1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
|
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "piglit-util-gl-common.h"
/**
* @file time-elapsed.c
*
* Test TIME_ELAPSED and TIMESTAMP queries.
*/
#include <sys/time.h>
PIGLIT_GL_TEST_CONFIG_BEGIN
config.supports_gl_compat_version = 10;
config.window_visual = PIGLIT_GL_VISUAL_DOUBLE | PIGLIT_GL_VISUAL_RGBA;
PIGLIT_GL_TEST_CONFIG_END
static char *vs_text =
"#version 110\n"
"void main()\n"
"{\n"
" gl_Position = gl_Vertex;\n"
"}\n";
/**
* Time-wasting fragment shader. This fragment shader computes:
*
* x = (sum(i=0..(iters-1): 2*i) % iters) / iters
*
* This value should always work out to 0.0, but it's highly unlikely
* that an optimizer will figure this out. Hence we can use this
* shader to waste an arbitrary amount of time (by suitable choice of
* the value of iters).
*
* The shader outputs a color of (x, 1.0, 0.0, 0.0).
*/
static char *fs_text =
"#version 110\n"
"uniform int iters;\n"
"void main()\n"
"{\n"
" int cumulative_sum = 0;\n"
" for (int i = 0; i < iters; ++i) {\n"
" cumulative_sum += i;\n"
" if (cumulative_sum >= iters)\n"
" cumulative_sum -= iters;\n"
" cumulative_sum += i;\n"
" if (cumulative_sum >= iters)\n"
" cumulative_sum -= iters;\n"
" }\n"
" float x = float(cumulative_sum) / float(iters);\n"
" gl_FragColor = vec4(x, 1.0, 0.0, 0.0);\n"
"}\n";
enum {
TIME_ELAPSED,
TIMESTAMP
} test = TIME_ELAPSED;
GLuint prog;
GLint iters_loc;
static float
get_time(void)
{
static bool inited = false;
static time_t base_sec = 0;
struct timeval tv;
gettimeofday(&tv, NULL);
/* Return a value that is roughly seconds since program
* startup, to avoid large tv_sec reducing precision of the
* return value.
*/
if (!inited) {
inited = true;
base_sec = tv.tv_sec;
}
tv.tv_sec -= base_sec;
return (double)tv.tv_sec + tv.tv_usec / 1000000.0;
}
static float
draw(GLuint *q, int iters)
{
float start_time, end_time;
glUseProgram(prog);
glUniform1i(iters_loc, iters);
start_time = get_time();
if (test == TIMESTAMP) {
glQueryCounter(q[0], GL_TIMESTAMP);
} else {
glBeginQuery(GL_TIME_ELAPSED, q[0]);
}
piglit_draw_rect(-1, -1, 2, 2);
if (test == TIMESTAMP) {
glQueryCounter(q[1], GL_TIMESTAMP);
} else {
glEndQuery(GL_TIME_ELAPSED);
}
/* This glFinish() is important, since this is used in a
* timing loop.
*/
glFinish();
end_time = get_time();
return end_time - start_time;
}
static float
get_gpu_time(GLuint *q)
{
GLint64EXT elapsed;
if (test == TIMESTAMP) {
GLint64 start, end;
glGetQueryObjecti64vEXT(q[0], GL_QUERY_RESULT, &start);
glGetQueryObjecti64vEXT(q[1], GL_QUERY_RESULT, &end);
elapsed = end - start;
} else {
glGetQueryObjecti64vEXT(q[0], GL_QUERY_RESULT, &elapsed);
}
return elapsed / 1000.0 / 1000.0 / 1000.0;
}
enum piglit_result
piglit_display(void)
{
bool pass = true;
float green[4] = {0.0, 1.0, 0.0, 0.0};
GLuint q[2];
int iters;
int num_results = 5;
float cpu_time[num_results];
float gpu_time[num_results];
float delta[num_results];
float cpu_time_mean;
float delta_mean, delta_stddev;
float cpu_overhead;
float t, t_cutoff;
int i;
glColor4f(0.0, 1.0, 0.0, 0.0);
glGenQueries(2, q);
/* Prime the drawing pipe before we start measuring time,
* since the first draw call is likely to be slower than all
* others.
*/
draw(q, 1);
/* Figure out some baseline difference between GPU time
* elapsed and CPU time elapsed for a single draw call (CPU
* overhead of timer query and glFinish()).
*
* Note that this doesn't take into account any extra CPU time
* elapsed from start to finish if multiple batchbuffers are
* accumulated by the driver in getting to our 1/10th of a
* second elapsed time goal, and some other client sneaks
* rendering in in between those batches.
*
* Part of the rendering size being relatively large is to
* hopefully avoid that, though it might be better to have
* some time-consuming shader with a single draw call instead.
*/
cpu_overhead = 0;
for (i = 0; i < num_results; i++) {
cpu_time[i] = draw(q, 1);
gpu_time[i] = get_gpu_time(q);
cpu_overhead += cpu_time[i] - gpu_time[i];
}
cpu_overhead /= num_results;
/* Find a number of draw calls that takes about 1/10th of a
* second.
*/
retry:
for (iters = 1; ; iters *= 2) {
if (draw(q, iters) > 0.1)
break;
if (iters * 2 <= iters) {
printf("Couldn't find appropriate number of iterations\n");
piglit_report_result(PIGLIT_FAIL);
}
}
/* Now, do several runs like this so we can determine if the
* timer matches up with wall time.
*/
for (i = 0; i < num_results; i++) {
cpu_time[i] = draw(q, iters);
gpu_time[i] = get_gpu_time(q);
}
cpu_time_mean = 0;
delta_mean = 0;
for (i = 0; i < num_results; i++) {
delta[i] = cpu_time[i] - cpu_overhead - gpu_time[i];
cpu_time_mean += cpu_time[i];
delta_mean += delta[i];
}
cpu_time_mean /= num_results;
delta_mean /= num_results;
/* There's some risk of our "get to 0.1 seconds" loop deciding
* that a small number of iters was sufficient if we got
* scheduled out for a while. Re-run if so.
*
* We wouldn't have that problem if we could rely on the GPU
* time elapsed query, but that's the thing we're testing.
*/
if (cpu_time_mean < 0.05)
goto retry;
/* Calculate stddevs. */
delta_stddev = 0;
for (i = 0; i < num_results; i++) {
float d = delta[i] - delta_mean;
delta_stddev += d * d / (num_results - 1);
}
delta_stddev = sqrt(delta_stddev);
/* Dependent t-test for paired samples.
*
* This is a good test, because we expect the two times (cpu
* and gpu) of the samples to be correlated, and we expect the
* stddev to match (since time it should arise from system
* variables like scheduling of other tasks and state of the
* caches). Unless maybe the variance of cpu time is greater
* than gpu time, because we may see scheduling accounted for
* in our CPU (wall) time, while scheduling other tasks
* doesn't end up counted toward our GPU time.
*/
t = delta_mean / (delta_stddev / sqrt(num_results));
/* Integral of Student's t distribution for 4 degrees of
* freedom (num_results = 5), two-tailed (we care about
* difference above or below 0, not just one direction), at
* p = .05.
*/
t_cutoff = 2.776;
/* Now test that our sampled distribution (rate of clock
* advance between CPU and GPU) was within expectations for a
* delta of 0. I actually want to be testing the likelihood
* that the real difference is enough that we actually care.
* I didn't find an easy way to account for that after a bunch
* of wikipedia browsing, so I'll punt on proper analysis for
* now and just check that the sampled delta isn't too small
* to care about.
*/
if (t > t_cutoff && fabs(delta_mean) > .05 * cpu_time_mean) {
fprintf(stderr, "GPU time didn't match CPU time\n");
printf("Estimated CPU overhead: %f\n", cpu_overhead);
printf("Difference: %f secs (+/- %f secs)\n",
delta_mean, delta_stddev);
printf("t = %f\n", t);
printf("%20s %20s %20s\n",
"gpu_time", "cpu_time", "delta");
for (i = 0; i < num_results; i++) {
printf("%20f %20f %20f\n",
gpu_time[i], cpu_time[i], delta[i]);
}
pass = false;
}
pass = piglit_probe_rect_rgba(0, 0, piglit_width, piglit_height,
green) && pass;
piglit_present_results();
glDeleteQueries(2, q);
return pass ? PIGLIT_PASS : PIGLIT_FAIL;
}
void
piglit_init(int argc, char **argv)
{
piglit_require_gl_version(20);
prog = piglit_build_simple_program(vs_text, fs_text);
iters_loc = glGetUniformLocation(prog, "iters");
piglit_require_extension("GL_EXT_timer_query");
if (argc == 2 && strcmp(argv[1], "timestamp") == 0) {
piglit_require_extension("GL_ARB_timer_query");
test = TIMESTAMP;
}
}
|