_manager_.get()) { agc_manager_.reset(new AgcManagerDirect(gain_control_, gain_control_for_new_agc_.get(), agc_startup_min_volume_)); } agc_manager_->Initialize(); agc_manager_->SetCaptureMuted(output_will_be_muted_); } } void AudioProcessingImpl::InitializeTransient() { if (transient_suppressor_enabled_) { if (!transient_suppressor_.get()) { transient_suppressor_.reset(new TransientSuppressor()); } transient_suppressor_->Initialize( fwd_proc_format_.sample_rate_hz(), split_rate_, api_format_.output_stream().num_channels()); } } void AudioProcessingImpl::InitializeBeamformer() { if (beamformer_enabled_) { if (!beamformer_) { beamformer_.reset( new NonlinearBeamformer(array_geometry_, target_direction_)); } beamformer_->Initialize(kChunkSizeMs, split_rate_); } } void AudioProcessingImpl::InitializeIntelligibility() { if (intelligibility_enabled_) { IntelligibilityEnhancer::Config config; config.sample_rate_hz = split_rate_; config.num_capture_channels = capture_audio_->num_channels(); config.num_render_channels = render_audio_->num_channels(); intelligibility_enhancer_.reset(new IntelligibilityEnhancer(config)); } } void AudioProcessingImpl::MaybeUpdateHistograms() { static const int kMinDiffDelayMs = 60; if (echo_cancellation()->is_enabled()) { // Activate delay_jumps_ counters if we know echo_cancellation is runnning. // If a stream has echo we know that the echo_cancellation is in process. if (stream_delay_jumps_ == -1 && echo_cancellation()->stream_has_echo()) { stream_delay_jumps_ = 0; } if (aec_system_delay_jumps_ == -1 && echo_cancellation()->stream_has_echo()) { aec_system_delay_jumps_ = 0; } // Detect a jump in platform reported system delay and log the difference. const int diff_stream_delay_ms = stream_delay_ms_ - last_stream_delay_ms_; if (diff_stream_delay_ms > kMinDiffDelayMs && last_stream_delay_ms_ != 0) { RTC_HISTOGRAM_COUNTS("WebRTC.Audio.PlatformReportedStreamDelayJump", diff_stream_delay_ms, kMinDiffDelayMs, 1000, 100); if (stream_delay_jumps_ == -1) { stream_delay_jumps_ = 0; // Activate counter if needed. } stream_delay_jumps_++; } last_stream_delay_ms_ = stream_delay_ms_; // Detect a jump in AEC system delay and log the difference. const int frames_per_ms = rtc::CheckedDivExact(split_rate_, 1000); const int aec_system_delay_ms = WebRtcAec_system_delay(echo_cancellation()->aec_core()) / frames_per_ms; const int diff_aec_system_delay_ms = aec_system_delay_ms - last_aec_system_delay_ms_; if (diff_aec_system_delay_ms > kMinDiffDelayMs && last_aec_system_delay_ms_ != 0) { RTC_HISTOGRAM_COUNTS("WebRTC.Audio.AecSystemDelayJump", diff_aec_system_delay_ms, kMinDiffDelayMs, 1000, 100); if (aec_system_delay_jumps_ == -1) { aec_system_delay_jumps_ = 0; // Activate counter if needed. } aec_system_delay_jumps_++; } last_aec_system_delay_ms_ = aec_system_delay_ms; } } void AudioProcessingImpl::UpdateHistogramsOnCallEnd() { CriticalSectionScoped crit_scoped(crit_); if (stream_delay_jumps_ > -1) { RTC_HISTOGRAM_ENUMERATION( "WebRTC.Audio.NumOfPlatformReportedStreamDelayJumps", stream_delay_jumps_, 51); } stream_delay_jumps_ = -1; last_stream_delay_ms_ = 0; if (aec_system_delay_jumps_ > -1) { RTC_HISTOGRAM_ENUMERATION("WebRTC.Audio.NumOfAecSystemDelayJumps", aec_system_delay_jumps_, 51); } aec_system_delay_jumps_ = -1; last_aec_system_delay_ms_ = 0; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP int AudioProcessingImpl::WriteMessageToDebugFile() { int32_t size = event_msg_->ByteSize(); if (size <= 0) { return kUnspecifiedError; } #if defined(WEBRTC_ARCH_BIG_ENDIAN) // TODO(ajm): Use little-endian "on the wire". For the moment, we can be // pretty safe in assuming little-endian. #endif if (!event_msg_->SerializeToString(&event_str_)) { return kUnspecifiedError; } // Write message preceded by its size. if (!debug_file_->Write(&size, sizeof(int32_t))) { return kFileError; } if (!debug_file_->Write(event_str_.data(), event_str_.length())) { return kFileError; } event_msg_->Clear(); return kNoError; } int AudioProcessingImpl::WriteInitMessage() { event_msg_->set_type(audioproc::Event::INIT); audioproc::Init* msg = event_msg_->mutable_init(); msg->set_sample_rate(api_format_.input_stream().sample_rate_hz()); msg->set_num_input_channels(api_format_.input_stream().num_channels()); msg->set_num_output_channels(api_format_.output_stream().num_channels()); msg->set_num_reverse_channels( api_format_.reverse_input_stream().num_channels()); msg->set_reverse_sample_rate( api_format_.reverse_input_stream().sample_rate_hz()); msg->set_output_sample_rate(api_format_.output_stream().sample_rate_hz()); // TODO(ekmeyerson): Add reverse output fields to event_msg_. RETURN_ON_ERR(WriteMessageToDebugFile()); return kNoError; } int AudioProcessingImpl::WriteConfigMessage(bool forced) { audioproc::Config config; config.set_aec_enabled(echo_cancellation_->is_enabled()); config.set_aec_delay_agnostic_enabled( echo_cancellation_->is_delay_agnostic_enabled()); config.set_aec_drift_compensation_enabled( echo_cancellation_->is_drift_compensation_enabled()); config.set_aec_extended_filter_enabled( echo_cancellation_->is_extended_filter_enabled()); config.set_aec_suppression_level( static_cast(echo_cancellation_->suppression_level())); config.set_aecm_enabled(echo_control_mobile_->is_enabled()); config.set_aecm_comfort_noise_enabled( echo_control_mobile_->is_comfort_noise_enabled()); config.set_aecm_routing_mode( static_cast(echo_control_mobile_->routing_mode())); config.set_agc_enabled(gain_control_->is_enabled()); config.set_agc_mode(static_cast(gain_control_->mode())); config.set_agc_limiter_enabled(gain_control_->is_limiter_enabled()); config.set_noise_robust_agc_enabled(use_new_agc_); config.set_hpf_enabled(high_pass_filter_->is_enabled()); config.set_ns_enabled(noise_suppression_->is_enabled()); config.set_ns_level(static_cast(noise_suppression_->level())); config.set_transient_suppression_enabled(transient_suppressor_enabled_); std::string serialized_config = config.SerializeAsString(); if (!forced && last_serialized_config_ == serialized_config) { return kNoError; } last_serialized_config_ = serialized_config; event_msg_->set_type(audioproc::Event::CONFIG); event_msg_->mutable_config()->CopyFrom(config); RETURN_ON_ERR(WriteMessageToDebugFile()); return kNoError; } #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } // namespace webrtc