/************************************************************************** * * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_drv.h" #include "vmwgfx_drm.h" #include "ttm/ttm_object.h" #include "ttm/ttm_placement.h" #include "drmP.h" #include "vmwgfx_resource_priv.h" #include "vmwgfx_binding.h" #define VMW_RES_EVICT_ERR_COUNT 10 struct vmw_user_dma_buffer { struct ttm_prime_object prime; struct vmw_dma_buffer dma; }; struct vmw_bo_user_rep { uint32_t handle; uint64_t map_handle; }; static inline struct vmw_dma_buffer * vmw_dma_buffer(struct ttm_buffer_object *bo) { return container_of(bo, struct vmw_dma_buffer, base); } static inline struct vmw_user_dma_buffer * vmw_user_dma_buffer(struct ttm_buffer_object *bo) { struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo); return container_of(vmw_bo, struct vmw_user_dma_buffer, dma); } struct vmw_resource *vmw_resource_reference(struct vmw_resource *res) { kref_get(&res->kref); return res; } struct vmw_resource * vmw_resource_reference_unless_doomed(struct vmw_resource *res) { return kref_get_unless_zero(&res->kref) ? res : NULL; } /** * vmw_resource_release_id - release a resource id to the id manager. * * @res: Pointer to the resource. * * Release the resource id to the resource id manager and set it to -1 */ void vmw_resource_release_id(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct idr *idr = &dev_priv->res_idr[res->func->res_type]; write_lock(&dev_priv->resource_lock); if (res->id != -1) idr_remove(idr, res->id); res->id = -1; write_unlock(&dev_priv->resource_lock); } static void __releases(dev_priv->resource_lock) __acquires(dev_priv->resource_lock) vmw_resource_release(struct kref *kref) { struct vmw_resource *res = container_of(kref, struct vmw_resource, kref); struct vmw_private *dev_priv = res->dev_priv; int id; struct idr *idr = &dev_priv->res_idr[res->func->res_type]; write_lock(&dev_priv->resource_lock); res->avail = false; list_del_init(&res->lru_head); write_unlock(&dev_priv->resource_lock); if (res->backup) { struct ttm_buffer_object *bo = &res->backup->base; ttm_bo_reserve(bo, false, false, NULL); if (!list_empty(&res->mob_head) && res->func->unbind != NULL) { struct ttm_validate_buffer val_buf; val_buf.bo = bo; val_buf.shared = false; res->func->unbind(res, false, &val_buf); } res->backup_dirty = false; list_del_init(&res->mob_head); ttm_bo_unreserve(bo); vmw_dmabuf_unreference(&res->backup); } if (likely(res->hw_destroy != NULL)) { mutex_lock(&dev_priv->binding_mutex); vmw_binding_res_list_kill(&res->binding_head); mutex_unlock(&dev_priv->binding_mutex); res->hw_destroy(res); } id = res->id; if (res->res_free != NULL) res->res_free(res); else kfree(res); write_lock(&dev_priv->resource_lock); if (id != -1) idr_remove(idr, id); write_unlock(&dev_priv->resource_lock); } void vmw_resource_unreference(struct vmw_resource **p_res) { struct vmw_resource *res = *p_res; *p_res = NULL; kref_put(&res->kref, vmw_resource_release); } /** * vmw_resource_alloc_id - release a resource id to the id manager. * * @res: Pointer to the resource. * * Allocate the lowest free resource from the resource manager, and set * @res->id to that id. Returns 0 on success and -ENOMEM on failure. */ int vmw_resource_alloc_id(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; int ret; struct idr *idr = &dev_priv->res_idr[res->func->res_type]; BUG_ON(res->id != -1); idr_preload(GFP_KERNEL); write_lock(&dev_priv->resource_lock); ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT); if (ret >= 0) res->id = ret; write_unlock(&dev_priv->resource_lock); idr_preload_end(); return ret < 0 ? ret : 0; } /** * vmw_resource_init - initialize a struct vmw_resource * * @dev_priv: Pointer to a device private struct. * @res: The struct vmw_resource to initialize. * @obj_type: Resource object type. * @delay_id: Boolean whether to defer device id allocation until * the first validation. * @res_free: Resource destructor. * @func: Resource function table. */ int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res, bool delay_id, void (*res_free) (struct vmw_resource *res), const struct vmw_res_func *func) { kref_init(&res->kref); res->hw_destroy = NULL; res->res_free = res_free; res->avail = false; res->dev_priv = dev_priv; res->func = func; INIT_LIST_HEAD(&res->lru_head); INIT_LIST_HEAD(&res->mob_head); INIT_LIST_HEAD(&res->binding_head); res->id = -1; res->backup = NULL; res->backup_offset = 0; res->backup_dirty = false; res->res_dirty = false; if (delay_id) return 0; else return vmw_resource_alloc_id(res); } /** * vmw_resource_activate * * @res: Pointer to the newly created resource * @hw_destroy: Destroy function. NULL if none. * * Activate a resource after the hardware has been made aware of it. * Set tye destroy function to @destroy. Typically this frees the * resource and destroys the hardware resources associated with it. * Activate basically means that the function vmw_resource_lookup will * find it. */ void vmw_resource_activate(struct vmw_resource *res, void (*hw_destroy) (struct vmw_resource *)) { struct vmw_private *dev_priv = res->dev_priv; write_lock(&dev_priv->resource_lock); res->avail = true; res->hw_destroy = hw_destroy; write_unlock(&dev_priv->resource_lock); } /** * vmw_user_resource_lookup_handle - lookup a struct resource from a * TTM user-space handle and perform basic type checks * * @dev_priv: Pointer to a device private struct * @tfile: Pointer to a struct ttm_object_file identifying the caller * @handle: The TTM user-space handle * @converter: Pointer to an object describing the resource type * @p_res: On successful return the location pointed to will contain * a pointer to a refcounted struct vmw_resource. * * If the handle can't be found or is associated with an incorrect resource * type, -EINVAL will be returned. */ int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv, struct ttm_object_file *tfile, uint32_t handle, const struct vmw_user_resource_conv *converter, struct vmw_resource **p_res) { struct ttm_base_object *base; struct vmw_resource *res; int ret = -EINVAL; base = ttm_base_object_lookup(tfile, handle); if (unlikely(base == NULL)) return -EINVAL; if (unlikely(ttm_base_object_type(base) != converter->object_type)) goto out_bad_resource; res = converter->base_obj_to_res(base); read_lock(&dev_priv->resource_lock); if (!res->avail || res->res_free != converter->res_free) { read_unlock(&dev_priv->resource_lock); goto out_bad_resource; } kref_get(&res->kref); read_unlock(&dev_priv->resource_lock); *p_res = res; ret = 0; out_bad_resource: ttm_base_object_unref(&base); return ret; } /** * Helper function that looks either a surface or dmabuf. * * The pointer this pointed at by out_surf and out_buf needs to be null. */ int vmw_user_lookup_handle(struct vmw_private *dev_priv, struct ttm_object_file *tfile, uint32_t handle, struct vmw_surface **out_surf, struct vmw_dma_buffer **out_buf) { struct vmw_resource *res; int ret; BUG_ON(*out_surf || *out_buf); ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle, user_surface_converter, &res); if (!ret) { *out_surf = vmw_res_to_srf(res); return 0; } *out_surf = NULL; ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL); return ret; } /** * Buffer management. */ /** * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers * * @dev_priv: Pointer to a struct vmw_private identifying the device. * @size: The requested buffer size. * @user: Whether this is an ordinary dma buffer or a user dma buffer. */ static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size, bool user) { static size_t struct_size, user_struct_size; size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *)); if (unlikely(struct_size == 0)) { size_t backend_size = ttm_round_pot(vmw_tt_size); struct_size = backend_size + ttm_round_pot(sizeof(struct vmw_dma_buffer)); user_struct_size = backend_size + ttm_round_pot(sizeof(struct vmw_user_dma_buffer)); } if (dev_priv->map_mode == vmw_dma_alloc_coherent) page_array_size += ttm_round_pot(num_pages * sizeof(dma_addr_t)); return ((user) ? user_struct_size : struct_size) + page_array_size; } void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo) { struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo); vmw_dma_buffer_unmap(vmw_bo); kfree(vmw_bo); } static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo) { struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo); vmw_dma_buffer_unmap(&vmw_user_bo->dma); ttm_prime_object_kfree(vmw_user_bo, prime); } int vmw_dmabuf_init(struct vmw_private *dev_priv, struct vmw_dma_buffer *vmw_bo, size_t size, struct ttm_placement *placement, bool interruptible, void (*bo_free) (struct ttm_buffer_object *bo)) { struct ttm_bo_device *bdev = &dev_priv->bdev; size_t acc_size; int ret; bool user = (bo_free == &vmw_user_dmabuf_destroy); BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free))); acc_size = vmw_dmabuf_acc_size(dev_priv, size, user); memset(vmw_bo, 0, sizeof(*vmw_bo)); INIT_LIST_HEAD(&vmw_bo->res_list); ret = ttm_bo_init(bdev, &vmw_bo->base, size, ttm_bo_type_device, placement, 0, interruptible, NULL, acc_size, NULL, NULL, bo_free); return ret; } static void vmw_user_dmabuf_release(struct ttm_base_object **p_base) { struct vmw_user_dma_buffer *vmw_user_bo; struct ttm_base_object *base = *p_base; struct ttm_buffer_object *bo; *p_base = NULL; if (unlikely(base == NULL)) return; vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base); bo = &vmw_user_bo->dma.base; ttm_bo_unref(&bo); } static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base, enum ttm_ref_type ref_type) { struct vmw_user_dma_buffer *user_bo; user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base); switch (ref_type) { case TTM_REF_SYNCCPU_WRITE: ttm_bo_synccpu_write_release(&user_bo->dma.base); break; default: BUG(); } } /** * vmw_user_dmabuf_alloc - Allocate a user dma buffer * * @dev_priv: Pointer to a struct device private. * @tfile: Pointer to a struct ttm_object_file on which to register the user * object. * @size: Size of the dma buffer. * @shareable: Boolean whether the buffer is shareable with other open files. * @handle: Pointer to where the handle value should be assigned. * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer * should be assigned. */ int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv, struct ttm_object_file *tfile, uint32_t size, bool shareable, uint32_t *handle, struct vmw_dma_buffer **p_dma_buf, struct ttm_base_object **p_base) { struct vmw_user_dma_buffer *user_bo; struct ttm_buffer_object *tmp; int ret; user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL); if (unlikely(!user_bo)) { DRM_ERROR("Failed to allocate a buffer.\n"); return -ENOMEM; } ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size, (dev_priv->has_mob) ? &vmw_sys_placement : &vmw_vram_sys_placement, true, &vmw_user_dmabuf_destroy); if (unlikely(ret != 0)) return ret; tmp = ttm_bo_reference(&user_bo->dma.base); ret = ttm_prime_object_init(tfile, size, &user_bo->prime, shareable, ttm_buffer_type, &vmw_user_dmabuf_release, &vmw_user_dmabuf_ref_obj_release); if (unlikely(ret != 0)) { ttm_bo_unref(&tmp); goto out_no_base_object; } *p_dma_buf = &user_bo->dma; if (p_base) { *p_base = &user_bo->prime.base; kref_get(&(*p_base)->refcount); } *handle = user_bo->prime.base.hash.key; out_no_base_object: return ret; } /** * vmw_user_dmabuf_verify_access - verify access permissions on this * buffer object. * * @bo: Pointer to the buffer object being accessed * @tfile: Identifying the caller. */ int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo, struct ttm_object_file *tfile) { struct vmw_user_dma_buffer *vmw_user_bo; if (unlikely(bo->destroy != vmw_user_dmabuf_destroy)) return -EPERM; vmw_user_bo = vmw_user_dma_buffer(bo); /* Check that the caller has opened the object. */ if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base))) return 0; DRM_ERROR("Could not grant buffer access.\n"); return -EPERM; } /** * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu * access, idling previous GPU operations on the buffer and optionally * blocking it for further command submissions. * * @user_bo: Pointer to the buffer object being grabbed for CPU access * @tfile: Identifying the caller. * @flags: Flags indicating how the grab should be performed. * * A blocking grab will be automatically released when @tfile is closed. */ static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo, struct ttm_object_file *tfile, uint32_t flags) { struct ttm_buffer_object *bo = &user_bo->dma.base; bool existed; int ret; if (flags & drm_vmw_synccpu_allow_cs) { bool nonblock = !!(flags & drm_vmw_synccpu_dontblock); long lret; lret = reservation_object_wait_timeout_rcu(bo->resv, true, true, nonblock ? 0 : MAX_SCHEDULE_TIMEOUT); if (!lret) return -EBUSY; else if (lret < 0) return lret; return 0; } ret = ttm_bo_synccpu_write_grab (bo, !!(flags & drm_vmw_synccpu_dontblock)); if (unlikely(ret != 0)) return ret; ret = ttm_ref_object_add(tfile, &user_bo->prime.base, TTM_REF_SYNCCPU_WRITE, &existed, false); if (ret != 0 || existed) ttm_bo_synccpu_write_release(&user_bo->dma.base); return ret; } /** * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access, * and unblock command submission on the buffer if blocked. * * @handle: Handle identifying the buffer object. * @tfile: Identifying the caller. * @flags: Flags indicating the type of release. */ static int vmw_user_dmabuf_synccpu_release(uint32_t handle, struct ttm_object_file *tfile, uint32_t flags) { if (!(flags & drm_vmw_synccpu_allow_cs)) return ttm_ref_object_base_unref(tfile, handle, TTM_REF_SYNCCPU_WRITE); return 0; } /** * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu * functionality. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller. * * This function checks the ioctl arguments for validity and calls the * relevant synccpu functions. */ int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_synccpu_arg *arg = (struct drm_vmw_synccpu_arg *) data; struct vmw_dma_buffer *dma_buf; struct vmw_user_dma_buffer *user_bo; struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; struct ttm_base_object *buffer_base; int ret; if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write | drm_vmw_synccpu_dontblock | drm_vmw_synccpu_allow_cs)) != 0) { DRM_ERROR("Illegal synccpu flags.\n"); return -EINVAL; } switch (arg->op) { case drm_vmw_synccpu_grab: ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf, &buffer_base); if (unlikely(ret != 0)) return ret; user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma); ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags); vmw_dmabuf_unreference(&dma_buf); ttm_base_object_unref(&buffer_base); if (unlikely(ret != 0 && ret != -ERESTARTSYS && ret != -EBUSY)) { DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n", (unsigned int) arg->handle); return ret; } break; case drm_vmw_synccpu_release: ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile, arg->flags); if (unlikely(ret != 0)) { DRM_ERROR("Failed synccpu release on handle 0x%08x.\n", (unsigned int) arg->handle); return ret; } break; default: DRM_ERROR("Invalid synccpu operation.\n"); return -EINVAL; } return 0; } int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct vmw_private *dev_priv = vmw_priv(dev); union drm_vmw_alloc_dmabuf_arg *arg = (union drm_vmw_alloc_dmabuf_arg *)data; struct drm_vmw_alloc_dmabuf_req *req = &arg->req; struct drm_vmw_dmabuf_rep *rep = &arg->rep; struct vmw_dma_buffer *dma_buf; uint32_t handle; int ret; ret = ttm_read_lock(&dev_priv->reservation_sem, true); if (unlikely(ret != 0)) return ret; ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, req->size, false, &handle, &dma_buf, NULL); if (unlikely(ret != 0)) goto out_no_dmabuf; rep->handle = handle; rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node); rep->cur_gmr_id = handle; rep->cur_gmr_offset = 0; vmw_dmabuf_unreference(&dma_buf); out_no_dmabuf: ttm_read_unlock(&dev_priv->reservation_sem); return ret; } int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_unref_dmabuf_arg *arg = (struct drm_vmw_unref_dmabuf_arg *)data; return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, arg->handle, TTM_REF_USAGE); } int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile, uint32_t handle, struct vmw_dma_buffer **out, struct ttm_base_object **p_base) { struct vmw_user_dma_buffer *vmw_user_bo; struct ttm_base_object *base; base = ttm_base_object_lookup(tfile, handle); if (unlikely(base == NULL)) { printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n", (unsigned long)handle); return -ESRCH; } if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) { ttm_base_object_unref(&base); printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n", (unsigned long)handle); return -EINVAL; } vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base); (void)ttm_bo_reference(&vmw_user_bo->dma.base); if (p_base) *p_base = base; else ttm_base_object_unref(&base); *out = &vmw_user_bo->dma; return 0; } int vmw_user_dmabuf_reference(struct ttm_object_file *tfile, struct vmw_dma_buffer *dma_buf, uint32_t *handle) { struct vmw_user_dma_buffer *user_bo; if (dma_buf->base.destroy != vmw_user_dmabuf_destroy) return -EINVAL; user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma); *handle = user_bo->prime.base.hash.key; return ttm_ref_object_add(tfile, &user_bo->prime.base, TTM_REF_USAGE, NULL, false); } /** * vmw_dumb_create - Create a dumb kms buffer * * @file_priv: Pointer to a struct drm_file identifying the caller. * @dev: Pointer to the drm device. * @args: Pointer to a struct drm_mode_create_dumb structure * * This is a driver callback for the core drm create_dumb functionality. * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except * that the arguments have a different format. */ int vmw_dumb_create(struct drm_file *file_priv, struct drm_device *dev, struct drm_mode_create_dumb *args) { struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_dma_buffer *dma_buf; int ret; args->pitch = args->width * ((args->bpp + 7) / 8); args->size = args->pitch * args->height; ret = ttm_read_lock(&dev_priv->reservation_sem, true); if (unlikely(ret != 0)) return ret; ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, args->size, false, &args->handle, &dma_buf, NULL); if (unlikely(ret != 0)) goto out_no_dmabuf; vmw_dmabuf_unreference(&dma_buf); out_no_dmabuf: ttm_read_unlock(&dev_priv->reservation_sem); return ret; } /** * vmw_dumb_map_offset - Return the address space offset of a dumb buffer * * @file_priv: Pointer to a struct drm_file identifying the caller. * @dev: Pointer to the drm device. * @handle: Handle identifying the dumb buffer. * @offset: The address space offset returned. * * This is a driver callback for the core drm dumb_map_offset functionality. */ int vmw_dumb_map_offset(struct drm_file *file_priv, struct drm_device *dev, uint32_t handle, uint64_t *offset) { struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; struct vmw_dma_buffer *out_buf; int ret; ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL); if (ret != 0) return -EINVAL; *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node); vmw_dmabuf_unreference(&out_buf); return 0; } /** * vmw_dumb_destroy - Destroy a dumb boffer * * @file_priv: Pointer to a struct drm_file identifying the caller. * @dev: Pointer to the drm device. * @handle: Handle identifying the dumb buffer. * * This is a driver callback for the core drm dumb_destroy functionality. */ int vmw_dumb_destroy(struct drm_file *file_priv, struct drm_device *dev, uint32_t handle) { return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, handle, TTM_REF_USAGE); } /** * vmw_resource_buf_alloc - Allocate a backup buffer for a resource. * * @res: The resource for which to allocate a backup buffer. * @interruptible: Whether any sleeps during allocation should be * performed while interruptible. */ static int vmw_resource_buf_alloc(struct vmw_resource *res, bool interruptible) { unsigned long size = (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK; struct vmw_dma_buffer *backup; int ret; if (likely(res->backup)) { BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size); return 0; } backup = kzalloc(sizeof(*backup), GFP_KERNEL); if (unlikely(!backup)) return -ENOMEM; ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size, res->func->backup_placement, interruptible, &vmw_dmabuf_bo_free); if (unlikely(ret != 0)) goto out_no_dmabuf; res->backup = backup; out_no_dmabuf: return ret; } /** * vmw_resource_do_validate - Make a resource up-to-date and visible * to the device. * * @res: The resource to make visible to the device. * @val_buf: Information about a buffer possibly * containing backup data if a bind operation is needed. * * On hardware resource shortage, this function returns -EBUSY and * should be retried once resources have been freed up. */ static int vmw_resource_do_validate(struct vmw_resource *res, struct ttm_validate_buffer *val_buf) { int ret = 0; const struct vmw_res_func *func = res->func; if (unlikely(res->id == -1)) { ret = func->create(res); if (unlikely(ret != 0)) return ret; } if (func->bind && ((func->needs_backup && list_empty(&res->mob_head) && val_buf->bo != NULL) || (!func->needs_backup && val_buf->bo != NULL))) { ret = func->bind(res, val_buf); if (unlikely(ret != 0)) goto out_bind_failed; if (func->needs_backup) list_add_tail(&res->mob_head, &res->backup->res_list); } /* * Only do this on write operations, and move to * vmw_resource_unreserve if it can be called after * backup buffers have been unreserved. Otherwise * sort out locking. */ res->res_dirty = true; return 0; out_bind_failed: func->destroy(res); return ret; } /** * vmw_resource_unreserve - Unreserve a resource previously reserved for * command submission. * * @res: Pointer to the struct vmw_resource to unreserve. * @switch_backup: Backup buffer has been switched. * @new_backup: Pointer to new backup buffer if command submission * switched. May be NULL. * @new_backup_offset: New backup offset if @switch_backup is true. * * Currently unreserving a resource means putting it back on the device's * resource lru list, so that it can be evicted if necessary. */ void vmw_resource_unreserve(struct vmw_resource *res, bool switch_backup, struct vmw_dma_buffer *new_backup, unsigned long new_backup_offset) { struct vmw_private *dev_priv = res->dev_priv; if (!list_empty(&res->lru_head)) return; if (switch_backup && new_backup != res->backup) { if (res->backup) { lockdep_assert_held(&res->backup->base.resv->lock.base); list_del_init(&res->mob_head); vmw_dmabuf_unreference(&res->backup); } if (new_backup) { res->backup = vmw_dmabuf_reference(new_backup); lockdep_assert_held(&new_backup->base.resv->lock.base); list_add_tail(&res->mob_head, &new_backup->res_list); } else { res->backup = NULL; } } if (switch_backup) res->backup_offset = new_backup_offset; if (!res->func->may_evict || res->id == -1 || res->pin_count) return; write_lock(&dev_priv->resource_lock); list_add_tail(&res->lru_head, &res->dev_priv->res_lru[res->func->res_type]); write_unlock(&dev_priv->resource_lock); } /** * vmw_resource_check_buffer - Check whether a backup buffer is needed * for a resource and in that case, allocate * one, reserve and validate it. * * @res: The resource for which to allocate a backup buffer. * @interruptible: Whether any sleeps during allocation should be * performed while interruptible. * @val_buf: On successful return contains data about the * reserved and validated backup buffer. */ static int vmw_resource_check_buffer(struct vmw_resource *res, bool interruptible, struct ttm_validate_buffer *val_buf) { struct list_head val_list; bool backup_dirty = false; int ret; if (unlikely(res->backup == NULL)) { ret = vmw_resource_buf_alloc(res, interruptible); if (unlikely(ret != 0)) return ret; } INIT_LIST_HEAD(&val_list); val_buf->bo = ttm_bo_reference(&res->backup->base); val_buf->shared = false; list_add_tail(&val_buf->head, &val_list); ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL); if (unlikely(ret != 0)) goto out_no_reserve; if (res->func->needs_backup && list_empty(&res->mob_head)) return 0; backup_dirty = res->backup_dirty; ret = ttm_bo_validate(&res->backup->base, res->func->backup_placement, true, false); if (unlikely(ret != 0)) goto out_no_validate; return 0; out_no_validate: ttm_eu_backoff_reservation(NULL, &val_list); out_no_reserve: ttm_bo_unref(&val_buf->bo); if (backup_dirty) vmw_dmabuf_unreference(&res->backup); return ret; } /** * vmw_resource_reserve - Reserve a resource for command submission * * @res: The resource to reserve. * * This function takes the resource off the LRU list and make sure * a backup buffer is present for guest-backed resources. However, * the buffer may not be bound to the resource at this point. * */ int vmw_resource_reserve(struct vmw_resource *res, bool interruptible, bool no_backup) { struct vmw_private *dev_priv = res->dev_priv; int ret; write_lock(&dev_priv->resource_lock); list_del_init(&res->lru_head); write_unlock(&dev_priv->resource_lock); if (res->func->needs_backup && res->backup == NULL && !no_backup) { ret = vmw_resource_buf_alloc(res, interruptible); if (unlikely(ret != 0)) { DRM_ERROR("Failed to allocate a backup buffer " "of size %lu. bytes\n", (unsigned long) res->backup_size); return ret; } } return 0; } /** * vmw_resource_backoff_reservation - Unreserve and unreference a * backup buffer *. * @val_buf: Backup buffer information. */ static void vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf) { struct list_head val_list; if (likely(val_buf->bo == NULL)) return; INIT_LIST_HEAD(&val_list); list_add_tail(&val_buf->head, &val_list); ttm_eu_backoff_reservation(NULL, &val_list); ttm_bo_unref(&val_buf->bo); } /** * vmw_resource_do_evict - Evict a resource, and transfer its data * to a backup buffer. * * @res: The resource to evict. * @interruptible: Whether to wait interruptible. */ static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible) { struct ttm_validate_buffer val_buf; const struct vmw_res_func *func = res->func; int ret; BUG_ON(!func->may_evict); val_buf.bo = NULL; val_buf.shared = false; ret = vmw_resource_check_buffer(res, interruptible, &val_buf); if (unlikely(ret != 0)) return ret; if (unlikely(func->unbind != NULL && (!func->needs_backup || !list_empty(&res->mob_head)))) { ret = func->unbind(res, res->res_dirty, &val_buf); if (unlikely(ret != 0)) goto out_no_unbind; list_del_init(&res->mob_head); } ret = func->destroy(res); res->backup_dirty = true; res->res_dirty = false; out_no_unbind: vmw_resource_backoff_reservation(&val_buf); return ret; } /** * vmw_resource_validate - Make a resource up-to-date and visible * to the device. * * @res: The resource to make visible to the device. * * On succesful return, any backup DMA buffer pointed to by @res->backup will * be reserved and validated. * On hardware resource shortage, this function will repeatedly evict * resources of the same type until the validation succeeds. */ int vmw_resource_validate(struct vmw_resource *res) { int ret; struct vmw_resource *evict_res; struct vmw_private *dev_priv = res->dev_priv; struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type]; struct ttm_validate_buffer val_buf; unsigned err_count = 0; if (!res->func->create) return 0; val_buf.bo = NULL; val_buf.shared = false; if (res->backup) val_buf.bo = &res->backup->base; do { ret = vmw_resource_do_validate(res, &val_buf); if (likely(ret != -EBUSY)) break; write_lock(&dev_priv->resource_lock); if (list_empty(lru_list) || !res->func->may_evict) { DRM_ERROR("Out of device device resources " "for %s.\n", res->func->type_name); ret = -EBUSY; write_unlock(&dev_priv->resource_lock); break; } evict_res = vmw_resource_reference (list_first_entry(lru_list, struct vmw_resource, lru_head)); list_del_init(&evict_res->lru_head); write_unlock(&dev_priv->resource_lock); ret = vmw_resource_do_evict(evict_res, true); if (unlikely(ret != 0)) { write_lock(&dev_priv->resource_lock); list_add_tail(&evict_res->lru_head, lru_list); write_unlock(&dev_priv->resource_lock); if (ret == -ERESTARTSYS || ++err_count > VMW_RES_EVICT_ERR_COUNT) { vmw_resource_unreference(&evict_res); goto out_no_validate; } } vmw_resource_unreference(&evict_res); } while (1); if (unlikely(ret != 0)) goto out_no_validate; else if (!res->func->needs_backup && res->backup) { list_del_init(&res->mob_head); vmw_dmabuf_unreference(&res->backup); } return 0; out_no_validate: return ret; } /** * vmw_fence_single_bo - Utility function to fence a single TTM buffer * object without unreserving it. * * @bo: Pointer to the struct ttm_buffer_object to fence. * @fence: Pointer to the fence. If NULL, this function will * insert a fence into the command stream.. * * Contrary to the ttm_eu version of this function, it takes only * a single buffer object instead of a list, and it also doesn't * unreserve the buffer object, which needs to be done separately. */ void vmw_fence_single_bo(struct ttm_buffer_object *bo, struct vmw_fence_obj *fence) { struct ttm_bo_device *bdev = bo->bdev; struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev); if (fence == NULL) { vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); reservation_object_add_excl_fence(bo->resv, &fence->base); dma_fence_put(&fence->base); } else reservation_object_add_excl_fence(bo->resv, &fence->base); } /** * vmw_resource_move_notify - TTM move_notify_callback * * @bo: The TTM buffer object about to move. * @mem: The struct ttm_mem_reg indicating to what memory * region the move is taking place. * * Evicts the Guest Backed hardware resource if the backup * buffer is being moved out of MOB memory. * Note that this function should not race with the resource * validation code as long as it accesses only members of struct * resource that remain static while bo::res is !NULL and * while we have @bo reserved. struct resource::backup is *not* a * static member. The resource validation code will take care * to set @bo::res to NULL, while having @bo reserved when the * buffer is no longer bound to the resource, so @bo:res can be * used to determine whether there is a need to unbind and whether * it is safe to unbind. */ void vmw_resource_move_notify(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) { struct vmw_dma_buffer *dma_buf; if (mem == NULL) return; if (bo->destroy != vmw_dmabuf_bo_free && bo->destroy != vmw_user_dmabuf_destroy) return; dma_buf = container_of(bo, struct vmw_dma_buffer, base); /* * Kill any cached kernel maps before move. An optimization could * be to do this iff source or destination memory type is VRAM. */ vmw_dma_buffer_unmap(dma_buf); if (mem->mem_type != VMW_PL_MOB) { struct vmw_resource *res, *n; struct ttm_validate_buffer val_buf; val_buf.bo = bo; val_buf.shared = false; list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) { if (unlikely(res->func->unbind == NULL)) continue; (void) res->func->unbind(res, true, &val_buf); res->backup_dirty = true; res->res_dirty = false; list_del_init(&res->mob_head); } (void) ttm_bo_wait(bo, false, false); } } /** * vmw_resource_swap_notify - swapout notify callback. * * @bo: The buffer object to be swapped out. */ void vmw_resource_swap_notify(struct ttm_buffer_object *bo) { if (bo->destroy != vmw_dmabuf_bo_free && bo->destroy != vmw_user_dmabuf_destroy) return; /* Kill any cached kernel maps before swapout */ vmw_dma_buffer_unmap(vmw_dma_buffer(bo)); } /** * vmw_query_readback_all - Read back cached query states * * @dx_query_mob: Buffer containing the DX query MOB * * Read back cached states from the device if they exist. This function * assumings binding_mutex is held. */ int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob) { struct vmw_resource *dx_query_ctx; struct vmw_private *dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdDXReadbackAllQuery body; } *cmd; /* No query bound, so do nothing */ if (!dx_query_mob || !dx_query_mob->dx_query_ctx) return 0; dx_query_ctx = dx_query_mob->dx_query_ctx; dev_priv = dx_query_ctx->dev_priv; cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id); if (unlikely(cmd == NULL)) { DRM_ERROR("Failed reserving FIFO space for " "query MOB read back.\n"); return -ENOMEM; } cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY; cmd->header.size = sizeof(cmd->body); cmd->body.cid = dx_query_ctx->id; vmw_fifo_commit(dev_priv, sizeof(*cmd)); /* Triggers a rebind the next time affected context is bound */ dx_query_mob->dx_query_ctx = NULL; return 0; } /** * vmw_query_move_notify - Read back cached query states * * @bo: The TTM buffer object about to move. * @mem: The memory region @bo is moving to. * * Called before the query MOB is swapped out to read back cached query * states from the device. */ void vmw_query_move_notify(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) { struct vmw_dma_buffer *dx_query_mob; struct ttm_bo_device *bdev = bo->bdev; struct vmw_private *dev_priv; dev_priv = container_of(bdev, struct vmw_private, bdev); mutex_lock(&dev_priv->binding_mutex); dx_query_mob = container_of(bo, struct vmw_dma_buffer, base); if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) { mutex_unlock(&dev_priv->binding_mutex); return; } /* If BO is being moved from MOB to system memory */ if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) { struct vmw_fence_obj *fence; (void) vmw_query_readback_all(dx_query_mob); mutex_unlock(&dev_priv->binding_mutex); /* Create a fence and attach the BO to it */ (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); vmw_fence_single_bo(bo, fence); if (fence != NULL) vmw_fence_obj_unreference(&fence); (void) ttm_bo_wait(bo, false, false); } else mutex_unlock(&dev_priv->binding_mutex); } /** * vmw_resource_needs_backup - Return whether a resource needs a backup buffer. * * @res: The resource being queried. */ bool vmw_resource_needs_backup(const struct vmw_resource *res) { return res->func->needs_backup; } /** * vmw_resource_evict_type - Evict all resources of a specific type * * @dev_priv: Pointer to a device private struct * @type: The resource type to evict * * To avoid thrashing starvation or as part of the hibernation sequence, * try to evict all evictable resources of a specific type. */ static void vmw_resource_evict_type(struct vmw_private *dev_priv, enum vmw_res_type type) { struct list_head *lru_list = &dev_priv->res_lru[type]; struct vmw_resource *evict_res; unsigned err_count = 0; int ret; do { write_lock(&dev_priv->resource_lock); if (list_empty(lru_list)) goto out_unlock; evict_res = vmw_resource_reference( list_first_entry(lru_list, struct vmw_resource, lru_head)); list_del_init(&evict_res->lru_head); write_unlock(&dev_priv->resource_lock); ret = vmw_resource_do_evict(evict_res, false); if (unlikely(ret != 0)) { write_lock(&dev_priv->resource_lock); list_add_tail(&evict_res->lru_head, lru_list); write_unlock(&dev_priv->resource_lock); if (++err_count > VMW_RES_EVICT_ERR_COUNT) { vmw_resource_unreference(&evict_res); return; } } vmw_resource_unreference(&evict_res); } while (1); out_unlock: write_unlock(&dev_priv->resource_lock); } /** * vmw_resource_evict_all - Evict all evictable resources * * @dev_priv: Pointer to a device private struct * * To avoid thrashing starvation or as part of the hibernation sequence, * evict all evictable resources. In particular this means that all * guest-backed resources that are registered with the device are * evicted and the OTable becomes clean. */ void vmw_resource_evict_all(struct vmw_private *dev_priv) { enum vmw_res_type type; mutex_lock(&dev_priv->cmdbuf_mutex); for (type = 0; type < vmw_res_max; ++type) vmw_resource_evict_type(dev_priv, type); mutex_unlock(&dev_priv->cmdbuf_mutex); } /** * vmw_resource_pin - Add a pin reference on a resource * * @res: The resource to add a pin reference on * * This function adds a pin reference, and if needed validates the resource. * Having a pin reference means that the resource can never be evicted, and * its id will never change as long as there is a pin reference. * This function returns 0 on success and a negative error code on failure. */ int vmw_resource_pin(struct vmw_resource *res, bool interruptible) { struct vmw_private *dev_priv = res->dev_priv; int ret; ttm_write_lock(&dev_priv->reservation_sem, interruptible); mutex_lock(&dev_priv->cmdbuf_mutex); ret = vmw_resource_reserve(res, interruptible, false); if (ret) goto out_no_reserve; if (res->pin_count == 0) { struct vmw_dma_buffer *vbo = NULL; if (res->backup) { vbo = res->backup; ttm_bo_reserve(&vbo->base, interruptible, false, NULL); if (!vbo->pin_count) { ret = ttm_bo_validate (&vbo->base, res->func->backup_placement, interruptible, false); if (ret) { ttm_bo_unreserve(&vbo->base); goto out_no_validate; } } /* Do we really need to pin the MOB as well? */ vmw_bo_pin_reserved(vbo, true); } ret = vmw_resource_validate(res); if (vbo) ttm_bo_unreserve(&vbo->base); if (ret) goto out_no_validate; } res->pin_count++; out_no_validate: vmw_resource_unreserve(res, false, NULL, 0UL); out_no_reserve: mutex_unlock(&dev_priv->cmdbuf_mutex); ttm_write_unlock(&dev_priv->reservation_sem); return ret; } /** * vmw_resource_unpin - Remove a pin reference from a resource * * @res: The resource to remove a pin reference from * * Having a pin reference means that the resource can never be evicted, and * its id will never change as long as there is a pin reference. */ void vmw_resource_unpin(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; int ret; (void) ttm_read_lock(&dev_priv->reservation_sem, false); mutex_lock(&dev_priv->cmdbuf_mutex); ret = vmw_resource_reserve(res, false, true); WARN_ON(ret); WARN_ON(res->pin_count == 0); if (--res->pin_count == 0 && res->backup) { struct vmw_dma_buffer *vbo = res->backup; ttm_bo_reserve(&vbo->base, false, false, NULL); vmw_bo_pin_reserved(vbo, false); ttm_bo_unreserve(&vbo->base); } vmw_resource_unreserve(res, false, NULL, 0UL); mutex_unlock(&dev_priv->cmdbuf_mutex); ttm_read_unlock(&dev_priv->reservation_sem); } /** * vmw_res_type - Return the resource type * * @res: Pointer to the resource */ enum vmw_res_type vmw_res_type(const struct vmw_resource *res) { return res->func->res_type; }