summaryrefslogtreecommitdiff
path: root/opencl/source/opencl_device.cxx
blob: d6ec25c1630d1418b74883e4b44bfaef3f5c9574 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 */

#ifdef _WIN32
#include <prewin.h>
#include <postwin.h>
#elif defined __MACH__
#include <mach/mach_time.h>
#else
#include <sys/time.h>
#endif

#include <time.h>
#include <math.h>
#include <float.h>
#include <iostream>
#include <sstream>
#include <memory>
#include <vector>

#include <comphelper/random.hxx>
#include <opencl/openclconfig.hxx>
#include <opencl/openclwrapper.hxx>
#include <opencl/platforminfo.hxx>
#include <sal/log.hxx>
#include <rtl/math.hxx>

#include <opencl/OpenCLZone.hxx>

#include "opencl_device.hxx"

#define INPUTSIZE  15360
#define OUTPUTSIZE 15360

#define STRINGIFY(...) #__VA_ARGS__"\n"

namespace opencl {

namespace {

void DS_CHECK_STATUS(cl_int status, char const * name) {
    if (CL_SUCCESS != status)
    {
    SAL_INFO("opencl.device", "Error code is " << status << " at " << name);
    }
}

bool bIsDeviceSelected = false;
ds_device selectedDevice;

struct LibreOfficeDeviceEvaluationIO
{
    std::vector<double> input0;
    std::vector<double> input1;
    std::vector<double> input2;
    std::vector<double> input3;
    std::vector<double> output;
    unsigned long inputSize;
    unsigned long outputSize;
};

struct timer
{
#ifdef _WIN32
    LARGE_INTEGER start;
#else
    long long start;
#endif
};

const char* source = STRINGIFY(
\n#if defined(KHR_DP_EXTENSION)
\n#pragma OPENCL EXTENSION cl_khr_fp64 : enable
\n#elif defined(AMD_DP_EXTENSION)
\n#pragma OPENCL EXTENSION cl_amd_fp64 : enable
\n#endif
    \n
    int isNan(fp_t a) { return a != a; }
    fp_t fsum(fp_t a, fp_t b) { return a + b; }

    fp_t fAverage(__global fp_t* input)
{
    fp_t sum = 0;
    int count = 0;
    for (int i = 0; i < INPUTSIZE; i++)
    {
        if (!isNan(input[i]))
        {
            sum = fsum(input[i], sum);
            count += 1;
        }
    }
    return sum / (fp_t)count;
}
    fp_t fMin(__global fp_t* input)
{
    fp_t min = MAXFLOAT;
    for (int i = 0; i < INPUTSIZE; i++)
    {
        if (!isNan(input[i]))
        {
            min = fmin(input[i], min);
        }
    }
    return min;
}
    fp_t fSoP(__global fp_t* input0, __global fp_t* input1)
{
    fp_t sop = 0.0;
    for (int i = 0; i < INPUTSIZE; i++)
    {
        sop += (isNan(input0[i]) ? 0 : input0[i]) * (isNan(input1[i]) ? 0 : input1[i]);
    }
    return sop;
}
    __kernel void DynamicKernel(
        __global fp_t* result, __global fp_t* input0, __global fp_t* input1, __global fp_t* input2, __global fp_t* input3)
{
    int gid0 = get_global_id(0);
    fp_t tmp0 = fAverage(input0);
    fp_t tmp1 = fMin(input1) * fSoP(input2, input3);
    result[gid0] = fsum(tmp0, tmp1);
}
    );

size_t sourceSize[] = { strlen(source) };

/*************************************************************************/
/* INTERNAL FUNCTIONS                                                    */
/*************************************************************************/
/* Timer functions - start timer */
void timerStart(timer* mytimer)
{
#ifdef _WIN32
    QueryPerformanceCounter(&mytimer->start);
#elif defined __MACH__
    mytimer->start = mach_absolute_time();
#else
    struct timespec s;
    clock_gettime(CLOCK_MONOTONIC, &s);
    mytimer->start = (long long)s.tv_sec * (long long)1.0E6 + (long long)s.tv_nsec / (long long)1.0E3;
#endif
}

/* Timer functions - get current value */
double timerCurrent(timer* mytimer)
{
#ifdef _WIN32
    LARGE_INTEGER stop, frequency;
    QueryPerformanceCounter(&stop);
    QueryPerformanceFrequency(&frequency);
    double time = ((double)(stop.QuadPart - mytimer->start.QuadPart) / frequency.QuadPart);
#elif defined __MACH__
    static mach_timebase_info_data_t info = { 0, 0 };
    if (info.numer == 0)
        mach_timebase_info(&info);
    long long stop = mach_absolute_time();
    double time = ((stop - mytimer->start) * (double) info.numer / info.denom) / 1.0E9;
#else
    struct timespec s;
    long long stop;
    clock_gettime(CLOCK_MONOTONIC, &s);
    stop = (long long)s.tv_sec * (long long)1.0E6 + (long long)s.tv_nsec / (long long)1.0E3;
    double time = ((double)(stop - mytimer->start) / 1.0E6);
#endif
    return time;
}

/* Random number generator */
double random(double min, double max)
{
    if (rtl::math::approxEqual(min, max))
        return min;
    return comphelper::rng::uniform_real_distribution(min, max);
}

/* Populate input */
void populateInput(std::unique_ptr<LibreOfficeDeviceEvaluationIO>& testData)
{
    double* input0 = &testData->input0[0];
    double* input1 = &testData->input1[0];
    double* input2 = &testData->input2[0];
    double* input3 = &testData->input3[0];
    for (unsigned long i = 0; i < testData->inputSize; i++)
    {
        input0[i] = random(0, i);
        input1[i] = random(0, i);
        input2[i] = random(0, i);
        input3[i] = random(0, i);
    }
}

/* Evaluate devices */
ds_status evaluateScoreForDevice(ds_device& rDevice, std::unique_ptr<LibreOfficeDeviceEvaluationIO>& testData)
{
    if (rDevice.eType == DeviceType::OpenCLDevice)
    {
        /* Evaluating an OpenCL device */
        SAL_INFO("opencl.device", "Device: \"" << rDevice.sDeviceName << "\" (OpenCL) evaluation...");
        cl_int clStatus;

        /* Check for 64-bit float extensions */
        std::unique_ptr<char[]> aExtInfo;
        {
            size_t aDevExtInfoSize = 0;

            OpenCLZone zone;
            clStatus = clGetDeviceInfo(rDevice.aDeviceID, CL_DEVICE_EXTENSIONS, 0, nullptr, &aDevExtInfoSize);
            DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clGetDeviceInfo");

            aExtInfo.reset(new char[aDevExtInfoSize]);
            clStatus = clGetDeviceInfo(rDevice.aDeviceID, CL_DEVICE_EXTENSIONS, sizeof(char) * aDevExtInfoSize, aExtInfo.get(), nullptr);
            DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clGetDeviceInfo");
        }

        bool bKhrFp64Flag = false;
        bool bAmdFp64Flag = false;
        const char* buildOption = nullptr;
        std::string tmpStr("-Dfp_t=double -Dfp_t4=double4 -Dfp_t16=double16 -DINPUTSIZE=");
        std::ostringstream tmpOStrStr;
        tmpOStrStr << std::dec << INPUTSIZE;
        tmpStr.append(tmpOStrStr.str());

        if ((std::string(aExtInfo.get())).find("cl_khr_fp64") != std::string::npos)
        {
            bKhrFp64Flag = true;
            //buildOption = "-D KHR_DP_EXTENSION -Dfp_t=double -Dfp_t4=double4 -Dfp_t16=double16";
            tmpStr.append(" -DKHR_DP_EXTENSION");
            buildOption = tmpStr.c_str();
            SAL_INFO("opencl.device", "... has cl_khr_fp64");
        }
        else if ((std::string(aExtInfo.get())).find("cl_amd_fp64") != std::string::npos)
        {
            bAmdFp64Flag = true;
            //buildOption = "-D AMD_DP_EXTENSION -Dfp_t=double -Dfp_t4=double4 -Dfp_t16=double16";
            tmpStr.append(" -DAMD_DP_EXTENSION");
            buildOption = tmpStr.c_str();
            SAL_INFO("opencl.device", "... has cl_amd_fp64");
        }

        if (!bKhrFp64Flag && !bAmdFp64Flag)
        {
            /* No 64-bit float support */
            rDevice.fTime = DBL_MAX;
            rDevice.bErrors = false;
            SAL_INFO("opencl.device", "... no fp64 support");
        }
        else
        {
            /* 64-bit float support present */

            OpenCLZone zone;

            /* Create context and command queue */
            cl_context  clContext = clCreateContext(nullptr, 1, &rDevice.aDeviceID, nullptr, nullptr, &clStatus);
            DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateContext");
            cl_command_queue clQueue = clCreateCommandQueue(clContext, rDevice.aDeviceID, 0, &clStatus);
            DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateCommandQueue");

            /* Build program */
            cl_program clProgram = clCreateProgramWithSource(clContext, 1, &source, sourceSize, &clStatus);
            DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateProgramWithSource");
            clStatus = clBuildProgram(clProgram, 1, &rDevice.aDeviceID, buildOption, nullptr, nullptr);
            DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clBuildProgram");
            if (CL_SUCCESS != clStatus)
            {
                /* Build program failed */
                size_t length;
                char* buildLog;
                clStatus = clGetProgramBuildInfo(clProgram, rDevice.aDeviceID, CL_PROGRAM_BUILD_LOG, 0, nullptr, &length);
                buildLog = static_cast<char*>(malloc(length));
                clGetProgramBuildInfo(clProgram, rDevice.aDeviceID, CL_PROGRAM_BUILD_LOG, length, buildLog, &length);
                SAL_INFO("opencl.device", "Build Errors:\n" << buildLog);
                free(buildLog);

                rDevice.fTime = DBL_MAX;
                rDevice.bErrors = true;
            }
            else
            {
                /* Build program succeeded */
                timer kernelTime;
                timerStart(&kernelTime);

                /* Run kernel */
                cl_kernel clKernel = clCreateKernel(clProgram, "DynamicKernel", &clStatus);
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateKernel");
                cl_mem clResult = clCreateBuffer(clContext, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, sizeof(cl_double) * testData->outputSize, &testData->output[0], &clStatus);
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateBuffer::clResult");
                cl_mem clInput0 = clCreateBuffer(clContext, CL_MEM_READ_ONLY  | CL_MEM_USE_HOST_PTR, sizeof(cl_double) * testData->inputSize,  &testData->input0[0], &clStatus);
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateBuffer::clInput0");
                cl_mem clInput1 = clCreateBuffer(clContext, CL_MEM_READ_ONLY  | CL_MEM_USE_HOST_PTR, sizeof(cl_double) * testData->inputSize,  &testData->input1[0], &clStatus);
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateBuffer::clInput1");
                cl_mem clInput2 = clCreateBuffer(clContext, CL_MEM_READ_ONLY  | CL_MEM_USE_HOST_PTR, sizeof(cl_double) * testData->inputSize,  &testData->input2[0], &clStatus);
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateBuffer::clInput2");
                cl_mem clInput3 = clCreateBuffer(clContext, CL_MEM_READ_ONLY  | CL_MEM_USE_HOST_PTR, sizeof(cl_double) * testData->inputSize,  &testData->input3[0], &clStatus);
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clCreateBuffer::clInput3");
                clStatus = clSetKernelArg(clKernel, 0, sizeof(cl_mem), static_cast<void*>(&clResult));
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clSetKernelArg::clResult");
                clStatus = clSetKernelArg(clKernel, 1, sizeof(cl_mem), static_cast<void*>(&clInput0));
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clSetKernelArg::clInput0");
                clStatus = clSetKernelArg(clKernel, 2, sizeof(cl_mem), static_cast<void*>(&clInput1));
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clSetKernelArg::clInput1");
                clStatus = clSetKernelArg(clKernel, 3, sizeof(cl_mem), static_cast<void*>(&clInput2));
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clSetKernelArg::clInput2");
                clStatus = clSetKernelArg(clKernel, 4, sizeof(cl_mem), static_cast<void*>(&clInput3));
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clSetKernelArg::clInput3");
                size_t globalWS[1] = { testData->outputSize };
                size_t localSize[1] = { 64 };
                clStatus = clEnqueueNDRangeKernel(clQueue, clKernel, 1, nullptr, globalWS, localSize, 0, nullptr, nullptr);
                DS_CHECK_STATUS(clStatus, "evaluateScoreForDevice::clEnqueueNDRangeKernel");
                clFinish(clQueue);
                clReleaseMemObject(clInput3);
                clReleaseMemObject(clInput2);
                clReleaseMemObject(clInput1);
                clReleaseMemObject(clInput0);
                clReleaseMemObject(clResult);
                clReleaseKernel(clKernel);

                rDevice.fTime = timerCurrent(&kernelTime);
                rDevice.bErrors = false;
            }

            clReleaseProgram(clProgram);
            clReleaseCommandQueue(clQueue);
            clReleaseContext(clContext);
        }
    }
    else
    {
        /* Evaluating an Native CPU device */
        SAL_INFO("opencl.device", "Device: \"CPU\" (Native) evaluation...");
        timer kernelTime;
        timerStart(&kernelTime);

        unsigned long j;
        for (j = 0; j < testData->outputSize; j++)
        {
            double fAverage = 0.0f;
            double fMin = DBL_MAX;
            double fSoP = 0.0f;
            for (unsigned long i = 0; i < testData->inputSize; i++)
            {
                fAverage += testData->input0[i];
                fMin = ((fMin < testData->input1[i]) ? fMin : testData->input1[i]);
                fSoP += testData->input2[i] * testData->input3[i];
            }
            fAverage /= testData->inputSize;
            testData->output[j] = fAverage + (fMin * fSoP);
            // Don't run for much longer than one second
            if (j > 0 && j % 100 == 0)
            {
                rDevice.fTime = timerCurrent(&kernelTime);
                if (rDevice.fTime >= 1)
                    break;
            }
        }

        rDevice.fTime = timerCurrent(&kernelTime);

        // Scale time to how long it would have taken to go all the way to outputSize
        rDevice.fTime /= ((double) j / testData->outputSize);

        // InterpretTail - the S/W fallback is nothing like as efficient
        // as any good openCL implementation: no SIMD, tons of branching
        // in the inner loops etc. Generously characterise it as only 10x
        // slower than the above.
        float fInterpretTailFactor = 10.0;
        rDevice.fTime *= fInterpretTailFactor;
        rDevice.bErrors = false;
    }
    return DS_SUCCESS;
}

ds_status profileDevices(std::unique_ptr<ds_profile>& pProfile, std::unique_ptr<LibreOfficeDeviceEvaluationIO>& pTestData)
{
    ds_status status = DS_SUCCESS;

    if (!pProfile)
        return DS_INVALID_PROFILE;

    for (ds_device& rDevice : pProfile->devices)
    {
        ds_status evaluatorStatus = evaluateScoreForDevice(rDevice, pTestData);
        if (evaluatorStatus != DS_SUCCESS)
        {
            status = evaluatorStatus;
            return status;
        }
    }
    return status;
}

/* Pick best device */
ds_status pickBestDevice(std::unique_ptr<ds_profile>& profile, int& rBestDeviceIndex)
{
    double bestScore = DBL_MAX;

    rBestDeviceIndex = -1;

    for (std::vector<ds_device>::size_type d = 0; d < profile->devices.size();
         d++)
    {
        ds_device& device = profile->devices[d];

        // Check blacklist and whitelist for actual devices
        if (device.eType == DeviceType::OpenCLDevice)
        {
            // There is a silly impedance mismatch here. Why do we
            // need two different ways to describe an OpenCL platform
            // and an OpenCL device driver?

            OpenCLPlatformInfo aPlatform;
            OpenCLDeviceInfo aDevice;

            // We know that only the below fields are used by checkForKnownBadCompilers()
            aPlatform.maVendor = OStringToOUString(device.sPlatformVendor, RTL_TEXTENCODING_UTF8);
            aDevice.maName = OStringToOUString(device.sDeviceName, RTL_TEXTENCODING_UTF8);
            aDevice.maDriver = OStringToOUString(device.sDriverVersion, RTL_TEXTENCODING_UTF8);

            // If blacklisted or not whitelisted, ignore it
            if (OpenCLConfig::get().checkImplementation(aPlatform, aDevice))
            {
                SAL_INFO("opencl.device", "Device[" << d << "] " << device.sDeviceName << " is blacklisted or not whitelisted");
                device.fTime = DBL_MAX;
                device.bErrors = false;
            }
        }

        double fScore = DBL_MAX;
        if (device.fTime >= 0.0
            || rtl::math::approxEqual(device.fTime, DBL_MAX))
        {
            fScore = device.fTime;
        }
        else
        {
            SAL_INFO("opencl.device", "Unusual null score");
        }

        if (device.eType == DeviceType::OpenCLDevice)
        {
            SAL_INFO("opencl.device", "Device[" << d << "] " << device.sDeviceName << " (OpenCL) score is " << fScore);
        }
        else
        {
            SAL_INFO("opencl.device", "Device[" << d << "] CPU (Native) score is " << fScore);
        }
        if (fScore < bestScore)
        {
            bestScore = fScore;
            rBestDeviceIndex = d;
        }
    }
    if (rBestDeviceIndex != -1 && profile->devices[rBestDeviceIndex].eType == DeviceType::OpenCLDevice)
    {
        SAL_INFO("opencl.device", "Selected Device[" << rBestDeviceIndex << "]: " << profile->devices[rBestDeviceIndex].sDeviceName << "(OpenCL).");
    }
    else
    {
        SAL_INFO("opencl.device", "Selected Device[" << rBestDeviceIndex << "]: CPU (Native).");
    }
    return DS_SUCCESS;
}

/* Return device ID for matching device name */
int matchDevice(std::unique_ptr<ds_profile>& profile, char* deviceName)
{
    int deviceMatch = -1;
    for (unsigned int d = 0; d < profile->devices.size() - 1; d++)
    {
        if (profile->devices[d].sDeviceName.indexOf(deviceName) != -1)
            deviceMatch = d;
    }
    if (std::string("NATIVE_CPU").find(deviceName) != std::string::npos)
        deviceMatch = profile->devices.size() - 1;
    return deviceMatch;
}

class LogWriter
{
private:
    SvFileStream maStream;
public:
    explicit LogWriter(OUString const & aFileName)
        : maStream(aFileName, StreamMode::WRITE)
    {}

    void text(const OString& rText)
    {
        maStream.WriteOString(rText);
        maStream.WriteChar('\n');
    }

    void log(const OString& rKey, const OString& rValue)
    {
        maStream.WriteOString(rKey);
        maStream.WriteCharPtr(": ");
        maStream.WriteOString(rValue);
        maStream.WriteChar('\n');
    }

    void log(const OString& rKey, int rValue)
    {
        log(rKey, OString::number(rValue));
    }

    void log(const OString& rKey, bool rValue)
    {
        log(rKey, OString::boolean(rValue));
    }
};


void writeDevicesLog(std::unique_ptr<ds_profile>& rProfile, OUString const & sProfilePath, int nSelectedIndex)
{
    OUString aCacheFile(sProfilePath + "opencl_devices.log");
    LogWriter aWriter(aCacheFile);

    int nIndex = 0;

    for (ds_device& rDevice : rProfile->devices)
    {
        if (rDevice.eType == DeviceType::OpenCLDevice)
        {
            aWriter.log("Device Index", nIndex);
            aWriter.log("  Selected", nIndex == nSelectedIndex);
            aWriter.log("  Device Name", rDevice.sDeviceName);
            aWriter.log("  Device Vendor", rDevice.sDeviceVendor);
            aWriter.log("  Device Version", rDevice.sDeviceVersion);
            aWriter.log("  Driver Version", rDevice.sDriverVersion);
            aWriter.log("  Device Type", rDevice.sDeviceType);
            aWriter.log("  Device Extensions", rDevice.sDeviceExtensions);
            aWriter.log("  Device OpenCL C Version", rDevice.sDeviceOpenCLVersion);

            aWriter.log("  Device Available", rDevice.bDeviceAvailable);
            aWriter.log("  Device Compiler Available", rDevice.bDeviceCompilerAvailable);
            aWriter.log("  Device Linker Available", rDevice.bDeviceLinkerAvailable);

            aWriter.log("  Platform Name", rDevice.sPlatformName);
            aWriter.log("  Platform Vendor", rDevice.sPlatformVendor);
            aWriter.log("  Platform Version", rDevice.sPlatformVersion);
            aWriter.log("  Platform Profile", rDevice.sPlatformProfile);
            aWriter.log("  Platform Extensions", rDevice.sPlatformExtensions);
            aWriter.text("");
        }
        nIndex++;
    }
}

} // end anonymous namespace

ds_device const & getDeviceSelection(
    OUString const & sProfilePath, bool bForceSelection)
{
    /* Run only if device is not yet selected */
    if (!bIsDeviceSelected || bForceSelection)
    {
        /* Setup */
        std::unique_ptr<ds_profile> aProfile;
        ds_status status;
        status = initDSProfile(aProfile, "LibreOffice v1");

        if (status != DS_SUCCESS)
        {
            // failed to initialize profile.
            selectedDevice.eType = DeviceType::NativeCPU;
            return selectedDevice;
        }

        /* Try reading scores from file */
        OUString sFilePath = sProfilePath + "opencl_profile.xml";

        if (!bForceSelection)
        {
            status = readProfile(sFilePath, aProfile);
        }
        else
        {
            status = DS_INVALID_PROFILE;
            SAL_INFO("opencl.device", "Performing forced profiling.");
        }
        if (DS_SUCCESS != status)
        {
            if (!bForceSelection)
            {
                SAL_INFO("opencl.device", "Profile file not available (" << sFilePath << "); performing profiling.");
            }

            /* Populate input data for micro-benchmark */
            std::unique_ptr<LibreOfficeDeviceEvaluationIO> testData(new LibreOfficeDeviceEvaluationIO);
            testData->inputSize  = INPUTSIZE;
            testData->outputSize = OUTPUTSIZE;
            testData->input0.resize(testData->inputSize);
            testData->input1.resize(testData->inputSize);
            testData->input2.resize(testData->inputSize);
            testData->input3.resize(testData->inputSize);
            testData->output.resize(testData->outputSize);
            populateInput(testData);

            /* Perform evaluations */
            status = profileDevices(aProfile, testData);

            if (DS_SUCCESS == status)
            {
                /* Write scores to file */
                status = writeProfile(sFilePath, aProfile);
                if (DS_SUCCESS == status)
                {
                    SAL_INFO("opencl.device", "Scores written to file (" << sFilePath << ").");
                }
                else
                {
                    SAL_INFO("opencl.device", "Error saving scores to file (" << sFilePath << "); scores not written to file.");
                }
            }
            else
            {
                SAL_INFO("opencl.device", "Unable to evaluate performance; scores not written to file.");
            }
        }
        else
        {
            SAL_INFO("opencl.device", "Profile read from file (" << sFilePath << ").");
        }

        /* Pick best device */
        int bestDeviceIdx;
        pickBestDevice(aProfile, bestDeviceIdx);

        /* Override if necessary */
        char* overrideDeviceStr = getenv("SC_OPENCL_DEVICE_OVERRIDE");
        if (nullptr != overrideDeviceStr)
        {
            int overrideDeviceIdx = matchDevice(aProfile, overrideDeviceStr);
            if (-1 != overrideDeviceIdx)
            {
                SAL_INFO("opencl.device", "Overriding Device Selection (SC_OPENCL_DEVICE_OVERRIDE=" << overrideDeviceStr << ").");
                bestDeviceIdx = overrideDeviceIdx;
                if (aProfile->devices[bestDeviceIdx].eType == DeviceType::OpenCLDevice)
                {
                    SAL_INFO("opencl.device", "Selected Device[" << bestDeviceIdx << "]: " << aProfile->devices[bestDeviceIdx].sDeviceName << " (OpenCL).");
                }
                else
                {
                    SAL_INFO("opencl.device", "Selected Device[" << bestDeviceIdx << "]: CPU (Native).");
                }
            }
            else
            {
                SAL_INFO("opencl.device", "Ignoring invalid SC_OPENCL_DEVICE_OVERRIDE=" << overrideDeviceStr << ").");
            }
        }

        /* Final device selection */
        if (bestDeviceIdx >=0 && static_cast< std::vector<ds_device>::size_type> ( bestDeviceIdx ) < aProfile->devices.size() )
        {
            selectedDevice = aProfile->devices[bestDeviceIdx];
            bIsDeviceSelected = true;

            writeDevicesLog(aProfile, sProfilePath, bestDeviceIdx);
        } else {
            selectedDevice.eType = DeviceType::NativeCPU;
        }
    }
    return selectedDevice;
}

}

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */