1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
|
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2008 by Sun Microsystems, Inc.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: math.cxx,v $
* $Revision: 1.14 $
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_sal.hxx"
#include "rtl/math.h"
#include "osl/diagnose.h"
#include "rtl/alloc.h"
#include "rtl/math.hxx"
#include "rtl/strbuf.h"
#include "rtl/string.h"
#include "rtl/ustrbuf.h"
#include "rtl/ustring.h"
#include "sal/mathconf.h"
#include "sal/types.h"
#include <algorithm>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
static int const n10Count = 16;
static double const n10s[2][n10Count] = {
{ 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8,
1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16 },
{ 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8,
1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15, 1e-16 }
};
// return pow(10.0,nExp) optimized for exponents in the interval [-16,16]
static double getN10Exp( int nExp )
{
if ( nExp < 0 )
{
if ( -nExp <= n10Count )
return n10s[1][-nExp-1];
else
return pow( 10.0, static_cast<double>( nExp ) );
}
else if ( nExp > 0 )
{
if ( nExp <= n10Count )
return n10s[0][nExp-1];
else
return pow( 10.0, static_cast<double>( nExp ) );
}
else // ( nExp == 0 )
return 1.0;
}
/** Approximation algorithm for erf for 0 < x < 0.65. */
void lcl_Erf0065( double x, double& fVal )
{
static const double pn[] = {
1.12837916709551256,
1.35894887627277916E-1,
4.03259488531795274E-2,
1.20339380863079457E-3,
6.49254556481904354E-5
};
static const double qn[] = {
1.00000000000000000,
4.53767041780002545E-1,
8.69936222615385890E-2,
8.49717371168693357E-3,
3.64915280629351082E-4
};
double fPSum = 0.0;
double fQSum = 0.0;
double fXPow = 1.0;
for ( unsigned int i = 0; i <= 4; ++i )
{
fPSum += pn[i]*fXPow;
fQSum += qn[i]*fXPow;
fXPow *= x*x;
}
fVal = x * fPSum / fQSum;
}
/** Approximation algorithm for erfc for 0.65 < x < 6.0. */
void lcl_Erfc0600( double x, double& fVal )
{
double fPSum = 0.0;
double fQSum = 0.0;
double fXPow = 1.0;
const double *pn;
const double *qn;
if ( x < 2.2 )
{
static const double pn22[] = {
9.99999992049799098E-1,
1.33154163936765307,
8.78115804155881782E-1,
3.31899559578213215E-1,
7.14193832506776067E-2,
7.06940843763253131E-3
};
static const double qn22[] = {
1.00000000000000000,
2.45992070144245533,
2.65383972869775752,
1.61876655543871376,
5.94651311286481502E-1,
1.26579413030177940E-1,
1.25304936549413393E-2
};
pn = pn22;
qn = qn22;
}
else /* if ( x < 6.0 ) this is true, but the compiler does not know */
{
static const double pn60[] = {
9.99921140009714409E-1,
1.62356584489366647,
1.26739901455873222,
5.81528574177741135E-1,
1.57289620742838702E-1,
2.25716982919217555E-2
};
static const double qn60[] = {
1.00000000000000000,
2.75143870676376208,
3.37367334657284535,
2.38574194785344389,
1.05074004614827206,
2.78788439273628983E-1,
4.00072964526861362E-2
};
pn = pn60;
qn = qn60;
}
for ( unsigned int i = 0; i < 6; ++i )
{
fPSum += pn[i]*fXPow;
fQSum += qn[i]*fXPow;
fXPow *= x;
}
fQSum += qn[6]*fXPow;
fVal = exp( -1.0*x*x )* fPSum / fQSum;
}
/** Approximation algorithm for erfc for 6.0 < x < 26.54 (but used for all
x > 6.0). */
void lcl_Erfc2654( double x, double& fVal )
{
static const double pn[] = {
5.64189583547756078E-1,
8.80253746105525775,
3.84683103716117320E1,
4.77209965874436377E1,
8.08040729052301677
};
static const double qn[] = {
1.00000000000000000,
1.61020914205869003E1,
7.54843505665954743E1,
1.12123870801026015E2,
3.73997570145040850E1
};
double fPSum = 0.0;
double fQSum = 0.0;
double fXPow = 1.0;
for ( unsigned int i = 0; i <= 4; ++i )
{
fPSum += pn[i]*fXPow;
fQSum += qn[i]*fXPow;
fXPow /= x*x;
}
fVal = exp(-1.0*x*x)*fPSum / (x*fQSum);
}
namespace {
double const nKorrVal[] = {
0, 9e-1, 9e-2, 9e-3, 9e-4, 9e-5, 9e-6, 9e-7, 9e-8,
9e-9, 9e-10, 9e-11, 9e-12, 9e-13, 9e-14, 9e-15
};
struct StringTraits
{
typedef sal_Char Char;
typedef rtl_String String;
static inline void createString(rtl_String ** pString,
sal_Char const * pChars, sal_Int32 nLen)
{
rtl_string_newFromStr_WithLength(pString, pChars, nLen);
}
static inline void createBuffer(rtl_String ** pBuffer,
sal_Int32 * pCapacity)
{
rtl_string_new_WithLength(pBuffer, *pCapacity);
}
static inline void appendChar(rtl_String ** pBuffer, sal_Int32 * pCapacity,
sal_Int32 * pOffset, sal_Char cChar)
{
rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, &cChar, 1);
++*pOffset;
}
static inline void appendChars(rtl_String ** pBuffer, sal_Int32 * pCapacity,
sal_Int32 * pOffset, sal_Char const * pChars,
sal_Int32 nLen)
{
rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
*pOffset += nLen;
}
static inline void appendAscii(rtl_String ** pBuffer, sal_Int32 * pCapacity,
sal_Int32 * pOffset, sal_Char const * pStr,
sal_Int32 nLen)
{
rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pStr, nLen);
*pOffset += nLen;
}
};
struct UStringTraits
{
typedef sal_Unicode Char;
typedef rtl_uString String;
static inline void createString(rtl_uString ** pString,
sal_Unicode const * pChars, sal_Int32 nLen)
{
rtl_uString_newFromStr_WithLength(pString, pChars, nLen);
}
static inline void createBuffer(rtl_uString ** pBuffer,
sal_Int32 * pCapacity)
{
rtl_uString_new_WithLength(pBuffer, *pCapacity);
}
static inline void appendChar(rtl_uString ** pBuffer, sal_Int32 * pCapacity,
sal_Int32 * pOffset, sal_Unicode cChar)
{
rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, &cChar, 1);
++*pOffset;
}
static inline void appendChars(rtl_uString ** pBuffer,
sal_Int32 * pCapacity, sal_Int32 * pOffset,
sal_Unicode const * pChars, sal_Int32 nLen)
{
rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
*pOffset += nLen;
}
static inline void appendAscii(rtl_uString ** pBuffer,
sal_Int32 * pCapacity, sal_Int32 * pOffset,
sal_Char const * pStr, sal_Int32 nLen)
{
rtl_uStringbuffer_insert_ascii(pBuffer, pCapacity, *pOffset, pStr,
nLen);
*pOffset += nLen;
}
};
// Solaris C++ 5.2 compiler has problems when "StringT ** pResult" is
// "typename T::String ** pResult" instead:
template< typename T, typename StringT >
inline void doubleToString(StringT ** pResult,
sal_Int32 * pResultCapacity, sal_Int32 nResultOffset,
double fValue, rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces, typename T::Char cDecSeparator,
sal_Int32 const * pGroups,
typename T::Char cGroupSeparator,
bool bEraseTrailingDecZeros)
{
static double const nRoundVal[] = {
5.0e+0, 0.5e+0, 0.5e-1, 0.5e-2, 0.5e-3, 0.5e-4, 0.5e-5, 0.5e-6,
0.5e-7, 0.5e-8, 0.5e-9, 0.5e-10,0.5e-11,0.5e-12,0.5e-13,0.5e-14
};
// sign adjustment, instead of testing for fValue<0.0 this will also fetch
// -0.0
bool bSign = rtl::math::isSignBitSet( fValue );
if( bSign )
fValue = -fValue;
if ( rtl::math::isNan( fValue ) )
{
sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-1.#NAN");
if (pResultCapacity == 0)
{
pResultCapacity = &nCapacity;
T::createBuffer(pResult, pResultCapacity);
nResultOffset = 0;
}
if ( bSign )
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("-"));
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("1"));
T::appendChar(pResult, pResultCapacity, &nResultOffset, cDecSeparator);
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("#NAN"));
return;
}
bool bHuge = fValue == HUGE_VAL; // g++ 3.0.1 requires it this way...
if ( bHuge || rtl::math::isInf( fValue ) )
{
sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-1.#INF");
if (pResultCapacity == 0)
{
pResultCapacity = &nCapacity;
T::createBuffer(pResult, pResultCapacity);
nResultOffset = 0;
}
if ( bSign )
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("-"));
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("1"));
T::appendChar(pResult, pResultCapacity, &nResultOffset, cDecSeparator);
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("#INF"));
return;
}
// find the exponent
int nExp = 0;
if ( fValue > 0.0 )
{
nExp = static_cast< int >( floor( log10( fValue ) ) );
fValue /= getN10Exp( nExp );
}
switch ( eFormat )
{
case rtl_math_StringFormat_Automatic :
{ // E or F depending on exponent magnitude
int nPrec;
if ( nExp <= -15 || nExp >= 15 ) // #58531# was <-16, >16
{
nPrec = 14;
eFormat = rtl_math_StringFormat_E;
}
else
{
if ( nExp < 14 )
{
nPrec = 15 - nExp - 1;
eFormat = rtl_math_StringFormat_F;
}
else
{
nPrec = 15;
eFormat = rtl_math_StringFormat_F;
}
}
if ( nDecPlaces == rtl_math_DecimalPlaces_Max )
nDecPlaces = nPrec;
}
break;
case rtl_math_StringFormat_G :
{ // G-Point, similar to sprintf %G
if ( nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance )
nDecPlaces = 6;
if ( nExp < -4 || nExp >= nDecPlaces )
{
nDecPlaces = std::max< sal_Int32 >( 1, nDecPlaces - 1 );
eFormat = rtl_math_StringFormat_E;
}
else
{
nDecPlaces = std::max< sal_Int32 >( 0, nDecPlaces - nExp - 1 );
eFormat = rtl_math_StringFormat_F;
}
}
break;
default:
break;
}
sal_Int32 nDigits = nDecPlaces + 1;
if( eFormat == rtl_math_StringFormat_F )
nDigits += nExp;
// Round the number
if( nDigits >= 0 )
{
if( ( fValue += nRoundVal[ nDigits > 15 ? 15 : nDigits ] ) >= 10 )
{
fValue = 1.0;
nExp++;
if( eFormat == rtl_math_StringFormat_F )
nDigits++;
}
}
static sal_Int32 const nBufMax = 256;
typename T::Char aBuf[nBufMax];
typename T::Char * pBuf;
sal_Int32 nBuf = static_cast< sal_Int32 >
( nDigits <= 0 ? std::max< sal_Int32 >( nDecPlaces, abs(nExp) )
: nDigits + nDecPlaces ) + 10 + (pGroups ? abs(nDigits) * 2 : 0);
if ( nBuf > nBufMax )
{
pBuf = reinterpret_cast< typename T::Char * >(
rtl_allocateMemory(nBuf * sizeof (typename T::Char)));
OSL_ENSURE(pBuf != 0, "Out of memory");
}
else
pBuf = aBuf;
typename T::Char * p = pBuf;
if ( bSign )
*p++ = static_cast< typename T::Char >('-');
bool bHasDec = false;
int nDecPos;
// Check for F format and number < 1
if( eFormat == rtl_math_StringFormat_F )
{
if( nExp < 0 )
{
*p++ = static_cast< typename T::Char >('0');
if ( nDecPlaces > 0 )
{
*p++ = cDecSeparator;
bHasDec = true;
}
sal_Int32 i = ( nDigits <= 0 ? nDecPlaces : -nExp - 1 );
while( (i--) > 0 )
*p++ = static_cast< typename T::Char >('0');
nDecPos = 0;
}
else
nDecPos = nExp + 1;
}
else
nDecPos = 1;
int nGrouping = 0, nGroupSelector = 0, nGroupExceed = 0;
if ( nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator )
{
while ( nGrouping + pGroups[nGroupSelector] < nDecPos )
{
nGrouping += pGroups[ nGroupSelector ];
if ( pGroups[nGroupSelector+1] )
{
if ( nGrouping + pGroups[nGroupSelector+1] >= nDecPos )
break; // while
++nGroupSelector;
}
else if ( !nGroupExceed )
nGroupExceed = nGrouping;
}
}
// print the number
if( nDigits > 0 )
{
for ( int i = 0; ; i++ )
{
if( i < 15 )
{
int nDigit;
if (nDigits-1 == 0 && i > 0 && i < 14)
nDigit = static_cast< int >( floor( fValue
+ nKorrVal[15-i] ) );
else
nDigit = static_cast< int >( fValue + 1E-15 );
if (nDigit >= 10)
{ // after-treatment of up-rounding to the next decade
sal_Int32 sLen = static_cast< long >(p-pBuf)-1;
if (sLen == -1)
{
p = pBuf;
if ( eFormat == rtl_math_StringFormat_F )
{
*p++ = static_cast< typename T::Char >('1');
*p++ = static_cast< typename T::Char >('0');
}
else
{
*p++ = static_cast< typename T::Char >('1');
*p++ = cDecSeparator;
*p++ = static_cast< typename T::Char >('0');
nExp++;
bHasDec = true;
}
}
else
{
for (sal_Int32 j = sLen; j >= 0; j--)
{
typename T::Char cS = pBuf[j];
if (cS != cDecSeparator)
{
if ( cS != static_cast< typename T::Char >('9'))
{
pBuf[j] = ++cS;
j = -1; // break loop
}
else
{
pBuf[j]
= static_cast< typename T::Char >('0');
if (j == 0)
{
if ( eFormat == rtl_math_StringFormat_F)
{ // insert '1'
typename T::Char * px = p++;
while ( pBuf < px )
{
*px = *(px-1);
px--;
}
pBuf[0] = static_cast<
typename T::Char >('1');
}
else
{
pBuf[j] = static_cast<
typename T::Char >('1');
nExp++;
}
}
}
}
}
*p++ = static_cast< typename T::Char >('0');
}
fValue = 0.0;
}
else
{
*p++ = static_cast< typename T::Char >(
nDigit + static_cast< typename T::Char >('0') );
fValue = ( fValue - nDigit ) * 10.0;
}
}
else
*p++ = static_cast< typename T::Char >('0');
if( !--nDigits )
break; // for
if( nDecPos )
{
if( !--nDecPos )
{
*p++ = cDecSeparator;
bHasDec = true;
}
else if ( nDecPos == nGrouping )
{
*p++ = cGroupSeparator;
nGrouping -= pGroups[ nGroupSelector ];
if ( nGroupSelector && nGrouping < nGroupExceed )
--nGroupSelector;
}
}
}
}
if ( !bHasDec && eFormat == rtl_math_StringFormat_F )
{ // nDecPlaces < 0 did round the value
while ( --nDecPos > 0 )
{ // fill before decimal point
if ( nDecPos == nGrouping )
{
*p++ = cGroupSeparator;
nGrouping -= pGroups[ nGroupSelector ];
if ( nGroupSelector && nGrouping < nGroupExceed )
--nGroupSelector;
}
*p++ = static_cast< typename T::Char >('0');
}
}
if ( bEraseTrailingDecZeros && bHasDec && p > pBuf )
{
while ( *(p-1) == static_cast< typename T::Char >('0') )
p--;
if ( *(p-1) == cDecSeparator )
p--;
}
// Print the exponent ('E', followed by '+' or '-', followed by exactly
// three digits). The code in rtl_[u]str_valueOf{Float|Double} relies on
// this format.
if( eFormat == rtl_math_StringFormat_E )
{
if ( p == pBuf )
*p++ = static_cast< typename T::Char >('1');
// maybe no nDigits if nDecPlaces < 0
*p++ = static_cast< typename T::Char >('E');
if( nExp < 0 )
{
nExp = -nExp;
*p++ = static_cast< typename T::Char >('-');
}
else
*p++ = static_cast< typename T::Char >('+');
// if (nExp >= 100 )
*p++ = static_cast< typename T::Char >(
nExp / 100 + static_cast< typename T::Char >('0') );
nExp %= 100;
*p++ = static_cast< typename T::Char >(
nExp / 10 + static_cast< typename T::Char >('0') );
*p++ = static_cast< typename T::Char >(
nExp % 10 + static_cast< typename T::Char >('0') );
}
if (pResultCapacity == 0)
T::createString(pResult, pBuf, p - pBuf);
else
T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf,
p - pBuf);
if ( pBuf != &aBuf[0] )
rtl_freeMemory(pBuf);
}
}
void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult,
sal_Int32 * pResultCapacity,
sal_Int32 nResultOffset, double fValue,
rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
sal_Char cDecSeparator,
sal_Int32 const * pGroups,
sal_Char cGroupSeparator,
sal_Bool bEraseTrailingDecZeros)
SAL_THROW_EXTERN_C()
{
doubleToString< StringTraits, StringTraits::String >(
pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
}
void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult,
sal_Int32 * pResultCapacity,
sal_Int32 nResultOffset, double fValue,
rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
sal_Unicode cDecSeparator,
sal_Int32 const * pGroups,
sal_Unicode cGroupSeparator,
sal_Bool bEraseTrailingDecZeros)
SAL_THROW_EXTERN_C()
{
doubleToString< UStringTraits, UStringTraits::String >(
pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
}
namespace {
// if nExp * 10 + nAdd would result in overflow
inline bool long10Overflow( long& nExp, int nAdd )
{
if ( nExp > (LONG_MAX/10)
|| (nExp == (LONG_MAX/10) && nAdd > (LONG_MAX%10)) )
{
nExp = LONG_MAX;
return true;
}
return false;
}
// We are only concerned about ASCII arabic numerical digits here
template< typename CharT >
inline bool isDigit( CharT c )
{
return 0x30 <= c && c <= 0x39;
}
template< typename CharT >
inline double stringToDouble(CharT const * pBegin, CharT const * pEnd,
CharT cDecSeparator, CharT cGroupSeparator,
rtl_math_ConversionStatus * pStatus,
CharT const ** pParsedEnd)
{
double fVal = 0.0;
rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok;
CharT const * p0 = pBegin;
while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t')))
++p0;
bool bSign;
if (p0 != pEnd && *p0 == CharT('-'))
{
bSign = true;
++p0;
}
else
{
bSign = false;
if (p0 != pEnd && *p0 == CharT('+'))
++p0;
}
CharT const * p = p0;
// leading zeros and group separators may be safely ignored
while (p != pEnd && (*p == CharT('0') || *p == cGroupSeparator))
++p;
long nValExp = 0; // carry along exponent of mantissa
// integer part of mantissa
for (; p != pEnd; ++p)
{
CharT c = *p;
if (isDigit(c))
{
fVal = fVal * 10.0 + static_cast< double >( c - CharT('0') );
++nValExp;
}
else if (c != cGroupSeparator)
break;
}
// fraction part of mantissa
if (p != pEnd && *p == cDecSeparator)
{
++p;
double fFrac = 0.0;
long nFracExp = 0;
while (p != pEnd && *p == CharT('0'))
{
--nFracExp;
++p;
}
if ( nValExp == 0 )
nValExp = nFracExp - 1; // no integer part => fraction exponent
// one decimal digit needs ld(10) ~= 3.32 bits
static const int nSigs = (DBL_MANT_DIG / 3) + 1;
int nDigs = 0;
for (; p != pEnd; ++p)
{
CharT c = *p;
if (!isDigit(c))
break;
if ( nDigs < nSigs )
{ // further digits (more than nSigs) don't have any significance
fFrac = fFrac * 10.0 + static_cast< double >( c - CharT('0') );
--nFracExp;
++nDigs;
}
}
if ( fFrac != 0.0 )
fVal += rtl::math::pow10Exp( fFrac, nFracExp );
else if ( nValExp < 0 )
nValExp = 0; // no digit other than 0 after decimal point
}
if ( nValExp > 0 )
--nValExp; // started with offset +1 at the first mantissa digit
// Exponent
if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e')))
{
++p;
bool bExpSign;
if (p != pEnd && *p == CharT('-'))
{
bExpSign = true;
++p;
}
else
{
bExpSign = false;
if (p != pEnd && *p == CharT('+'))
++p;
}
if ( fVal == 0.0 )
{ // no matter what follows, zero stays zero, but carry on the offset
while (p != pEnd && isDigit(*p))
++p;
}
else
{
bool bOverFlow = false;
long nExp = 0;
for (; p != pEnd; ++p)
{
CharT c = *p;
if (!isDigit(c))
break;
int i = c - CharT('0');
if ( long10Overflow( nExp, i ) )
bOverFlow = true;
else
nExp = nExp * 10 + i;
}
if ( nExp )
{
if ( bExpSign )
nExp = -nExp;
long nAllExp = ( bOverFlow ? 0 : nExp + nValExp );
if ( nAllExp > DBL_MAX_10_EXP || (bOverFlow && !bExpSign) )
{ // overflow
fVal = HUGE_VAL;
eStatus = rtl_math_ConversionStatus_OutOfRange;
}
else if ( nAllExp < DBL_MIN_10_EXP || (bOverFlow && bExpSign) )
{ // underflow
fVal = 0.0;
eStatus = rtl_math_ConversionStatus_OutOfRange;
}
else if ( nExp > DBL_MAX_10_EXP || nExp < DBL_MIN_10_EXP )
{ // compensate exponents
fVal = rtl::math::pow10Exp( fVal, -nValExp );
fVal = rtl::math::pow10Exp( fVal, nAllExp );
}
else
fVal = rtl::math::pow10Exp( fVal, nExp ); // normal
}
}
}
else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#')
&& p[-1] == cDecSeparator && p[-2] == CharT('1'))
{
if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N')
&& p[3] == CharT('F'))
{
// "1.#INF", "+1.#INF", "-1.#INF"
p += 4;
fVal = HUGE_VAL;
eStatus = rtl_math_ConversionStatus_OutOfRange;
// Eat any further digits:
while (p != pEnd && isDigit(*p))
++p;
}
else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A')
&& p[3] == CharT('N'))
{
// "1.#NAN", "+1.#NAN", "-1.#NAN"
p += 4;
rtl::math::setNan( &fVal );
if (bSign)
{
union {
double sd;
sal_math_Double md;
} m;
m.sd = fVal;
m.md.w32_parts.msw |= 0x80000000; // create negative NaN
fVal = m.sd;
bSign = false; // don't negate again
}
// Eat any further digits:
while (p != pEnd && isDigit(*p))
++p;
}
}
// overflow also if more than DBL_MAX_10_EXP digits without decimal
// separator, or 0. and more than DBL_MIN_10_EXP digits, ...
bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way...
if ( bHuge )
eStatus = rtl_math_ConversionStatus_OutOfRange;
if ( bSign )
fVal = -fVal;
if (pStatus != 0)
*pStatus = eStatus;
if (pParsedEnd != 0)
*pParsedEnd = p;
return fVal;
}
}
double SAL_CALL rtl_math_stringToDouble(sal_Char const * pBegin,
sal_Char const * pEnd,
sal_Char cDecSeparator,
sal_Char cGroupSeparator,
rtl_math_ConversionStatus * pStatus,
sal_Char const ** pParsedEnd)
SAL_THROW_EXTERN_C()
{
return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
pParsedEnd);
}
double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin,
sal_Unicode const * pEnd,
sal_Unicode cDecSeparator,
sal_Unicode cGroupSeparator,
rtl_math_ConversionStatus * pStatus,
sal_Unicode const ** pParsedEnd)
SAL_THROW_EXTERN_C()
{
return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
pParsedEnd);
}
double SAL_CALL rtl_math_round(double fValue, int nDecPlaces,
enum rtl_math_RoundingMode eMode)
SAL_THROW_EXTERN_C()
{
OSL_ASSERT(nDecPlaces >= -20 && nDecPlaces <= 20);
if ( fValue == 0.0 )
return fValue;
// sign adjustment
bool bSign = rtl::math::isSignBitSet( fValue );
if ( bSign )
fValue = -fValue;
double fFac = 0;
if ( nDecPlaces != 0 )
{
// max 20 decimals, we don't have unlimited precision
// #38810# and no overflow on fValue*=fFac
if ( nDecPlaces < -20 || 20 < nDecPlaces || fValue > (DBL_MAX / 1e20) )
return bSign ? -fValue : fValue;
fFac = getN10Exp( nDecPlaces );
fValue *= fFac;
}
//else //! uninitialized fFac, not needed
switch ( eMode )
{
case rtl_math_RoundingMode_Corrected :
{
int nExp; // exponent for correction
if ( fValue > 0.0 )
nExp = static_cast<int>( floor( log10( fValue ) ) );
else
nExp = 0;
int nIndex = 15 - nExp;
if ( nIndex > 15 )
nIndex = 15;
else if ( nIndex <= 1 )
nIndex = 0;
fValue = floor( fValue + 0.5 + nKorrVal[nIndex] );
}
break;
case rtl_math_RoundingMode_Down :
fValue = rtl::math::approxFloor( fValue );
break;
case rtl_math_RoundingMode_Up :
fValue = rtl::math::approxCeil( fValue );
break;
case rtl_math_RoundingMode_Floor :
fValue = bSign ? rtl::math::approxCeil( fValue )
: rtl::math::approxFloor( fValue );
break;
case rtl_math_RoundingMode_Ceiling :
fValue = bSign ? rtl::math::approxFloor( fValue )
: rtl::math::approxCeil( fValue );
break;
case rtl_math_RoundingMode_HalfDown :
{
double f = floor( fValue );
fValue = ((fValue - f) <= 0.5) ? f : ceil( fValue );
}
break;
case rtl_math_RoundingMode_HalfUp :
{
double f = floor( fValue );
fValue = ((fValue - f) < 0.5) ? f : ceil( fValue );
}
break;
case rtl_math_RoundingMode_HalfEven :
#if defined FLT_ROUNDS
/*
Use fast version. FLT_ROUNDS may be defined to a function by some compilers!
DBL_EPSILON is the smallest fractional number which can be represented,
its reciprocal is therefore the smallest number that cannot have a
fractional part. Once you add this reciprocal to `x', its fractional part
is stripped off. Simply subtracting the reciprocal back out returns `x'
without its fractional component.
Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
who placed it into public domain.
volatile: prevent compiler from being too smart
*/
if ( FLT_ROUNDS == 1 )
{
volatile double x = fValue + 1.0 / DBL_EPSILON;
fValue = x - 1.0 / DBL_EPSILON;
}
else
#endif // FLT_ROUNDS
{
double f = floor( fValue );
if ( (fValue - f) != 0.5 )
fValue = floor( fValue + 0.5 );
else
{
double g = f / 2.0;
fValue = (g == floor( g )) ? f : (f + 1.0);
}
}
break;
default:
OSL_ASSERT(false);
break;
}
if ( nDecPlaces != 0 )
fValue /= fFac;
return bSign ? -fValue : fValue;
}
double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C()
{
return fValue * getN10Exp( nExp );
}
double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C()
{
if (fValue == 0.0 || fValue == HUGE_VAL || !::rtl::math::isFinite( fValue))
// We don't handle these conditions. Bail out.
return fValue;
double fOrigValue = fValue;
bool bSign = ::rtl::math::isSignBitSet( fValue);
if (bSign)
fValue = -fValue;
int nExp = static_cast<int>( floor( log10( fValue)));
nExp = 14 - nExp;
double fExpValue = getN10Exp( nExp);
fValue *= fExpValue;
// If the original value was near DBL_MIN we got an overflow. Restore and
// bail out.
if (!rtl::math::isFinite( fValue))
return fOrigValue;
fValue = rtl_math_round( fValue, 0, rtl_math_RoundingMode_Corrected);
fValue /= fExpValue;
// If the original value was near DBL_MAX we got an overflow. Restore and
// bail out.
if (!rtl::math::isFinite( fValue))
return fOrigValue;
return bSign ? -fValue : fValue;
}
double SAL_CALL rtl_math_expm1( double fValue ) SAL_THROW_EXTERN_C()
{
double fe = exp( fValue );
if (fe == 1.0)
return fValue;
if (fe-1.0 == -1.0)
return -1.0;
return (fe-1.0) * fValue / log(fe);
}
double SAL_CALL rtl_math_log1p( double fValue ) SAL_THROW_EXTERN_C()
{
// Use volatile because a compiler may be too smart "optimizing" the
// condition such that in certain cases the else path was called even if
// (fp==1.0) was true, where the term (fp-1.0) then resulted in 0.0 and
// hence the entire expression resulted in NaN.
// Happened with g++ 3.4.1 and an input value of 9.87E-18
volatile double fp = 1.0 + fValue;
if (fp == 1.0)
return fValue;
else
return log(fp) * fValue / (fp-1.0);
}
double SAL_CALL rtl_math_atanh( double fValue ) SAL_THROW_EXTERN_C()
{
return 0.5 * rtl_math_log1p( 2.0 * fValue / (1.0-fValue) );
}
/** Parent error function (erf) that calls different algorithms based on the
value of x. It takes care of cases where x is negative as erf is an odd
function i.e. erf(-x) = -erf(x).
Kramer, W., and Blomquist, F., 2000, Algorithms with Guaranteed Error Bounds
for the Error Function and the Complementary Error Function
http://www.math.uni-wuppertal.de/wrswt/literatur_en.html
@author Kohei Yoshida <kohei@openoffice.org>
@see #i55735#
*/
double SAL_CALL rtl_math_erf( double x ) SAL_THROW_EXTERN_C()
{
if( x == 0.0 )
return 0.0;
bool bNegative = false;
if ( x < 0.0 )
{
x = fabs( x );
bNegative = true;
}
double fErf = 1.0;
if ( x < 1.0e-10 )
fErf = (double) (x*1.1283791670955125738961589031215452L);
else if ( x < 0.65 )
lcl_Erf0065( x, fErf );
else
fErf = 1.0 - rtl_math_erfc( x );
if ( bNegative )
fErf *= -1.0;
return fErf;
}
/** Parent complementary error function (erfc) that calls different algorithms
based on the value of x. It takes care of cases where x is negative as erfc
satisfies relationship erfc(-x) = 2 - erfc(x). See the comment for Erf(x)
for the source publication.
@author Kohei Yoshida <kohei@openoffice.org>
@see #i55735#, moved from module scaddins (#i97091#)
*/
double SAL_CALL rtl_math_erfc( double x ) SAL_THROW_EXTERN_C()
{
if ( x == 0.0 )
return 1.0;
bool bNegative = false;
if ( x < 0.0 )
{
x = fabs( x );
bNegative = true;
}
double fErfc = 0.0;
if ( x >= 0.65 )
{
if ( x < 6.0 )
lcl_Erfc0600( x, fErfc );
else
lcl_Erfc2654( x, fErfc );
}
else
fErfc = 1.0 - rtl_math_erf( x );
if ( bNegative )
fErfc = 2.0 - fErfc;
return fErfc;
}
/** improved accuracy of asinh for |x| large and for x near zero
@see #i97605#
*/
double SAL_CALL rtl_math_asinh( double fX ) SAL_THROW_EXTERN_C()
{
double fSign = 1.0;
if ( fX == 0.0 )
return 0.0;
else
{
if ( fX < 0.0 )
{
fX = - fX;
fSign = -1.0;
}
if ( fX < 0.125 )
return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX)));
else if ( fX < 1.25e7 )
return fSign * log( fX + sqrt( 1.0 + fX*fX));
else
return fSign * log( 2.0*fX);
}
}
/** improved accuracy of acosh for x large and for x near 1
@see #i97605#
*/
double SAL_CALL rtl_math_acosh( double fX ) SAL_THROW_EXTERN_C()
{
volatile double fZ = fX - 1.0;
if ( fX < 1.0 )
{
double fResult;
::rtl::math::setNan( &fResult );
return fResult;
}
else if ( fX == 1.0 )
return 0.0;
else if ( fX < 1.1 )
return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ));
else if ( fX < 1.25e7 )
return log( fX + sqrt( fX*fX - 1.0));
else
return log( 2.0*fX);
}
|