1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
#include <oox/crypto/CryptTools.hxx>
#include <filter/msfilter/mscodec.hxx>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <config_oox.h>
#if USE_TLS_OPENSSL
#include <openssl/evp.h>
#include <openssl/sha.h>
#include <openssl/hmac.h>
#endif // USE_TLS_OPENSSL
#if USE_TLS_NSS
#include <nss.h>
#include <pk11pub.h>
#include <sechash.h>
#endif // USE_TLS_NSS
namespace oox::core {
#if USE_TLS_OPENSSL
struct CryptoImpl
{
std::unique_ptr<EVP_CIPHER_CTX> mpContext;
std::unique_ptr<HMAC_CTX> mpHmacContext;
CryptoImpl() = default;
void setupEncryptContext(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv, Crypto::CryptoType eType)
{
mpContext.reset(new EVP_CIPHER_CTX);
EVP_CIPHER_CTX_init(mpContext.get());
const EVP_CIPHER* cipher = getCipher(eType);
if (cipher == nullptr)
return;
if (iv.empty())
EVP_EncryptInit_ex(mpContext.get(), cipher, nullptr, key.data(), 0);
else
EVP_EncryptInit_ex(mpContext.get(), cipher, nullptr, key.data(), iv.data());
EVP_CIPHER_CTX_set_padding(mpContext.get(), 0);
}
void setupDecryptContext(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv, Crypto::CryptoType eType)
{
mpContext.reset(new EVP_CIPHER_CTX);
EVP_CIPHER_CTX_init(mpContext.get());
const EVP_CIPHER* pCipher = getCipher(eType);
if (pCipher == nullptr)
return;
const size_t nMinKeySize = EVP_CIPHER_key_length(pCipher);
if (key.size() < nMinKeySize)
key.resize(nMinKeySize, 0);
if (iv.empty())
EVP_DecryptInit_ex(mpContext.get(), pCipher, nullptr, key.data(), 0);
else
{
const size_t nMinIVSize = EVP_CIPHER_iv_length(pCipher);
if (iv.size() < nMinIVSize)
iv.resize(nMinIVSize, 0);
EVP_DecryptInit_ex(mpContext.get(), pCipher, nullptr, key.data(), iv.data());
}
EVP_CIPHER_CTX_set_padding(mpContext.get(), 0);
}
void setupCryptoHashContext(std::vector<sal_uInt8>& rKey, CryptoHashType eType)
{
mpHmacContext.reset(new HMAC_CTX);
HMAC_CTX_init(mpHmacContext.get());
const EVP_MD* aEvpMd;
switch (eType)
{
case CryptoHashType::SHA1:
aEvpMd = EVP_sha1(); break;
case CryptoHashType::SHA256:
aEvpMd = EVP_sha256(); break;
case CryptoHashType::SHA512:
aEvpMd = EVP_sha512(); break;
}
HMAC_Init(mpHmacContext.get(), rKey.data(), rKey.size(), aEvpMd);
}
~CryptoImpl()
{
if (mpContext)
EVP_CIPHER_CTX_cleanup(mpContext.get());
if (mpHmacContext)
HMAC_CTX_cleanup(mpHmacContext.get());
}
const EVP_CIPHER* getCipher(Crypto::CryptoType type)
{
switch(type)
{
case Crypto::CryptoType::AES_128_ECB:
return EVP_aes_128_ecb();
case Crypto::CryptoType::AES_128_CBC:
return EVP_aes_128_cbc();
case Crypto::CryptoType::AES_256_CBC:
return EVP_aes_256_cbc();
default:
break;
}
return nullptr;
}
};
#elif USE_TLS_NSS
#define MAX_WRAPPED_KEY_LEN 128
struct CryptoImpl
{
PK11SlotInfo* mSlot;
PK11Context* mContext;
SECItem* mSecParam;
PK11SymKey* mSymKey;
PK11Context* mWrapKeyContext;
PK11SymKey* mWrapKey;
CryptoImpl()
: mSlot(nullptr)
, mContext(nullptr)
, mSecParam(nullptr)
, mSymKey(nullptr)
, mWrapKeyContext(nullptr)
, mWrapKey(nullptr)
{
// Initialize NSS, database functions are not needed
NSS_NoDB_Init(nullptr);
}
~CryptoImpl()
{
if (mContext)
PK11_DestroyContext(mContext, PR_TRUE);
if (mSecParam)
SECITEM_FreeItem(mSecParam, PR_TRUE);
if (mSymKey)
PK11_FreeSymKey(mSymKey);
if (mWrapKeyContext)
PK11_DestroyContext(mWrapKeyContext, PR_TRUE);
if (mWrapKey)
PK11_FreeSymKey(mWrapKey);
if (mSlot)
PK11_FreeSlot(mSlot);
}
PK11SymKey* ImportSymKey(CK_MECHANISM_TYPE mechanism, CK_ATTRIBUTE_TYPE operation, SECItem* key)
{
mSymKey = PK11_ImportSymKey(mSlot, mechanism, PK11_OriginUnwrap, operation, key, nullptr);
if (!mSymKey) //rhbz#1614419 maybe failed due to FIPS, use rhbz#1461450 style workaround
{
/*
* Without FIPS it would be possible to just use
* mSymKey = PK11_ImportSymKey( mSlot, mechanism, PK11_OriginUnwrap, CKA_ENCRYPT, &keyItem, nullptr );
* with FIPS NSS Level 2 certification has to be "workarounded" (so it becomes Level 1) by using
* following method:
* 1. Generate wrap key
* 2. Encrypt authkey with wrap key
* 3. Unwrap encrypted authkey using wrap key
*/
/*
* Generate wrapping key
*/
CK_MECHANISM_TYPE wrap_mechanism = PK11_GetBestWrapMechanism(mSlot);
int wrap_key_len = PK11_GetBestKeyLength(mSlot, wrap_mechanism);
mWrapKey = PK11_KeyGen(mSlot, wrap_mechanism, nullptr, wrap_key_len, nullptr);
if (!mWrapKey)
throw css::uno::RuntimeException("PK11_KeyGen SymKey failure", css::uno::Reference<css::uno::XInterface>());
/*
* Encrypt authkey with wrapping key
*/
/*
* Initialization of IV is not needed because PK11_GetBestWrapMechanism should return ECB mode
*/
SECItem tmp_sec_item = {};
mWrapKeyContext = PK11_CreateContextBySymKey(wrap_mechanism, CKA_ENCRYPT, mWrapKey, &tmp_sec_item);
if (!mWrapKeyContext)
throw css::uno::RuntimeException("PK11_CreateContextBySymKey failure", css::uno::Reference<css::uno::XInterface>());
unsigned char wrapped_key_data[MAX_WRAPPED_KEY_LEN];
int wrapped_key_len = sizeof(wrapped_key_data);
if (PK11_CipherOp(mWrapKeyContext, wrapped_key_data, &wrapped_key_len,
sizeof(wrapped_key_data), key->data, key->len) != SECSuccess)
{
throw css::uno::RuntimeException("PK11_CipherOp failure", css::uno::Reference<css::uno::XInterface>());
}
if (PK11_Finalize(mWrapKeyContext) != SECSuccess)
throw css::uno::RuntimeException("PK11_Finalize failure", css::uno::Reference<css::uno::XInterface>());
/*
* Finally unwrap sym key
*/
SECItem wrapped_key = {};
wrapped_key.data = wrapped_key_data;
wrapped_key.len = wrapped_key_len;
mSymKey = PK11_UnwrapSymKey(mWrapKey, wrap_mechanism, &tmp_sec_item, &wrapped_key,
mechanism, operation, key->len);
}
return mSymKey;
}
void setupCryptoContext(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv, Crypto::CryptoType type, CK_ATTRIBUTE_TYPE operation)
{
CK_MECHANISM_TYPE mechanism = static_cast<CK_ULONG>(-1);
SECItem ivItem;
ivItem.type = siBuffer;
if(iv.empty())
ivItem.data = nullptr;
else
ivItem.data = iv.data();
ivItem.len = iv.size();
SECItem* pIvItem = nullptr;
switch(type)
{
case Crypto::CryptoType::AES_128_ECB:
mechanism = CKM_AES_ECB;
break;
case Crypto::CryptoType::AES_128_CBC:
mechanism = CKM_AES_CBC;
pIvItem = &ivItem;
break;
case Crypto::CryptoType::AES_256_CBC:
mechanism = CKM_AES_CBC;
pIvItem = &ivItem;
break;
default:
break;
}
mSlot = PK11_GetBestSlot(mechanism, nullptr);
if (!mSlot)
throw css::uno::RuntimeException("NSS Slot failure", css::uno::Reference<css::uno::XInterface>());
SECItem keyItem;
keyItem.type = siBuffer;
keyItem.data = key.data();
keyItem.len = key.size();
mSymKey = ImportSymKey(mechanism, CKA_ENCRYPT, &keyItem);
if (!mSymKey)
throw css::uno::RuntimeException("NSS SymKey failure", css::uno::Reference<css::uno::XInterface>());
mSecParam = PK11_ParamFromIV(mechanism, pIvItem);
mContext = PK11_CreateContextBySymKey(mechanism, operation, mSymKey, mSecParam);
}
void setupCryptoHashContext(std::vector<sal_uInt8>& rKey, CryptoHashType eType)
{
CK_MECHANISM_TYPE aMechanism = static_cast<CK_ULONG>(-1);
switch(eType)
{
case CryptoHashType::SHA1:
aMechanism = CKM_SHA_1_HMAC;
break;
case CryptoHashType::SHA256:
aMechanism = CKM_SHA256_HMAC;
break;
case CryptoHashType::SHA512:
aMechanism = CKM_SHA512_HMAC;
break;
}
mSlot = PK11_GetBestSlot(aMechanism, nullptr);
if (!mSlot)
throw css::uno::RuntimeException("NSS Slot failure", css::uno::Reference<css::uno::XInterface>());
SECItem aKeyItem;
aKeyItem.data = rKey.data();
aKeyItem.len = rKey.size();
mSymKey = ImportSymKey(aMechanism, CKA_SIGN, &aKeyItem);
if (!mSymKey)
throw css::uno::RuntimeException("NSS SymKey failure", css::uno::Reference<css::uno::XInterface>());
SECItem param;
param.data = nullptr;
param.len = 0;
mContext = PK11_CreateContextBySymKey(aMechanism, CKA_SIGN, mSymKey, ¶m);
}
};
#else
struct CryptoImpl
{};
#endif
Crypto::Crypto()
: mpImpl(std::make_unique<CryptoImpl>())
{
}
Crypto::~Crypto()
{
}
// DECRYPT
Decrypt::Decrypt(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv, CryptoType type)
: Crypto()
{
#if USE_TLS_OPENSSL + USE_TLS_NSS == 0
(void)key;
(void)iv;
(void)type;
#endif
#if USE_TLS_OPENSSL
mpImpl->setupDecryptContext(key, iv, type);
#endif
#if USE_TLS_NSS
mpImpl->setupCryptoContext(key, iv, type, CKA_DECRYPT);
#endif // USE_TLS_NSS
}
sal_uInt32 Decrypt::update(std::vector<sal_uInt8>& output, std::vector<sal_uInt8>& input, sal_uInt32 inputLength)
{
int outputLength = 0;
#if USE_TLS_OPENSSL + USE_TLS_NSS > 0
sal_uInt32 actualInputLength = inputLength == 0 || inputLength > input.size() ? input.size() : inputLength;
#else
(void)output;
(void)input;
(void)inputLength;
#endif
#if USE_TLS_OPENSSL
(void)EVP_DecryptUpdate(mpImpl->mpContext.get(), output.data(), &outputLength, input.data(), actualInputLength);
#endif // USE_TLS_OPENSSL
#if USE_TLS_NSS
if (!mpImpl->mContext)
return 0;
(void)PK11_CipherOp(mpImpl->mContext, output.data(), &outputLength, actualInputLength, input.data(), actualInputLength);
#endif // USE_TLS_NSS
return static_cast<sal_uInt32>(outputLength);
}
sal_uInt32 Decrypt::aes128ecb(std::vector<sal_uInt8>& output, std::vector<sal_uInt8>& input, std::vector<sal_uInt8>& key)
{
sal_uInt32 outputLength = 0;
std::vector<sal_uInt8> iv;
Decrypt crypto(key, iv, Crypto::AES_128_ECB);
outputLength = crypto.update(output, input);
return outputLength;
}
// ENCRYPT
Encrypt::Encrypt(std::vector<sal_uInt8>& key, std::vector<sal_uInt8>& iv, CryptoType type)
: Crypto()
{
#if USE_TLS_OPENSSL + USE_TLS_NSS == 0
(void)key;
(void)iv;
(void)type;
#endif
#if USE_TLS_OPENSSL
mpImpl->setupEncryptContext(key, iv, type);
#elif USE_TLS_NSS
mpImpl->setupCryptoContext(key, iv, type, CKA_ENCRYPT);
#endif // USE_TLS_NSS
}
sal_uInt32 Encrypt::update(std::vector<sal_uInt8>& output, std::vector<sal_uInt8>& input, sal_uInt32 inputLength)
{
int outputLength = 0;
#if USE_TLS_OPENSSL + USE_TLS_NSS > 0
sal_uInt32 actualInputLength = inputLength == 0 || inputLength > input.size() ? input.size() : inputLength;
#else
(void)output;
(void)input;
(void)inputLength;
#endif
#if USE_TLS_OPENSSL
(void)EVP_EncryptUpdate(mpImpl->mpContext.get(), output.data(), &outputLength, input.data(), actualInputLength);
#endif // USE_TLS_OPENSSL
#if USE_TLS_NSS
(void)PK11_CipherOp(mpImpl->mContext, output.data(), &outputLength, actualInputLength, input.data(), actualInputLength);
#endif // USE_TLS_NSS
return static_cast<sal_uInt32>(outputLength);
}
// CryptoHash - HMAC
namespace
{
sal_Int32 getSizeForHashType(CryptoHashType eType)
{
switch (eType)
{
case CryptoHashType::SHA1: return 20;
case CryptoHashType::SHA256: return 32;
case CryptoHashType::SHA512: return 64;
}
return 0;
}
} // end anonymous namespace
CryptoHash::CryptoHash(std::vector<sal_uInt8>& rKey, CryptoHashType eType)
: Crypto()
, mnHashSize(getSizeForHashType(eType))
{
#if USE_TLS_OPENSSL
mpImpl->setupCryptoHashContext(rKey, eType);
#elif USE_TLS_NSS
mpImpl->setupCryptoHashContext(rKey, eType);
PK11_DigestBegin(mpImpl->mContext);
#else
(void)rKey;
#endif
}
bool CryptoHash::update(std::vector<sal_uInt8>& rInput, sal_uInt32 nInputLength)
{
#if USE_TLS_OPENSSL + USE_TLS_NSS > 0
sal_uInt32 nActualInputLength = (nInputLength == 0 || nInputLength > rInput.size()) ? rInput.size() : nInputLength;
#else
(void)rInput;
(void)nInputLength;
#endif
#if USE_TLS_OPENSSL
return HMAC_Update(mpImpl->mpHmacContext.get(), rInput.data(), nActualInputLength) != 0;
#elif USE_TLS_NSS
return PK11_DigestOp(mpImpl->mContext, rInput.data(), nActualInputLength) == SECSuccess;
#else
return false; // ???
#endif
}
std::vector<sal_uInt8> CryptoHash::finalize()
{
std::vector<sal_uInt8> aHash(mnHashSize, 0);
unsigned int nSizeWritten;
#if USE_TLS_OPENSSL
(void) HMAC_Final(mpImpl->mpHmacContext.get(), aHash.data(), &nSizeWritten);
#elif USE_TLS_NSS
PK11_DigestFinal(mpImpl->mContext, aHash.data(), &nSizeWritten, aHash.size());
#endif
(void)nSizeWritten;
return aHash;
}
} // namespace oox::core
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|